REAL HYPERSURFACES OF A NONFLAT COMPLEX SPACE FORM IN TERMS OF THE RICCI TENSOR

By
U-Hang Ki and Setsuo Nagar

Abstract

We know the fact that there are no real hypersurfaces with parallel Ricci tensors in a nonflat complex space form (cf. [5]). In this paper we investigate real hypersurfaces in a nonflat complex space form using some conditions of the Ricci tensor S which are weaker than $\nabla S=0$. We characterize Hopf hypersurfaces of a nonflat complex space form.

0 Introduction

A Kähler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$. A complete and simply connected complex space forms are isometric to a complex projective space $C P_{n}$, a complex Euclidean space \boldsymbol{C}^{n} or a complex hyperbolic space $C H_{n}$ as $c>0$, $c=0$ or $c<0$.

Let M be a real hypersurface of $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the complex structure J and the Kähler metric of $M_{n}(c)$ (for details see $\S 1$). The structure vector ξ is said to be principal if $A \xi=\alpha \xi$ is satisfied, where A is the shape operator of M and $\alpha=\eta(A \xi)$. A real hypersurface is said to be a Hopf hypersurface if the structure vector ξ of M is principal.

Typical examples of real hypersurfaces in $C P_{n}$ are homogeneous ones which are orbits under subgroups of $\operatorname{PU}(n+1)$. The complete classification of them was obtained by Takagi [10] as follows:

Theorem T [10]. Let M be a homogeneous real hypersurface of $C P_{n}$. Then M is a tube of radius r over one of the following Kähler submanifolds:

[^0]$\left(A_{1}\right)$ a hyperplane $C P_{n-1}$, where $0<r<\frac{\pi}{2}$,
$\left(A_{2}\right)$ a totally geodesic $C P_{k}(1 \leq k \leq n-2)$, where $0<r<\frac{\pi}{2}$,
(B) a complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $\boldsymbol{C} P_{1} \times \boldsymbol{C P} P_{(n-1) / 2}$, where $0<r<\frac{\pi}{4}$ and $n \geq 5$ is odd,
(D) a complex Grassmann $G_{2,5} C$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) a Hermitian symmetric space $\mathrm{SO}(10) / \mathrm{U}(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

Also Berndt [1] classified all Hopf real hypersurfaces in CH_{n} with constant principal curvatures as follows:

Theorem B [1]. Let M be a real hypersurface of CH_{n}. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(A_{0}\right)$ a self-tube, that is, a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere, or a tube over a hyperplane CH_{n-1},
$\left(A_{2}\right)$ a tube over a totally geodesic CH $_{k}(1 \leq k \leq n-2)$,
(B) a tube over a totally real hyperbolic space $\boldsymbol{R} H_{n}$.

Let ∇ and S be the Levi-Civita connection and the Ricci tensor of M, respectively. There are many studies about Ricci tensors of real hypersurfaces (cf. [2], [3], [4], [5], [6], [7], [8], [9]). Very important fact is that there are no real hypersurfaces with parallel Ricci tensors S (that is, $\nabla_{X} S=0$ for each vector field X tangent to M) in $M_{n}(c), c \neq 0, n \geq 3$ (cf. [5]). Especially, there exist no Einstein real hypersurfaces M in $M_{n}(c), c \neq 0, n \geq 3$. So, it is natural to investigate real hypersurfaces M by using some conditions (on the derivatives of S) which are weaker than $\nabla S=0$.

Recently, the first author, Hwang and Kim proved the following theorem:

Theorem 0.1. Let M be a real hypersurface in a nonflat complex space form. If the Ricci tensor S of M satisfies $\nabla_{\xi} S=0, \nabla_{\phi \nabla_{\xi} \xi} S=0$ and $S \xi=g(S \xi, \xi) \xi$, then M is locally congruent to one of the homogeneous real hypersurfaces of Theorem T and Theorem B.

In this paper we pay particular attention to the fact that for each Hopf hypersurface M in $M_{n}(c), c \neq 0$ the characteristic vector ξ of M is an eigenvector of the Ricci tensor S of M. So it is natural to consider a problem that if the vector ξ
is an eigenvector of the Ricci tensor S of a real hypersurface M in $M_{n}(c), c \neq 0$, is M a Hopf hypersurface?

The purpose of this paper is to eatablish the following theorem which gives a partial answer to this problem:

Theorem 4.1. Let M be a real hypersurface in $M_{n}(c), c>0$. If it satisfies $\nabla_{\phi \nabla_{\xi} \xi} S=0$ and at the same time satisfies $S \xi=\sigma \xi$ for some constant σ, then M is a Hopf hypersurface.

The authors would like to express their sincere gratitude to the referee for his valuable comments.

1 Preliminaries

Let M be a real hypersurface immersed in a complex space form ($\left.M_{n}(c), G\right)$ with almost complex structure J and the Kähler metric G of constant holomorphic sectional curvature c, and let C be a unit normal vector field on M. The Riemannian connection $\tilde{\nabla}$ in $M_{n}(c)$ and ∇ in M are related by the following formulas for any vector fields X and Y on M :

$$
\begin{gather*}
\tilde{\nabla}_{Y} X=\nabla_{Y} X+g(A Y, X) C \tag{1.1}\\
\tilde{\nabla}_{X} C=-A X \tag{1.2}
\end{gather*}
$$

where g denotes the Riemannian metric on M induced from that G of $M_{n}(c)$ and A is the shape operator of M in $M_{n}(c)$. An eigenvector X of the shape operator A is called a principal curvature vector. Also an eigenvalue λ of A is called a principal curvature. It is known that M has an almost contact metric structure induced from the almost complex structure J on $M_{n}(c)$, that is, we define a tensor field ϕ of type (1,1), a vector field ξ, an 1-form η on M by $g(\phi X, Y)=G(J X, Y)$ and $g(\xi, X)=\eta(X)=G(J X, C)$. Then we have

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad g(\xi, \xi)=1, \quad \phi \xi=0 . \tag{1.3}
\end{equation*}
$$

From (1.1) we see that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi \tag{1.4}\\
\nabla_{X} \xi=\phi A X \tag{1.5}
\end{gather*}
$$

Since the ambient space is of constant holomorphic sectional curvature c, equations of the Gauss and Codazzi are respectively given by

$$
\begin{align*}
R(X, Y) Z=\frac{c}{4}\{ & g(Y, Z) X-g(X, Z) Y+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y \\
& -2 g(\phi X, Y) \phi Z\}+g(A Y, Z) A X-g(A X, Z) A Y \tag{1.6}\\
\left(\nabla_{X} A\right) Y- & \left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi\} \tag{1.7}
\end{align*}
$$

for any vector fields X, Y and Z on M, where R denotes the Riemannian curvature tensor of M. We shall denote the Ricci tensor of type $(1,1)$ by S. Then it follows from (1.6) that

$$
\begin{equation*}
S X=\frac{c}{4}\{(2 n+1) X-3 \eta(X) \xi\}+h A X-A^{2} X \tag{1.8}
\end{equation*}
$$

where $h=\operatorname{trace} A$. Further, using (1.5), we obtain

$$
\begin{align*}
\left(\nabla_{X} S\right) Y= & -\frac{3}{4} c\{g(\phi A X, Y) \xi+\eta(Y) \phi A X\}+(X h) A Y \\
& +(h I-A)\left(\nabla_{X} A\right) Y-\left(\nabla_{X} A\right) A Y \tag{1.9}
\end{align*}
$$

where I is the identity map.
To write our formulas in convention forms, we denote $\alpha=\eta(A \xi), \beta=\eta\left(A^{2} \xi\right)$, $\mu^{2}=\beta-\alpha^{2}$ and ∇f by the gradient vector field of a function f on M. In the following, we use the same terminology and notation as above unless otherwise stated.

If we put $U=\nabla_{\xi} \xi$, then U is orthogonal to the structure vector field ξ. Then it is, using (1.3) and (1.5), seen that

$$
\begin{equation*}
\phi U=-A \xi+\alpha \xi \tag{1.10}
\end{equation*}
$$

which shows that $g(U, U)=\beta-\alpha^{2}$. By the definition of U, (1.3) and (1.5) it is verified that

$$
\begin{equation*}
g\left(\nabla_{X} \xi, U\right)=g\left(A^{2} \xi, X\right)-\alpha g(A \xi, X) \tag{1.11}
\end{equation*}
$$

Now, differentiating (1.10) covariantly along M and using (1.4) and (1.5), we find

$$
\begin{align*}
& \eta(X) g(A U+\nabla \alpha, Y)+g\left(\phi X, \nabla_{Y} U\right) \\
& \quad=g\left(\left(\nabla_{Y} A\right) X, \xi\right)-g(A \phi A X, Y)+\alpha g(A \phi X, Y) \tag{1.12}
\end{align*}
$$

which enables us to obtain

$$
\begin{equation*}
\left(\nabla_{\xi} A\right) \xi=2 A U+\nabla \alpha \tag{1.13}
\end{equation*}
$$

because of (1.7). From (1.12) we also have

$$
\begin{equation*}
\nabla_{\xi} U=3 \phi A U+\alpha A \xi-\beta \xi+\phi \nabla \alpha \tag{1.14}
\end{equation*}
$$

where we have used (1.3), (1.5) and (1.11).
If $A \xi-g(A \xi, \xi) \xi \neq 0$, then we can put

$$
\begin{equation*}
A \xi=\alpha \xi+\mu W \tag{1.15}
\end{equation*}
$$

where W is a unit vector field orthogonal to ξ. Then from (1.10) it is seen that $U=\mu \phi W$ and hence $g(U, U)=\mu^{2}$, and W is also orthogonal to U. Thus, we see, making use of (1.5), that

$$
\begin{equation*}
\mu g\left(\nabla_{X} W, \xi\right)=g(A U, X) \tag{1.16}
\end{equation*}
$$

2 Real Hypersurfaces Satisfying $S \xi=g(S \xi, \xi) \xi$

Let M be a real hypersurface of a nonflat complex space form $M_{n}(c)$. If it satisfies

$$
\begin{equation*}
S \xi=g(S \xi, \xi) \xi \tag{2.1}
\end{equation*}
$$

then we have by (1.8)

$$
\begin{equation*}
A^{2} \xi=h A \xi+(\beta-h \alpha) \xi \tag{2.2}
\end{equation*}
$$

where we have put $g(S \xi, \xi)=\sigma$,

$$
\begin{equation*}
\beta-h \alpha=\frac{c}{2}(n-1)-\sigma . \tag{2.3}
\end{equation*}
$$

In what follows we assume that $\mu \neq 0$ on M, that is, ξ is not a principal curvature vector field and we put $\Omega=\{p \in M \mid \mu(p) \neq 0\}$. Then Ω is an open subset of M, and from now on we discuss our arguments on Ω.

From (1.15) and (2.2), we see that

$$
\begin{equation*}
A W=\mu \xi+(h-\alpha) W \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A^{2} W=h A W+(\beta-h \alpha) W \tag{2.5}
\end{equation*}
$$

because of $\mu \neq 0$.
Now, differentiating (2.4) covariantly along Ω, we find

$$
\begin{equation*}
\left(\nabla_{X} A\right) W+A \nabla_{X} W=(X \mu) \xi+\mu \nabla_{X} \xi+X(h-\alpha) W+(h-\alpha) \nabla_{X} W \tag{2.6}
\end{equation*}
$$

By taking the inner product with W in the last equation, we obtain

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) W, W\right)=-2 g(A X, U)+X h-X \alpha \tag{2.7}
\end{equation*}
$$

since W is a unit vector field orthogonal to ξ. We also have by applying ξ to (2.6)

$$
\begin{equation*}
\mu g\left(\left(\nabla_{X} A\right) W, \xi\right)=(h-2 \alpha) g(A U, X)+\mu(X \mu) \tag{2.8}
\end{equation*}
$$

where we have used (1.16), which together with the Codazzi equation (1.7) gives

$$
\begin{align*}
& \mu\left(\nabla_{W} A\right) \xi=(h-2 \alpha) A U-\frac{c}{2} U+\mu \nabla \mu, \tag{2.9}\\
& \mu\left(\nabla_{\xi} A\right) W=(h-2 \alpha) A U-\frac{c}{4} U+\mu \nabla \mu . \tag{2.10}
\end{align*}
$$

Replacing X by ξ in (2.6) and taking account of (2.10), we find

$$
\begin{gather*}
(h-2 \alpha) A U-\frac{c}{4} U+\mu \nabla \mu+\mu\left\{A \nabla_{\xi} W-(h-\alpha) \nabla_{\xi} W\right\} \\
=\mu(\xi \mu) \xi+\mu^{2} U+\mu(\xi h-\xi \alpha) W \tag{2.11}
\end{gather*}
$$

By the way, from $\phi U=-\mu W$ we have

$$
g(A U, X) \xi-\phi \nabla_{X} U=(X \mu) W+\mu \nabla_{X} W
$$

Replacing X by ξ in this and using (1.10) and (1.14), we get

$$
\begin{equation*}
\mu \nabla_{\xi} W=3 A U-\alpha U+\nabla \alpha-(\xi \alpha) \xi-(\xi \mu) W \tag{2.12}
\end{equation*}
$$

which implies

$$
\begin{equation*}
W \alpha=\xi \mu \tag{2.13}
\end{equation*}
$$

From the last equations, it follows that

$$
\begin{align*}
3 A^{2} U & -2 h A U+A \nabla \alpha+\frac{1}{2} \nabla \beta-h \nabla \alpha+\left(\alpha h-\beta-\frac{c}{4}\right) U \\
& =2 \mu(W \alpha) \xi+\mu(\xi h) W-(h-2 \alpha)(\xi \alpha) \xi \tag{2.14}
\end{align*}
$$

which enables us to obtain

$$
\begin{equation*}
\xi \beta=2 \alpha(\xi \alpha)+2 \mu(W \alpha) \tag{2.15}
\end{equation*}
$$

Differentiating (2.2) covariantly and making use of (1.5), we get

$$
\begin{align*}
& \left(\nabla_{X} A\right) A \xi+A\left(\nabla_{X} A\right) \xi+A^{2} \phi A X-h A \phi A X \\
& \quad=(X h) A \xi+h\left(\nabla_{X} A\right) \xi+X(\beta-h \alpha) \xi+(\beta-h \alpha) \phi A X \tag{2.16}
\end{align*}
$$

which together with (1.7) implies that

$$
\begin{align*}
\frac{c}{4}\{u(Y) & \eta(X)-u(X) \eta(Y)\}+\frac{c}{2}(h-\alpha) g(\phi Y, X)-g\left(A^{2} \phi A X, Y\right) \\
& +g\left(A^{2} \phi A Y, X\right)+2 h g(\phi A X, A Y)-(\beta-h \alpha)\{g(\phi A Y, X)-g(\phi A X, Y)\} \\
= & g\left(A Y,\left(\nabla_{X} A\right) \xi\right)-g\left(A X,\left(\nabla_{Y} A\right) \xi\right)+(Y h) g(A \xi, X)-(X h) g(A \xi, Y) \\
& +Y(\beta-h \alpha) \eta(X)-X(\beta-h \alpha) \eta(Y) \tag{2.17}
\end{align*}
$$

where we have defined an 1-form u by $u(X)=g(U, X)$ for any vector field X. If we replace X by μW to the both sides of (2.17) and take account of (1.13), (2.4), (2.5), (2.8) and (2.9), then we obtain

$$
\begin{align*}
&(3 \alpha-2 h) A^{2} U+2\left(h^{2}+\beta-2 h \alpha+\frac{c}{4}\right) A U+(h-\alpha)\left(\beta-h \alpha-\frac{c}{2}\right) U \\
&= \mu A \nabla \mu+(\alpha h-\beta) \nabla \alpha-\frac{1}{2}(h-\alpha) \nabla \beta+\mu^{2} \nabla h \\
&-\mu(W h) A \xi-\mu W(\beta-h \alpha) \xi \tag{2.18}
\end{align*}
$$

Using (1.15), the equation (2.16) can be written as

$$
\begin{aligned}
& A\left(\nabla_{X} A\right) \xi+(\alpha-h)\left(\nabla_{X} A\right) \xi+\mu\left(\nabla_{X} A\right) W \\
& \quad=(X h) A \xi+X(\beta-h \alpha) \xi+(\beta-h \alpha) \phi A X+h A \phi A X-A^{2} \phi A X .
\end{aligned}
$$

Thus, replacing X by $\alpha \xi+\mu W$ in this and making use of (1.5), (1.13), (1.15) and (2.7)-(2.9), we find

$$
\begin{align*}
2 h A^{2} U & +2\left(\alpha h-\beta-h^{2}-\frac{c}{4}\right) A U+\left(h^{2} \alpha-h \beta+\frac{c}{2} h-\frac{3}{4} c \alpha\right) U \\
= & g(A \xi, \nabla h) A \xi-\frac{1}{2} A \nabla \beta+\frac{1}{2}(h-2 \alpha) \nabla \beta+\beta \nabla \alpha \\
& -\mu^{2} \nabla h+g(A \xi, \nabla(\beta-h \alpha)) \xi . \tag{2.19}
\end{align*}
$$

3 Real Hypersurfaces Satisfying $\nabla_{\phi \nabla_{\xi} \xi} S=0$ and $S \xi=g(S \xi, \xi) \xi$
We continue now, our arguments under the same hypothesis $S \xi=g(S \xi, \xi) \xi$ as in section 2. Furthermore, suppose that $\nabla_{\phi \nabla_{\xi} \xi} S=0$, that is, $\nabla_{W} S=0$ since we now suppose that $\mu \neq 0$.

Then, by replacing X by W, we have from (1.9)

$$
\begin{align*}
& -\frac{3}{4} c(h-\alpha)(u(Y) \xi+\eta(Y) U)+\mu(W h) A Y+\mu h\left(\nabla_{W} A\right) Y \\
& \quad=\mu A\left(\nabla_{W} A\right) Y-\mu\left(\nabla_{W} A\right) A Y \tag{3.1}
\end{align*}
$$

where we have used (1.5) and (2.4). If we replace Y by W and make use of (2.7) and (2.9), then we find

$$
\begin{equation*}
(W h) A W=h A U-\frac{c}{2} U-2 A^{2} U+\frac{1}{2} \nabla \beta-\alpha \nabla h+A \nabla h-A \nabla \alpha \tag{3.2}
\end{equation*}
$$

because of $\mu \neq 0$.
In the following we assume that σ is constant on M and then $\beta-h \alpha=$ constant. In this case we notice here that the following fact:

Remark 3.1. $h-\alpha \neq 0$ on Ω.
In fact, if not, then we have $h=\alpha$ and hence $\beta-\alpha^{2}=$ constant, because $\sigma=$ constant. Thus (3.2) implies $W h=W \alpha=0$ and hence

$$
\begin{equation*}
2 A^{2} U=\alpha A U-\frac{c}{2} U \tag{3.3}
\end{equation*}
$$

Further, (2.14) and (2.18) turns out respectively to

$$
\begin{gather*}
2 A^{2} U-2 \alpha A U+\left(\alpha^{2}-\beta-\frac{c}{4}\right) U=-A \nabla \alpha+(\xi \alpha) A \xi \tag{3.4}\\
\alpha A^{2} U+2\left(\beta-\alpha^{2}+\frac{c}{4}\right) A U=0 \tag{3.5}
\end{gather*}
$$

It is, using (3.3)-(3.5), verified that $\alpha \neq 0$ on this set.
Combining (3.3) with (3.5), we see that

$$
\begin{equation*}
\alpha A U=2\left(\alpha^{2}-\beta-\frac{c}{4}\right) U \tag{3.6}
\end{equation*}
$$

and thus $A U=\nu U$ because of $\alpha \neq 0$, where we have put

$$
\begin{equation*}
\alpha \nu=2\left(\alpha^{2}-\beta-\frac{c}{4}\right) \tag{3.7}
\end{equation*}
$$

From this and (3.3), we obtain

$$
\begin{equation*}
v^{2}+\beta-\alpha^{2}+\frac{c}{2}=0 \tag{3.8}
\end{equation*}
$$

Therefore $v=$ constant $\neq 0$ because of (3.3). Hence it is, using (3.7), seen that $\alpha=$ constant and thus

$$
3 v^{2}-2 \alpha \nu+\alpha^{2}-\beta-\frac{c}{4}=0
$$

which together with (3.7) and (3.8), produces a contradiction. Consequently $h-\alpha \neq 0$ on Ω is proved. In what follows we assume that $h-\alpha \neq 0$ is satisfied everywhere.

Differentiating (2.1) covariantly, we find

$$
\left(\nabla_{X} S\right) \xi+S \nabla_{X} \xi=\sigma \nabla_{X} \xi
$$

because $\sigma=$ constant is assumed, which together with hypothesis $\nabla_{W} S=0$ yields

$$
\begin{equation*}
S \nabla_{W} \xi=\sigma \nabla_{W} \xi \tag{3.9}
\end{equation*}
$$

By the way we have $\mu \nabla_{W} \xi=(h-\alpha) U$ with the aid of (1.5) and (2.4), (3.9) implies $S U=\sigma U$ because of Remark 3.1. Hence (1.8) leads to

$$
\begin{equation*}
A^{2} U=h A U+\left(\beta-h \alpha+\frac{3}{4} c\right) U \tag{3.10}
\end{equation*}
$$

From (2.3) we have

$$
\begin{equation*}
\nabla \beta=\alpha \nabla h+h \nabla \alpha . \tag{3.11}
\end{equation*}
$$

Thus (2.15) is reduced to

$$
\begin{equation*}
2 \mu(W \alpha)=(h-2 \alpha)(\xi \alpha)+\alpha(\xi h) \tag{3.12}
\end{equation*}
$$

Using (1.15), (3.10) and (3.12), the equation (2.14) turns out to be

$$
\begin{equation*}
h A U+2(\beta-h \alpha+c) U=(\xi h) A \xi-A \nabla \alpha+h \nabla \alpha-\frac{1}{2} \nabla \beta . \tag{3.13}
\end{equation*}
$$

From (2.19) and (2.10), we also find

$$
\begin{align*}
(2 \beta & \left.-2 h \alpha+\frac{c}{2}\right) A U+\left\{h(h \alpha-\beta)+\frac{c}{4}(3 \alpha-8 h)\right\} U+g(A \xi, \nabla h) A \xi \\
& =\frac{1}{2} A \nabla \beta-\beta \nabla \alpha+\left(\alpha-\frac{1}{2} h\right) \nabla \beta+\mu^{2} \nabla h . \tag{3.14}
\end{align*}
$$

Because of (3.2) and (3.10), we see that

$$
(W h) A W=-h A U-2(\beta-h \alpha+c) U+A \nabla h-A \nabla \alpha+\frac{1}{2} \nabla \beta-\alpha \nabla h
$$

which together with (3.10) and (3.11) gives

$$
\begin{equation*}
A \nabla h=(W h) A W+(\xi h) A \xi . \tag{3.15}
\end{equation*}
$$

Making use of (3.13) and (3.15), we have from (3.14)

$$
\begin{align*}
&\left(4 \beta-4 h \alpha+h^{2}+c\right) A U+\left(\frac{3}{2} c \alpha-2 c h\right) U \\
&=\alpha(W h) A W-\{(\alpha-h)(\xi h)+2 \mu(W h)\} A \xi \\
&+\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) \nabla \alpha+\left(2 \beta-\frac{3}{2} h \alpha\right) \nabla h . \tag{3.16}
\end{align*}
$$

If we use (2.2), (2.5) and (3.10), then above equation implies

$$
\begin{aligned}
\frac{3}{4} c\{ & \left.\left(4 \beta-4 h \alpha+h^{2}+c\right) A U+\left(\frac{3}{2} c \alpha-2 c h\right) U\right\} \\
= & \left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right)\left\{A^{2} \nabla \alpha-h A \nabla \alpha-(\beta-h \alpha) \nabla \alpha\right\} \\
& +\left(2 \beta-\frac{3}{2} h \alpha\right)\left\{A^{2} \nabla h-h A \nabla h-(\beta-h \alpha) \nabla h\right\}
\end{aligned}
$$

which together with (3.15) yields

$$
\begin{align*}
\frac{3}{4} c\{ & \left.\left(4 \beta-4 h \alpha+h^{2}+c\right) A U+\frac{c}{2}(3 \alpha-4 h) U\right\} \\
= & \left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right)\left\{A^{2} \nabla \alpha-h A \nabla \alpha-(\beta-h \alpha) \nabla \alpha\right\} \\
& +\left(2 \beta-\frac{3}{2} h \alpha\right)(\beta-h \alpha)\{(W h) W+(\xi h) \xi-\nabla h\} \tag{3.17}
\end{align*}
$$

On the other hand, we have from (3.13)

$$
\begin{aligned}
A^{2} \nabla \alpha & -h A \nabla \alpha+\left(h^{2}+2 \beta-2 h \alpha+2 c\right) A U+h\left(\beta-h \alpha+\frac{3}{4} c\right) U \\
& =(\xi h) A^{2} \xi-\frac{1}{2} A \nabla \beta
\end{aligned}
$$

where we have used (3.10), or using (3.11) and (3.14),

$$
\begin{align*}
A^{2} \nabla \alpha- & h A \nabla \alpha+(\beta-h \alpha) \nabla \alpha \\
= & \left(4 h \alpha-4 \beta-h^{2}-\frac{5}{2} c\right) A U+\frac{c}{4}(5 h-3 \alpha) U \\
& -\frac{1}{2} h^{2} \nabla \alpha+\left(\beta-\frac{1}{2} h \alpha\right) \nabla h+(\xi h) A^{2} \xi-g(A \xi, \nabla h) A \xi . \tag{3.18}
\end{align*}
$$

If we take the inner product ξ with this and make use of (1.15) and (2.2), then we obtain

$$
\begin{equation*}
\mu \alpha(W h)=\left(2 h \alpha-2 \beta-\frac{1}{2} h^{2}\right)(\xi \alpha)+\left(2 \beta-\frac{1}{2} h \alpha-\alpha^{2}\right)(\xi h) . \tag{3.19}
\end{equation*}
$$

Substituting (3.18) into (3.17) and taking account of (3.16), we find

$$
\begin{gather*}
\frac{3}{2} c\left\{c A U+\frac{c}{2}(3 \alpha-4 h) U+(h-\alpha)\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) U\right\} \\
=h(h-\alpha)(\beta-h \alpha)\{\nabla h-(\xi h) \xi-(W h) W\} . \tag{3.20}
\end{gather*}
$$

Applying A to both sides of this and using (3.10) and (3.15), we have

$$
\begin{equation*}
\left\{\frac{c}{2}(3 \alpha-2 h)+(h-\alpha)\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right)\right\} A U+c\left(\beta-h \alpha+\frac{3}{4} c\right) U=0 . \tag{3.21}
\end{equation*}
$$

Lemma 3.1. Let M be a real hypersurface of $M_{n}(c)(c \neq 0)$. If it satisfies $\nabla_{W} S=0$ and $S \xi=\sigma \xi$ for some constant σ, then we have

$$
\begin{equation*}
A U=\lambda U \tag{3.22}
\end{equation*}
$$

on Ω, where $\mu^{2} \lambda=g(A U, U)$.
Proof. Let Ω_{0} be a set of points in M such that $\|A U-\lambda U\| \neq 0$ on Ω and suppose that Ω_{0} be nonempty. If $\beta-h \alpha+\frac{3}{4} c \neq 0$, then we have from (3.21)

$$
\frac{c}{2}(3 \alpha-2 h)+(h-\alpha)\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) \neq 0
$$

and hence (3.22) is valid. Thus it is, using (3.21), seen that

$$
\begin{equation*}
\beta-h \alpha+\frac{3}{4} c=0 \tag{3.23}
\end{equation*}
$$

and therefore $h\left(h^{2}-\alpha h-c\right)=0$ on Ω_{0}. So we have

$$
\begin{equation*}
h^{2}-\alpha h-c=0 \tag{3.24}
\end{equation*}
$$

on Ω_{0}. In fact, if not, then we have $h=0$. Thus (3.10) and (3.23) are respectively to

$$
A U=0, \quad \beta+\frac{3}{4} c=0
$$

Hence (3.13) becomes $2(\beta+c) U+A \nabla \alpha=0$. But, by (3.14) we have $\nabla \alpha=\alpha U$. Combining the last two equations, we obtain $\beta+c=0$, a contradiction. Thus (3.24) is accomplished.

Differentiating (3.24), and using (3.23), we find

$$
\begin{equation*}
2 h \nabla h=\alpha \nabla h+h \nabla \alpha=\nabla \beta . \tag{3.25}
\end{equation*}
$$

From this and (3.15) we obtain

$$
\begin{equation*}
A \nabla \beta=2 h\{(W h) A W+(\xi h) A \xi\} . \tag{3.26}
\end{equation*}
$$

If we take account of (3.23)-(3.26), then (3.14) turns out to be

$$
\begin{align*}
-c A U+\frac{c}{4}(3 \alpha-5 h) U= & (h-\alpha)(\xi h) A \xi-\mu(W h) A \xi+h(W h) A W \\
& +\left(\mu^{2}+\alpha h-c\right) \nabla h-\beta \nabla \alpha \tag{3.27}
\end{align*}
$$

On the other hand, we have from (3.13)

$$
h^{2} A U+\frac{c}{2} h U=(\alpha-h)(\xi h) A \xi+(\alpha-2 h)(W h) A W+c \nabla h
$$

because of (3.24)-(3.26). Comparing with the last two equations, it follows that

$$
\begin{aligned}
& \left(h^{2}-c\right) A U+\frac{3}{4} c(\alpha-h) U \\
& \quad=(\alpha-h)(W h) A W-\mu(W h) A \xi+\left(\beta-\alpha^{2}+\alpha h\right) \nabla h-\beta \nabla \alpha
\end{aligned}
$$

Applying this by $h A$ and making use of (2.2), (2.5) and (3.23), we find

$$
\begin{aligned}
&\left\{h^{2}\left(h^{2}-c\right)+\frac{3}{4} c h(\alpha-h)\right\} A U \\
&= h(\alpha-h)(W h)\left\{h A W-\frac{3}{4} c W\right\}-\mu h(W h)\left(h A \xi-\frac{3}{4} c \xi\right) \\
&+h\left(\beta-\alpha^{2}+\alpha h\right) A \nabla h-\beta h A \nabla \alpha,
\end{aligned}
$$

which together with (3.15) and (3.23)-(3.25) implies that

$$
\begin{align*}
&\left\{(\alpha h+c) \alpha h-\frac{3}{4} c^{2}\right\} A U \\
&= h(\alpha-h)(W h)\left(h A W-\frac{3}{4} c W\right)-\mu h(W h)\left(h A \xi-\frac{3}{4} c \xi\right) \\
&+\frac{3}{4} c(h-\alpha)\{(W h) A W+(\xi h) A \xi\} . \tag{3.28}
\end{align*}
$$

Furthermore, using (2.2) and (2.5), we have from (3.28)

$$
\left\{(\alpha h+c) \alpha h-\frac{3}{4} c^{2}\right\} A U=0
$$

because U is orthogonal to ξ and W. Hence we have

$$
\left(\alpha^{3}+c \alpha\right) h+c \alpha^{2}-\frac{3}{4} c^{2}=0
$$

on Ω_{0}. Since $c \neq 0$, it follows that

$$
\begin{equation*}
h=\frac{\frac{3}{4} c^{2}-c \alpha^{2}}{\alpha\left(\alpha^{2}+c\right)} . \tag{3.29}
\end{equation*}
$$

From this and (3.24) we have $12 \alpha^{4}+52 c \alpha^{2}-9 c^{2}=0$ on Ω_{0}. So we see that $\nabla \alpha=0$ and hence $\nabla h=0$ because of (3.29). Thus (3.27) becomes $A U=$ $\frac{1}{4}(3 \alpha-5 h) U$ on Ω_{0}. Therefore Ω_{0} is void. This completes the proof.

Lemma 3.2. Under the same assumptions as those stated in Lemma 3.1, we have $\xi \alpha=0, W \alpha=0, \xi h=0$ and $W h=0$ on Ω.

Proof. As in the proof of Lemma 3.1, it is sufficient to show that the following two cases:

Case 1. $\beta-h \alpha+\frac{3}{4} c=0$ and $h^{2}-h \alpha-c=0$,
Case 2. $\frac{c}{2}(3 \alpha-2 h)+(h-\alpha)\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) \neq 0$.
Case 1: By taking the inner product with ξ in (3.14), we obtain

$$
\begin{equation*}
\mu(h-\alpha)(W h)=\left(2 \alpha^{2}-3 h \alpha+\frac{7}{4} c\right)(\xi h)+\left(h \alpha-\frac{3}{4} c\right)(\xi \alpha) . \tag{3.30}
\end{equation*}
$$

From (3.19) we have

$$
\begin{equation*}
\mu \alpha(W h)=-\frac{1}{2}(h \alpha-2 c)(\xi \alpha)+\frac{1}{2}\left(3 h \alpha-2 \alpha^{2}-3 c\right)(\xi h) \tag{3.31}
\end{equation*}
$$

Using (3.24), (3.30) and (3.31), we are led to

$$
\begin{equation*}
\left\{(\xi h)^{2}+(\xi \alpha)^{2}\right\}\left(25 h \alpha+14 c-3 \alpha^{2}\right)=0 \tag{3.32}
\end{equation*}
$$

So, on the set of points satisfying $25 h \alpha+14 c-3 \alpha^{2} \neq 0$,

$$
\xi h=\xi \alpha=0
$$

On account of Remark 3.1 and (3.30), we deduce that

$$
W h=0 .
$$

Further, from (3.12), we get $W \alpha=0$ since $\mu \neq 0$.
If $2 h \alpha+14 c-3 \alpha^{2} \equiv 0$, then $\alpha \neq 0$ since $c \neq 0$. So, we have

$$
\begin{equation*}
h=\frac{3 \alpha^{2}-14 c}{25 \alpha} \tag{3.33}
\end{equation*}
$$

Combining this with (3.24), we see that

$$
\left(3 \alpha^{2}-14 c\right)^{2}-25 \alpha^{2}\left(3 \alpha^{2}-14 c\right)-625 c \alpha^{2} \equiv 0
$$

Therefore we have $\nabla \alpha=0$. So we have $\nabla h=0$ by (3.33).
Case 2: Putting $\beta-h \alpha+\frac{3}{4} c=c^{\prime}$, (3.21) is reduced to

$$
\left\{\frac{c}{2}(3 \alpha-2 h)+(h-\alpha)\left(\frac{3}{2} c-2 c^{\prime}-\frac{1}{2} h^{2}\right)\right\} A U+c c^{\prime} U=0 .
$$

From this we have

$$
A U=\lambda U, \quad \lambda=\frac{-2 c c^{\prime}}{c(3 \alpha-2 h)+(h-\alpha)\left(3 c-4 c^{\prime}-h^{2}\right)} .
$$

Therefore we are led to the following equation by (3.10):

$$
\begin{equation*}
\left(4 c^{\prime}+h^{2}\right)\left\{\left(4 c^{\prime}+h^{2}\right) \alpha^{2}-2 h\left(4 c^{\prime}+h^{2}\right) \alpha+h^{2}\left(4 c^{\prime}+h^{2}\right)-c^{2}\right\}=0 \tag{3.34}
\end{equation*}
$$

If $4 c^{\prime}+h^{2} \equiv 0$, then $h=$ constant. So, using (3.19), we are led to $\xi \alpha=0$ since $c \neq 0$. Furthermore, from (3.12), we have $W \alpha=0$.

If $4 c^{\prime}+h^{2} \neq 0$, then from (3.34) we have

$$
\begin{equation*}
\left(4 c^{\prime}+h^{2}\right) \alpha^{2}-2 h\left(4 c^{\prime}+h^{2}\right) \alpha+h^{2}\left(4 c^{\prime}+h^{2}\right)-c^{2}=0 . \tag{3.35}
\end{equation*}
$$

Differentiating both sides of (3.35), we obtain

$$
\begin{equation*}
(\alpha-h)\left(4 c^{\prime}+h^{2}\right) \nabla \alpha+\left\{h \alpha^{2}-\left(4 c^{\prime}+h^{2}\right) \alpha+2 h\left(2 c^{\prime}+h^{2}\right)\right\} \nabla h=0 . \tag{3.36}
\end{equation*}
$$

By taking the inner products with ξ in (3.14), we obtain

$$
\begin{align*}
\mu \alpha(W h)-\mu h(W \alpha)= & \left(-\alpha^{2}+h \alpha+2 c^{\prime}-\frac{3}{2} c\right)(\xi h) \\
& +\left(h \alpha-2 c^{\prime}+\frac{3}{2} c-h^{2}\right)(\xi \alpha) . \tag{3.37}
\end{align*}
$$

By our assumption (3.19) is reduced to

$$
\begin{equation*}
\mu \alpha(W h)=\left(\frac{3}{2} h \alpha-\alpha^{2}+2 c^{\prime}-\frac{3}{2} c\right)(\xi h)-\left(\frac{1}{2} h^{2}+2 c^{\prime}-\frac{3}{2} c\right)(\xi \alpha) . \tag{3.38}
\end{equation*}
$$

Using (3.36) and (3.37), we obtain

$$
\begin{align*}
2 \mu\left(h^{2}+\right. & \left.2 c^{\prime}\right)(\alpha-h)(W h) \\
= & \left\{-2 h\left(h^{2}+4 c^{\prime}\right) \alpha+\left(h^{2}+4 c^{\prime}\right)\left(h^{2}+h \alpha+2 c^{\prime}-\frac{3}{2} c\right)-c^{2}\right\}(\xi h) \\
& +\left(h^{2}+4 c^{\prime}\right)\left(h \alpha-2 c^{\prime}+\frac{3}{2} c-h^{2}\right)(\xi \alpha) . \tag{3.39}
\end{align*}
$$

Making use of (3.35), we have from (3.38) and (3.39)

$$
\begin{align*}
& {\left[-2\left(h^{2}+2 c^{\prime}\right) \alpha^{3}+2 h\left(3 h^{2}+7 c^{\prime}\right) \alpha^{2}+\left\{-4 h^{4}-\left(8 c^{\prime}+\frac{3}{2} c\right) h^{2}+c^{2}\right\} \alpha\right.} \\
& \left.\quad+\left(3 c-4 c^{\prime}\right) h\left(h^{2}+2 c^{\prime}\right)\right](\xi h)-\left\{h^{2}\left(2 h^{2}-\frac{3}{2} c+8 c^{\prime}\right) \alpha\right. \\
& \left.\quad+h\left(c^{2}-10 c^{\prime} h^{2}-2 h^{4}+3 c h^{2}-8 c^{\prime 2}+6 c c^{\prime}\right)\right\}(\xi \alpha)=0 \tag{3.40}
\end{align*}
$$

From (3.36) we have

$$
\begin{equation*}
(\alpha-h)\left(h^{2}+4 c^{\prime}\right)(\xi \alpha)+\left\{h \alpha^{2}-\left(4 c^{\prime}+3 h^{2}\right) \alpha+2 h\left(2 c^{\prime}+h^{2}\right)\right\}(\xi h)=0 . \tag{3.41}
\end{equation*}
$$

From (3.40) and (3.41) we obtain

$$
\begin{align*}
\left\{(\xi h)^{2}\right. & \left.+(\xi \alpha)^{2}\right\} \\
& \times\left[(\alpha - h) (h ^ { 2 } + 4 c ^ { \prime }) \left\{-2\left(h^{2}+2 c^{\prime}\right) \alpha^{3}+2 h\left(3 h^{2}+7 c^{\prime}\right) \alpha^{2}\right.\right. \\
& \left.-4 h^{4} \alpha-\left(8 c^{\prime}+\frac{3}{2} c\right) h^{2} \alpha+c^{2} \alpha+\left(3 c-4 c^{\prime}\right) h\left(h^{2}+2 c^{\prime}\right)\right\} \\
& +\left\{h \alpha^{2}-\left(4 c^{\prime}+3 h^{2}\right) \alpha+2 h\left(2 c^{\prime}+h^{2}\right)\right\}\left\{h^{2}\left(2 h^{2}-\frac{3}{2} c+8 c^{\prime}\right) \alpha\right. \\
& \left.\left.+h\left(c^{2}-10 c^{\prime} h^{2}-2 h^{4}+3 c h^{2}-8 c^{\prime 2}+6 c^{\prime} c\right)\right\}\right]=0 \tag{3.42}
\end{align*}
$$

If $(\xi h)^{2}+(\xi \alpha)^{2} \neq 0$, then from (3.42) we have

$$
\begin{align*}
\left(-12 h^{2} c^{\prime}\right. & \left.-2 h^{4}-16 c^{\prime 2}\right) \alpha^{4} \\
+ & \left(-\frac{3}{2} h^{3} c+72 h c^{\prime 2}+58 h^{3} c^{\prime}+10 h^{5}\right) \alpha^{3} \\
+ & \left(2 h^{2} c^{2}+3 h^{4} c+\frac{9}{2} h^{2} c+4 c^{\prime} c^{2}-88 c^{\prime} h^{4}\right. \\
& \left.\quad-6 h^{4}-14 h^{6}-24 c^{\prime} h^{2}-128 c^{\prime 2} h^{2}+6 c^{\prime} c h^{2}\right) \alpha^{2} \\
+ & \left(-18 c^{\prime} c h-8 c^{\prime} c^{2} h+6 h^{5}+62 c^{\prime} h^{5}-3 c^{2} h-2 h^{3} c^{2}\right. \\
& \left.+24 c^{\prime 2} h+10 h^{7}+88 c^{\prime} h^{3}-9 c h^{3}-\frac{3}{2} c h^{5}+30 c^{\prime} h^{3}\right) \alpha \\
+ & 6 c^{\prime} c h^{4}+4 c^{\prime} c^{2} h^{2}-4 h^{8}-24 c^{\prime} h^{6}-32 c^{\prime} h^{4}+2 c^{2} h^{4}+3 c h^{6}=0 \tag{3.43}
\end{align*}
$$

Using Sylvester's elimination method to (3.35) and (3.43), we deduce that

$$
\begin{align*}
& \left(-24 c c^{\prime}-7 c^{2}+16 c^{\prime 2}\right) h^{20}+\left(-576 c^{\prime 2} c+72 c^{\prime} c+384 c^{\prime 3}-48 c^{\prime 2}\right. \\
& \left.\quad+21 c^{2}+36 c^{3}-120 c^{\prime} c^{2}\right) h^{18}+f(h)=0 \tag{3.44}
\end{align*}
$$

where $f(h)$ is the polynomial of h of degree ≤ 16. (We use a computer to calculate this.)

We can check that the coefficients of h^{20} and h^{18} does not vanish simulteneously since $c \neq 0$. (We use a computer to check this.)

By the above argument, we know that (3.44) is a non-trivial algebraic equation of h. So, we arrive at $h=$ constant. From (3.41), we have $\xi \alpha=0$. These
are contradictions. So, we have $\xi \alpha=\xi h=0$. Furthermore, using (3.12) and (3.39), we arrive at $W \alpha=W h=0$. We have thus proved the lemma.

4 Proof of the Theorem

We continue our discussion under the same assumption of $\S 3$. First, we prove the following two lemmas:

Lemma 4.1. Let λ be a principal curvature corresponding to U. Then λ does not vanish identically on $\Omega=\{p \in M \mid \mu(p) \neq 0\}$.

Proof. From Lemma 3.1 and (3.10) the following equation holds on Ω :

$$
\begin{equation*}
\lambda^{2}=\lambda h+\beta-h \alpha+\frac{3}{4} c . \tag{4.1}
\end{equation*}
$$

By Lemma 3.2, (3.15) becomes

$$
\begin{equation*}
A \nabla h=0, \quad \lambda(U h)=0 \tag{4.2}
\end{equation*}
$$

Because of Lemma 3.1 and Lemma 3.2, (3.13) and (3.16) are reduced respectively to

$$
\begin{gather*}
\{h \lambda+2(\beta-h \alpha+c)\} U=-A \nabla \alpha+\frac{1}{2}(h \nabla \alpha-\alpha \nabla h) \tag{4.3}\\
\theta U=\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) \nabla \alpha+\left(2 \beta-\frac{3}{2} h \alpha\right) \nabla h \tag{4.4}
\end{gather*}
$$

where we define θ by $\theta=\left(4 \beta-4 h \alpha+h^{2}+c\right) \lambda+\frac{3}{2} c \alpha-2 c h$.
From (3.11) and Lemma 3.2, we have $\xi \beta=0$. Therefore it is seen, using Lemma 3.2, that

$$
\xi \theta=0 .
$$

From this and Lemma 3.1, we see, making use of (4.4), that

$$
\begin{equation*}
\theta d u(\xi, X)=0 \tag{4.5}
\end{equation*}
$$

for any vector fields X on Ω, where u is defined by $u(X)=g(U, X)$, and exterior derivation $d u$ of u is given by

$$
d u(\xi, X)=\frac{1}{2}\{\xi u(X)-X u(\xi)-u([\xi, X])\} .
$$

On the other hand, using (1.15) and $A U=\lambda U$, the equation (1.14) turns out to be

$$
\nabla_{\xi} \dot{U}=\mu(\alpha-3 \lambda) W-\mu^{2} \xi+\phi \nabla \alpha
$$

which together with (1.11) and (2.2) implies that

$$
\begin{equation*}
d u(\xi, X)=(h-3 \lambda) \mu w(X)+g(\phi \nabla \alpha, X), \tag{4.6}
\end{equation*}
$$

where $w(X)=g(W, X)$.
If $\lambda=0$, then by (3.1) we have

$$
\begin{equation*}
\beta-h \alpha=-\frac{3}{4} c \tag{4.7}
\end{equation*}
$$

Thus (4.3) and (4.4) becomes respectively

$$
\begin{gather*}
c U=-2 A \nabla \alpha+h \nabla \alpha-\alpha \nabla h, \tag{4.8}\\
(3 c \alpha-4 c h) U=\left(3 c-h^{2}\right) \nabla \alpha-(3 c-h \alpha) \nabla h . \tag{4.9}
\end{gather*}
$$

Because of Lemma 3.1 and (4.2), we see, using (4.9), that

$$
\begin{equation*}
\left(3 c-h^{2}\right) A \nabla \alpha=0 \tag{4.10}
\end{equation*}
$$

If the set of points satisfying $A \nabla \alpha \neq 0$ is not empty, then on that set we have

$$
h=\text { constant }
$$

because of (4.10). So, from (4.9), we are led to

$$
\nabla \alpha=0
$$

This is a contradiction. So, we obtain

$$
\begin{equation*}
A \nabla \alpha=0 \quad \text { on } \Omega \tag{4.11}
\end{equation*}
$$

Thus (4.7) becomes

$$
c U=h \nabla \alpha-\alpha \nabla h .
$$

So, we have

$$
d u(\xi, X)=0
$$

because of Lemma 3.2. Therefore (4.6) means that

$$
\phi \nabla \alpha=\mu(h-3 \lambda) W
$$

Since $\xi \alpha=0$, it follows that

$$
\begin{equation*}
\nabla \alpha=h U \tag{4.12}
\end{equation*}
$$

So, from (4.8), we have

$$
\begin{equation*}
\alpha \nabla h=\left(h^{2}-c\right) U . \tag{4.13}
\end{equation*}
$$

Combining last two equations with (3.2) and (3.11), we obtain

$$
A \nabla \beta=0, \quad A \nabla \mu=0
$$

Thus (2.18) with $A U=0$ and (4.7) implies

$$
\begin{align*}
-\frac{5}{4} c(h-\alpha) U= & \frac{3}{4} c \nabla \alpha-\frac{1}{2}(h-\alpha)\{\alpha \nabla h+h \nabla \alpha\} \\
& +\left(h \alpha-\frac{3}{4} c-\alpha^{2}\right) \nabla h \tag{4.14}
\end{align*}
$$

Substituting (4.12) and (4.13) in the right-hand side of (4.14), we are led to

$$
\begin{equation*}
(h-\alpha)^{2}=c \tag{4.15}
\end{equation*}
$$

Combining this with (4.12) and (4.13), we have

$$
\alpha(h-\alpha)=0 .
$$

Since $h-\alpha \neq 0$, we have

$$
\begin{equation*}
\alpha=0 \tag{4.16}
\end{equation*}
$$

So, (4.12) implies that $h=0$. These are contradictions. We have thus proved the lemma.

Lemma 4.2. $\quad \theta=0$ on Ω.

Proof. If not, then from (4.5) we have

$$
d u(\xi, X)=0
$$

By (4.6), we obtain

$$
\begin{equation*}
\nabla \alpha=(h-3 \lambda) U \tag{4.17}
\end{equation*}
$$

Hence (4.3) is reduced to

$$
\begin{equation*}
\alpha \nabla h=\left\{h^{2}-7 \lambda h+6 \lambda^{2}-4(\beta-h \alpha+c)\right\} U . \tag{4.18}
\end{equation*}
$$

Applying A to both sides of (4.18), we have

$$
\begin{equation*}
4(\beta-h \alpha)=h^{2}-7 h \lambda+6 \lambda^{2}-4 c \tag{4.19}
\end{equation*}
$$

since $A \nabla h=0$ and $\lambda \neq 0$ on Ω.
Combining (4.19) with (4.1), we are led to

$$
\begin{equation*}
2 \lambda^{2}-3 \lambda h+h^{2}-c=0 \tag{4.20}
\end{equation*}
$$

Differentiating both sides of (4.20), we obtain

$$
\begin{equation*}
(4 \lambda-3 h) \nabla \lambda+(2 h-3 \lambda) \nabla h=0 . \tag{4.21}
\end{equation*}
$$

On the other hand, from (4.1) we have

$$
\begin{equation*}
(2 \lambda-h) \nabla \lambda=\lambda \nabla h . \tag{4.22}
\end{equation*}
$$

Combining (4.22) with (4.21), we are led to

$$
(h-\lambda)^{2} \nabla \lambda=0 .
$$

Furthermore, we have

$$
\nabla \lambda=0
$$

since $h \neq \lambda$ by (4.20) and $c \neq 0$. So, from (4.22) we obtain

$$
\begin{equation*}
\nabla h=0 \tag{4.23}
\end{equation*}
$$

since $\lambda \neq 0$ by Lemma 4.1. Thus (4.4) becomes

$$
\begin{equation*}
\left(4 \beta-4 h \alpha+h^{2}+c\right) \lambda+\frac{3}{2} c \alpha-2 c h=(h-3 \lambda)\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) . \tag{4.24}
\end{equation*}
$$

Differentiating both sides of (4.24), we have

$$
\begin{equation*}
\nabla \alpha=0 \tag{4.25}
\end{equation*}
$$

since $c \neq 0$.
From (4.4), (4.23) and (4.25), we are led to

$$
\theta=0 .
$$

This is a contradiction. We have thus proved the lemma.

Finally, we prove

Theorem 4.1. Let M be a real hypersurface in $M_{n}(c), c>0$. If it satisfies $\nabla_{\phi \nabla_{\xi} \xi} S=0$ and at the same time satisfies $S \xi=\sigma \xi$ for some constant σ, then M is a Hopf hypersurface.

Proof. By Lemma 4.2 and (4.1), we have

$$
\begin{gather*}
\lambda\left(4 \lambda^{2}-4 h \lambda+h^{2}-2 c\right)=\frac{c}{2}(4 h-3 \alpha) \tag{4.26}\\
\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) \nabla \alpha+\left(2 \beta-\frac{3}{2} h \alpha\right) \nabla h=0 \tag{4.27}
\end{gather*}
$$

Applying A to both sides of (4.27) and using (4.2), we obtain

$$
\left(2 \alpha h-2 \beta-\frac{1}{2} h^{2}\right) A \nabla \alpha=0
$$

Now, suppose that $A \nabla \alpha \neq 0$, then we have

$$
2 \alpha h-2 \beta-\frac{1}{2} h^{2}=0
$$

From this and our auumption $\sigma=$ constant, we have

$$
\begin{equation*}
\nabla h=0 \tag{4.28}
\end{equation*}
$$

Differentiating both sides of (4.1), we obtain

$$
\begin{equation*}
(h-2 \lambda) \nabla \lambda=0 . \tag{4.29}
\end{equation*}
$$

From (4.28) and (4.29), we are led to

$$
\begin{equation*}
\nabla \lambda=0 \tag{4.30}
\end{equation*}
$$

Thus from (4.26) we see that

$$
\nabla \alpha=0
$$

This contradicts to $A \nabla \alpha=0$. So, we have

$$
\begin{equation*}
A \nabla \alpha=0, \quad U \alpha=0 \tag{4.31}
\end{equation*}
$$

since $\lambda \neq 0$.
Using (4.2) and (4.31) and applying U to both sides of (4.3), we have

$$
\begin{equation*}
h \lambda+2(\beta-h \alpha+c)=0 \tag{4.32}
\end{equation*}
$$

From (4.1) and (4.32), we obtain

$$
\begin{equation*}
\lambda^{2}=\frac{1}{2} h \lambda-\frac{1}{4} c . \tag{4.33}
\end{equation*}
$$

Substituting (4.33) to both sides of (4.26), we are led to

$$
\begin{equation*}
\alpha=h+2 \lambda \tag{4.34}
\end{equation*}
$$

since $c \neq 0$.
Combining (4.34) with (4.32), we have

$$
g(U, U)=\beta-\alpha^{2}=-7 \lambda^{2}-\frac{9}{4} c<0 .
$$

This is a contradiction. The theorem is now proved by all the above arguments.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132-141.
[2] J. T. Cho and U-Hang Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar 80 (1998), 155-167.
[3] Tae Yong Hwang, U-Hang Ki and Nam-Gil Kim, Ricci tensors of real hypersurfaces in a nonflat complex space form, preprint.
[4] Eun-Hee Kang and U-Hang Ki, Real hypersurfaces satisfying $\nabla_{\xi} S=0$ of a complex space form, Bull. Korean Math. Soc. 35 (1998), 819-835.
[5] U-Hang Ki, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73-81.
[6] U-Hang Ki, N.-G. Kim and S.-B. Lee, On certain real hypersurfaces of a complex space form, J. Korean Math. Soc. 29 (1992), 63-77.
[7] U-Hang Ki, Soo Jin Kim and Seong-Baek Lee, The structure Jacobi operator on real hypersurfaces in a nonflat complex space form, preprint.
[8] S. Maeda, Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 122 (1994), 1229-1235.
[9] Y. J. Suh, On real hypersurfaces of a complex space from with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27-37.
[10] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.

U-Hang Ki

Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
Setsuo Nagai
Department of Mathematics
Faculty of Education
Toyama University
Toyamashi 930-8555, Japan

[^0]: 2000 Mathematics subject classification: $53 \mathrm{C} 40,53 \mathrm{C} 15$.
 Keywords and phrases: real hypersurfaces, Ricci tensor, the structure vector.
 Received July 20, 2004.
 Revised September 13, 2004.

