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ON THE EXTENSIONS OF Wn BY {§(fl.) OVER 
A Z(p)-ALGEBRA 

By 

Yasuhiro NllTSUMA 

Abstract. We will give an explicit description of extensions of the 
group scheme of Witt vectors of length n (resp. the formal group 
scheme of Witt vectotrs of length n) by the group scheme (resp. the 
formal group scheme) which gives a deformation of the additive 
group shceme to the multiplicative group scheme (resp. the additive 
formal group scheme to the multiplicative formal group scheme) over 
an algebra for which all prime numbers except a given prime pare 
invertible. 

Introduction 

Throughout the paper, p denotes a prime number, Z(p) the localization of Z 
at the prime ideal (p). 

Let Wn (resp. Wn) denote the group scheme (resp. the formal group scheme) 
of Witt vectors of length n over Z, and W (resp. W) the group scheme (resp. the 
formal group scheme) of Witt vectors over Z. Let Gm (resp. Gm ) denote the 
multiplicative group scheme (resp. the multiplicative formal group scheme) over Z. 
Let F be the Frobenius endomorphism of W or of W (for the definition see 1.2). 

An explicit description of the groups Ext~(Wn,A' Gm,A) and Ext~(Wn,A' Gm,A) 
is given by Sekiguchi-Suwa [6] when A is a Z(p)-algebra. More precisely, iso­
morphisms 

- 2 ~ ~ 

Coker[Fn : W(A) --. W(A)] --. Ho (Wn,A, Gm,A), 
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Ker[Fn: W(A) ---+ W(A)] ~ HomA_gr(Wn,A, Gm,A), 

Coker[Fn : W(A) ---+ W(A)] ~ HJ( Wn,A, Gm,A) 

are constructed, using deformations of the Artin-Hasse exponential series. Our 
aim of this article is to generalize the isomorphisms to those for <;§AC/l) instead of 
Gm,A. Here fJ, E A and ~)/l) = Spec A[T, 1/(1 + fJ,T)]; this is a group scheme 
defined by Sekiguchi and Suwa, as a deformation between the additive group 
scheme Ga and Gm, so that ~CO) = Ga , ~(1) ~ Gm (for the definition see 3.1). 

Precisely, our result is as follows. 

THEOREM. Let A be a ZCp)-a/gebra and fJ, E A. Then there exist isomorphisms: 

Ker[FC/l)n: WC/l)(A) ---+ WC/l)(A)] ~ HomA_gr(Wn,A, <;§AC/l)), 

Coker[FC/l)n: WC/l)(A) ---+ WC/l)(A)] ~ HJ(Wn,A,<;§)/l)). 

Moreover, if fJ, is nilpotent, then there exist isomorphisms: 

Ker[FC/ll" : WC/l)(A) ---+ WC/l)(A)] ~ HomA_gr(Wn,A, ~y)), 

Coker[FC/ll" : WC/l)(A) ---+ WC/l)(A)] ~ HJ(Wn,A, ~Y)). 

(See Theorem 3.5 and Remark 3.6. For the definition of W(11)(A) and FC/l), see 

Section 1.) 
Putting fJ, = 1 in our theorem, we find again the main theorem of [6]. 

However, we prove the former, starting from the latter. It is crucial to use 
variants of Witt vectors and to construct deformations of the Artin-Hasse ex­
ponential series for an explicit description of the isomorphisms as done in 
Sekiguchi-Suwa [8J. 

Now we explain the contents of the article. 
In Section 1, paraphrasing the classical theory of Witt vectors we recall the 

variants of Witt vectors W CM) (A) for a Z[M]-algebra A, which is presented in 
[8]. WCM)(A) is interpreted as the A-valued points of a group scheme W CM) over 
Z[M]. At the end of the section, we recall the exact sequence of groups over 

Z[M] 

o ---+ W C M) ---+ II w B ---+ TfA ---+ 0, 
B/A 

where A = Z[M] and B = A[t]/(t2 - Mt), given in [8]. 
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In Section 2, we recall necessary facts on the Artin-Hasse exponential series 
and the main result of [6]. 

In Section 3, we prove the main result, after reviewing the Hochschild 
cohomology in our case. The theorem can be reduced to the main result of [6] 
thanks to an exact sequence of formal groups 

--A(M) II A ° -+ ~A -+ Gm.B -+ Gm•A -+ 0, 
BfA 

where A = Z[M] and B = A[tJl(t2 - Mt), as done in [8]. Furthermore, in order 
to give an explicit description we define vaiants of the Artin-Hasse exponential 
series 

modifying the power series 

Ep.n(Uj T) E Z(p) [Uo, UI, U2.·· .)[[To, TI •... , Tn-d] 

presented in [6]. The definition E~~)(Uj T) is parallel to that of W(M) in a sense. 
In the section 4, we establish some functorialities, recalling some results of (6). 
The last section is devoted to a case over a discrete valuation ring. In general, 

it is difficult to determine Ext~(Wn.A' ~Y») if fl. is not nilpotent in A. However, 
Ext~(Wn.A' ~A(Jl») is isomorphic to the subgroup of Hlt(Wn.A, ~(#») formed by 
the primitive elements when A is a discrete valuation ring. This enables us to give 
an explicit description of Ext~(Wn.A' ~A(#»)' Furthermore, we observe a behavior 
of the canonical map Ext~(Wn.A' ~JJl») -+ Ext~(Wn.A' tjY») when A is of mixed 
characteristics ° and p. 
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Notation 

Throughout the paper, p denotes a prime integer, Z(p) the localization of Z 

at the prime ideal (P), and A a Z(p)-algebra. All rings are commutative with a 
unit element 1, unless otherwise stated. 
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Ga,A: the additive group scheme over A 

Gm,A: the multiplicative group scheme over A 

Wn,A: the group scheme of Witt vectors of length n over A 

fV4.: the group scheme of Witt vectors over A 

Ga,A: the additive formal group scheme over A 

Gm,A: the multiplicative formal group scheme over A 

Wn,A: the formal group scheme of Witt vectors of length n over A 

~: the formal group scheme of Witt vectors over A 

HJ( G, H) denotes the Hochschild cohomology group consisting of symmetric 
2-cocycles of G with coefficients in H for group schemes or formal group schemes 
G and H. 

For a commutative ring B, BX denotes the multiplicative group Gm(B). 

Contents 

1. Recall: Witt Vectors 
2. Recall: Hochschild Cohomology 
3. Statement and Proof of the Theorem 
4. Functoriality 
5. Some Results over a Discrete Valuation Ring 

1. Recall: Witt Vectors 

We start with reviewing necessary facts on Witt vectors. For details, see 
Demazure-Gabriel [1, Chap. V] or Hazewinkel [3, Chap. III]. 

1.1. For each r;:::O: 0, we denote by <Dr(T) = <Dr(To, T j , ... , Tr) the so-called Witt 
polynomial 

<Dr(T) = T{ + pT(' + ... + pryr 

in Z[T] = Z[To, T j , ... , Tr]. We define polynomials 

Sr(X, Y) = Sr(XO, ... ,Xr, Yo,···, Yr), 

Pr(X, Y) = Pr(Xo, ... , Xr, Yo,.··, Yr) 

in Z[X, Y] = Z[Xo, X j , ... ,Xr, Yo, Yj , ... ,Y,.] inductively by 

<Dr(So(X, Y), Sj (X, Y), ... ,Sr(X, Y)) = <Dr (X) + <Dr( Y), 

<Dr(Po(X, Y), Pj (X, Y), ... , Pr(X, Y)) = <Dr(X)<Dr(Y). 



On the Extensions of Wn by ~(fl) over a Z(p)-Algebra 441 

The ring structure of the scheme of Witt vectors of length n (resp. of the 
scheme of Witt vectors) 

Wn•Z = Spec Z[To, TI , ... , Tn-d (resp. Wz = Spec Z[To, TI, T2, ... J) 

is given by the addition 

and the mUltiplication 

To ~ Po(T® 1,1 ® T), TI ~ PI(T® 1, 1 ® T), T2 ~ P2(T® 1, 1 ® T), .... 

We denote by W".Z (resp. Wz ) the formal completion of Wn.Z (resp. Wz) 
along the zero section. Wn•Z (resp. Wz ) is considered as a sub functor of Wn•Z 

(resp. Wz). Indeed, if A is a ring, then 

Wn(A) = {(ao,al,a2, ... ) E Wn(A); aj is nilpotent for all i}, 

'{ aj is nilpotent for all i and } 
W(A) = (ao, aI, a2, ... ) E W(A); 0 f 11 fin' b f" ai = or a but a lte num er 0 I 

1.2. The restriction homomorphism R: Wn+l.Z -.-, Wn•Z is defined by the ca­
nonical injection 

Note that 

Wz = lEP W".Z, 
R 

The Verschiebung homomorphism V: W".Z -.-, Wn+I.Z (resp. V: Wz -.-, Wz ) 
is defined by 

To ~ 0, TI ~ To,· .. , Tn ~ Tn- 1 

(resp. To ~ 0, Tl ~ To, T2 ~ TI ,· . . ). 

Note that V is a homomorphism of group schemes. 
Define now polynomials 

Fr(T) = Fr(To, ... , Tr, Tr+l) E Z[To, ... , Tr, Tr+d 

inductively by 

<t>r(Fo(T), ... ,p,.(T)) = <t>r+l(To, ... , Tr, Tr+l) 

for r ;::: O. 
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We denote by F: Wn+I,Z -+ Wn,Z (resp. F: Wz -+ Wz) the morphism 
defined by 

To 1--+ Fo(T), TI 1--+ FI (T), ... , Tn-I 1--+ Fn- I (T) 

(resp. To 1--+ Fo(T), TI 1--+ FI(T), T2 1--+ F2(T), .. . ). 

Then it is verified without difficulty that F is a homomorphism of ring schemes. 
It is readily seen that Fr(T) == Tf mod p for r ~ O. Therefore, if A is an Fp­

algebra, F: Wn+I,A -+ Wn,A (resp. F: ~ -+ ~) is nothing but the usual Fro­
benius endomorphism. 

We put 

S(X, Y) = (So(X, Y), SI (X, Y), S2(X, Y), .. . ), 

P(X, Y) = (Po(X, Y), PI (X, Y),P2(X, Y), .. . ), 

F(T) = (Fo(T),F1 (T),F2(T), .. . ). 

Next we recall the variants of Witt vectors defined in [8. Sect. 1]. 

1.3. For each r ~ 0, we define 

<I>~M)(T) = <I>~M)(To, ... , Tr) E Z[M][To, ... , Tr] 

by 

(M) _ 1 ) <I>r (T) - M <I>r(MTo, ... , MTr 

= MP'-I T{ + pMP'-'-1 T(-' + ... + pr-I MP-I T;_I + prTr. 

Furthermore, we define 

S~M)(X, Y) = S~M)(XO, ... ,Xr, Yo, ... , Yr) E Z[M][Xo, ... ,Xr, Yo, ... , Y,], 

p;M) (X, Y) = p;M) (Xo, ... , X" Yo, ... , Yr) E Z[M][Xo, ... , X" Yo, ... , Yr], 

F,(M)(T) = F,(M) (To, ... , T" Tr+l ) E Z[M][To, ... , T" T,+d 

by 

(M) _~ s, (Xo, ... , X" Yo, ... , Y,) - M S,(MXo, ... , MX" MYo, ... , MY,), 

(M) _ 1 
Pr (Xo,··. ,X" Yo,···, Y,) - MP,(Xo, ... , X"MYo, ... ,MY,), 

(M) _~ F, (To, ... ,T"T,+I) - MF,(MTo, ... ,MT"MT,+d 

respectively. 
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We put 

(M)( ) _ (M)( ) (M)( ) (M)( ) ) s X, Y - So X, Y ,SI X, Y ,S2 X, Y , ... , 

(M)( ) _ (M)( ) (M)( ) (M)( ) ) P X,Y - Po X,Y,PI X,Y,P2 X,Y '''., 

1.4. Put W(M) = Spec Z[M][To, T I , T2, ... J. Then a morphism 

W(M) XZ[M] W(M) = Spec Z[M][To ® 1, TI ® 1, 

defined by 

T2 ® 1,,,.,1 ® To, 1 ® TI , 1 ® T2,,,.J 

-+ W(M) = Spec Z[M][To, TI, T2, ... J 

To ~ S6M\T ® 1,1 ® T), Tl ~ S}M)(T ® 1,1 ® T), 

T2 ~ SJM)(T ® 1,1 ® T),,,. 

gives an addition on W(M), which induces a structure of a commutative group 
scheme over Z[MJ on W(M) (cf. [8, Sec. 1]). 

Furthermore, a morphism 

WZ[M] XZ[M] W(M) = Spec Z[M][To ® 1, Tl ® 1, 

defined by 

T2 ® 1,,,.,1 ® To, 1 ® Tl, 1 ® T2,· "J 

-+ W(M) = Spec Z[M][To, T1, T2, ... J 

To ~ PbM)(T ® 1,1 ® T), Tl ~ P;M)(T ® 1,1 ® T), 

(M)( ) T2 ~ P 2 T ® 1, 1 ® T , ... 

gives an action of WZ[M] on W(M), which induces a structure of WZ[Mrmodule 
on W(M) (cf. [8, Sec. 1]). 

REMARK 1.5. Let A be a Z[M]-algebra. Let a, bE W(M) (A) and C E W(A). 

We will denote sometimes a + b, c· a by a +(M) b, c ,(M) a, respectively, to avoid 

confusion. 
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1.6. Let A be a Z[M]-algebra, and let f1. denote the image of M in A. We 
denote sometimes W(M) ®Z[M) A by W(p). We define also 

S!p) (X, Y) = S!p) (Xo, ... , Xr, Yo, ... , Yr) E A[Xo, ... , Xr, Yo,···, Yr], 

p,<p) (X, Y) = Pr(p) (Xo, ... ,Xn Yo, ... , Yr) E A[Xo, ... ,Xn Yo, ... , Yr], 

Fr(p)(T) = F,<p) (To, ... , Tn Tr+,) E A[To, ... , Tr, Tr+d 

by substituting M by f1. in S;M)(X, Y), p;M) (X, Y), Fr(M) (T), respectively. 

EXAMPLE 1.6.1. It is clear that 

S!')(X, Y) = Sr(X, Y), p!l)(X, Y) = Pr(X, Y), F,<l)(T) = Fr(T), 

and therefore W~') is nothing but the scheme of Witt vectors Wz. 

EXAMPLE 1.6.2. It follows that 

S!O) (X, Y) = Xr + Yn p!O)(X, Y) = <l)r(X) Y" Fr(O)(T) = pTr+' 

(cf. [8, 1.4]). Hence the group scheme wjD) is isomorphic to the direct product 

G:'z · 

1.7. We define homomorphisms V: W(M) ---? W(M) and F(M) : W(M) ---? W(M) 

by 

and 
(M)( ) (M)( ) (M)( To f-+ Fo T, T, f-+ F, T, T2 f-+ F2 T), ... 

respectively. 
By abbreviation we denote F(M) by F. 

1.8. We define a morphism rx(M) : W(M) -+ WZ[M] by 

To f-+ MTo, T, f-+ MT" T2 f-+ MT2, .... 

Then it is verified without difficulty that rx(M) is a group homomorphism. 

REMARK 1.9. Let A be a Z[M]-algebra, and let B = A[t]j(t2 - Mt), in which 
e denotes the image of t. Then we have e2 = Me. Defining a ring homomorphism 
B ---? A by e f-+ 0, we have also a: ring homomorphism W(B) ---? W(A) and 

Ker[W(B) ---? W(A)] = {(eao,ea"ea2, ... );ao,a"a2, ... EA}. 
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In [8, Sec. 1], the following theorem is proved: Let A = Z[MJ, B = 

Z[M, tJl(t2 - Mt). Then W(M) is isomorphic to Ker [IT WB -+ WA], where IT 
B/A B/A 

denotes the Weil restriction functor. More precisely, 

(1) (aO,al,a2,"') 1-+ (eaO,8aI,8a2,"') gives rise to a W(A)-isomorphism 

W(M)(A) --=. Ker[W(B) -+ W(A)]; 

(2) F: W(B) -+ WeB) induces F on W(M) (A); 

(3) V: W(B) -+ W(B) induces V on W(M)(A). 

2. Recall: Hochschild Cohomology 

In this section, we recall the main result of Sekiguchi-Suwa [6]. 
We begin by recalling the necessary facts on the Artin-Hasse exponential 

series. For details, see [I, Sec. 5] or [6, Sec. 2]. 

2.1. The Artin-Hasse exponential series Ep(T) E Z(p) [[T]] is defined by 

( Tpr) 
Ep(T) = exp L-r . 

r~O p 

For U=(Ur)r~O' we put 

IT p' (" <Dr( U) TPr) Ep(U; T) = Ep(UrT) = exp L..t r . 
r~O r~O p 

It is readily seen that 

2.2. For U = (Ur)r~O and T = (Tr)r~O' We define a formal power series 
Ep(U; T) E Z(p) [U][[T]] by 

Ep(U; T) = exp(L J,<Dr(U)<Dr(T)) = exp(L J,<Dr(P(U, T))). 
r~OP r~OP 

It is verified that 

Ep(S(U, V); T) = Ep(U; T)Ep(V; T). 

2.3. Let n be a positive integer. We define a polynomial <Dr,n(T) = 

<Dr,n(To, TI, ... , Tn-I) in Z[To, TI"'" Tn-d by 



446 Yasuhiro NllTSUMA 

ifr:=;n-l, 
if r;;:: n. 

In [6, 2.4], a formal power series 

is defined by 

Ep,n(U; T) = Ep(U; To,···, Tn_I'O,O, ... ) = exp (~~r <Pr(U)<Pr,n(T)). 

It is readily seen that 

Ep,n(S(U; V), T) = Ep,n(U; T)Ep,n(V; T). 

2.4. Let k, I be integers with k;;:: I ;;:: O. Define a polynomial 

Sk,I(X, Y) = S(Xo, ... ,Xl-I, Yo,···, Yl-d E Z[Xo, ... , Xl-I, Yo, ... , Yl-d 

by 

Sk,I(X, Y) = Sk(XO, ... , Xl-I, 0, ... ,0, Yo, ... , Yl- I , 0, ... ,0). 

In [6, 2.7], a formal power series 

is defined by 

Fp,n(U;X, Y) = Ep(U;Sn(X, Y)) 

= Ep(U; Sn,n(X, Y), Sn+l,n(X, Y), Sn+2,n(X, Y), .. . ). 

It is readily seen that 
(1) Fp,n(U;X, Y)Fp,n(U;S(X, Y),Z) = Fp,n(U;X,S(Y,Z))Fp,n(U; Y,Z), 
(2) Fp,n(U;X, Y) = Fp,n(Uj Y,X). 
Moreover, we have 
(3) Fp,n(S(U, V)jX, Y) = Fp,n(UjX, Y)Fp,n(VjX, Y). 
Now we recall some results of [6]. For generalities of the Hochschild 

cohomology, see [1, Ch. II.3 and Ch. III. 6]. 

2.5. Let A be a Z(p) [M]-algebra. We define a complex 

o -? ClpVn,A, Gm,A) .! C2(Wn,A, Gm,A) -? 0 -? ... 
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by 

I" " C (Wn,A, Gm,A) = {F(T) E A [[To, TI, 0 0 0, Tn-dl;F(T) == 1 moddeg 1}, 

2" " C (Wn,A, Gm,A) 

= {F(X, Y) E A[[Xo, Xl, 0 0 0 ,Xn- I, Yo, Yl, 0 • 0 , Y,,-J]J; F(X, Y) == 1 mod deg I}. 

I"" ?"" o. The boundary map a;.c (Wn,A, Gm,A) -+ C-(Wn,A, Gm,A) IS given by 

a 0 F('T' T) F(Xo, 0 o. ,Xn-I)F(Yo, 0 0 0, Yn- I) 
o .1 0, 0 0 0, n-I ~ (() ()) F So X, Y ,00', Sn-l X, Y 

([6,2.1]). A formal power series G(X,Y) =G(XO,XI,oo.,X;,-l,YO,Y!,o .. , Yn-l) 
E C2(Wn,A' Gm,A) is called a symmetric 2-cocycle if G(X, Y) satisfies the following 
functional equations: 

(1) G(X, Y)G(S(X, Y),Z) = G(X,S(Y,Z))G(Y,Z), 
(2) G(X, Y) = G(Y,X). 

Let Z2(Wn,A' Gm,A) denote the subgroup of C2(Wn,A' Gm,A) which consists of the 
symmetric 2-cocycleso Let B2(Wn,A' Gm,A) = 1m a, and define 

We have two complexes concentrated in degrees 1 and 2, 

- ",,,, F" 
D*(Wn,A' Gm,A) : 0 -+ W(A) -+ W(A) -+ 0 -+ o. 0 0 

By [6, 2.8], a morphism of complexes 

is defined by 

o I"" 0 
~n : W(A) -+ C (Wn,A, Gm,A), ~n(a) = Ep,n(a; T), 

It is proved by [6, Tho 2.8.1) that this induces isomorphisms, 

1 - 2" " 
~n : Coker[Fn : W(A) -+ W(A))-+ Ho (Wn,A, Gm,A). 
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REMARK 2.6. In [6, 2.1], a complex 

I~ ~ iJ 2~ ~ 
0----4 C (Wn,A, Gm,A) ----4 C (Wn,A, Gm,A) -t 0 -t ... 

is defined by 

I ~ ~ 2 ~ ~ 

The boundary map iJ: C (Wn,A, Gm,A) -t C (Wn,A, Gm,A) is given by 

'" ( ) F(Xo, ... , Xn-J)F(Yo,.·., Yn- 1) 

u : F To,···, Tn-I 1--4 F(So(X, Y), ... , Sn-l (X, Y)) 

This definition is different from that of 2.5. But as is pointed out in [8, 3.3.1], the 
complex defined in 2.5 is quasi-isomorphic to the complex defined in [6, 2.1]. 

3. Statement and Proof of the Theorem 

3.1. Let A be a Z[M]-algebra. We define a group scheme ~JM) over A by 

(M) [1] ~A = Spec AT, 1 + MT 

with 
(1) the multiplication: T 1--4 T ® 1 + 1 ® T + MT ® T; 

(2) the unit: T 1--4 0; 

(3) the inverse T 1--4 - 1 + ~T 
Moreover, we define an A-homomorphism !X~M) : ~A(M) -t Gm,A by 

U 1--4 1 + MT : A [U, U- I] -t A [ T, 1 + 1MT J. 
If M is invertible in A, !X~M) is an A-isomorphism. On the other hand, if M = ° in 
A, ~)M) is nothing but the additive group Ga,A' 

We denote by <.§)M) the formal completion of ~)M) along the zero section. 

REMARK 3.2. Let A be a Z[M]-algebra, and let B = A[tJl(t2 - Mt), in which 
8 denotes the image of t. Then we have 82 = M 8. Defining a ring homomorphism 
B -t A by 8 1--4 0, we have 

Ker[B X -t AX] = {I + ea; a E A, 1 + Ma is invertible in A}. 
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Hence ~(M) is isomorphic to Ker [n Gm,B -t Gm,A] , where n denotes the 
BfA BfA 

Weil restriction functor. Furthermore, the inclusion A -t B defines a section of 

n Gm,B -t Gm,A, and therefore, the exact sequence 
BfA 

splits. 

o -t ~M) -t II Gm,B -t Gm,A -t 0 
BfA 

3.3. Let A be a Z(p) [M)-algebra. We shall define a complex 

! - ~ (M) iJ 2 ~ ~ (M) o -t C (Wn,A'~A ) -t C (Wn,A'~ ) -t 0 -t ... 

by 

! - ~(M) _ . _ 
C (Wn,A, ~ ) - {F(T) E A[[To, T), ... , Tn-d],F(T) = 0 moddeg 1}, 

2 - -(M) 
C (Wn,A, ~A ) = {F(X, Y) E A [[Xo, X!, ... ,Xn-!, Yo, YI, ... , Yn-d)i 

F(X, Y) == 0 moddeg 1}. 

a. F(T) 1--4 F(X) + F(Y) + MF(X)F(Y) - F(S(X, Y)) 
. 1 + MF(S(X, Y)) . 

. 2 ~ 

A formal power senes G(X, Y) = G(Xo, XI, ... , Xn-!, Yo, Y!, ... , Yn-I) E C (Wn,A, 
~(M)) is called a symmetric 2-cocycle if G(X, Y) satisfies the following functional 

equations: 
(1) G(X, Y) + G(S(X, Y),Z) + MG(X, Y)G(S(X, Y),Z) = G(X,S(Y,Z)) + 

G(Y,Z) + MG(X,S(Y,Z))G(Y,Z), 
(2) G(X, Y) = G(Y,X). 

Let Z2(Wn,A, ~(M)) denote the subgroup of C2(Wn,A, ~(M)) which consists of the 

symmetric 2-cocycles. Let B2(Wn,A, ~(M)) = 1m a, and define 

2 - - (M) 2 - - (M) 2 ~ ~ (M) 
Ho(Wn,A'~A ) =Z (Wn,A'~A )/B (Wn,A'~ ). 

We have two complexes concentrated in the degree 1 and 2, 

- * ~ - (M) I - ~ (M) iJ 2 ~ - (M) C (Wn,A, ~A ): 0 -t C (Wn,A, ~A ) -t Z (Wn,A, ~ ) -t 0 -t ... , 

D*(Wn,A, ~JM)) : 0 -t W(M)(A) :: W(M)(A) -t 0 -t .... 
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3.4. Let A be a Z[Mj-algebra, and let B = A[tJl(t2 - Mt), in which e denotes 
the image of t. Then we have e2 = Me. The splitting exact secquence of formal 
gro~ps 

o -t ~M) -t (ITo:'B) -t Gm,A -t 0 
BfA 

induces a splitting exact sequence of complexes 

More precisely, 

are induced from the ring homomorphism B -t A. Moreover 

I A A (M) I A A 

C (Wn,A, ~ ) -t C (Wn,B, Gm,B), 

2 A A (M) 2 A A 

Z (Wn,A, ~ ) -t Z (Wn,B, Gm,B) 

are defined by 

respectively. 

F(T) ~ 1 + eF(T), 

G(X, Y) ~ 1 + eG(X, Y), 

On the other hand, we have a commutative diagram with splitting exact 
rows 

o ~ W(M)(A) ---+ W(B) ~ W(A) ~ 0 

lFn IF" lFn 
o ~ W(M)(A) ~ W(B) ~ W(A) ~ 0 

by Remark 1.9. Obviously the diagram of complexes 

D*(Wn,B' Gm,B) ~ D*(Wn,A' Gm,A) 

~n 1 1 ~n 
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is commutative. Hence we obtain a morphism of complexes 
- A A (M) - A A (M) 

en: D*(Wn,A'~A ) -t C*(Wn,A'~ ). 

To sum up, we obtain a commutative diagram of cochain complexes with 
splitting exact rows 

_ A A (M) _ A A _ A A 

o ---t D*(Wn,A' ~A ) ---t D*(Wn,B, Gm,B) ---t D*(Wn,A. Gm,A) ---t 0 

len len len 
o ---t C*(Wn,A. ~(M») ---t C*(Wn,B.Om,B) ---t C*(Wn,A.Om,A) ---t O. 

The most left en is a quasi-isomorphism since the other two are such, by [6, Th. 
2.8.1]. We have thus proved: 

THEOREM 3.5. Let A be a Z(p) [M]-algebra. Then there exist isomorphisms 

Ker[Fn: W(M)(A) -t W(M)(A)]':;' HomA_gr(Wn,A, ~JM»), 

Coker[Fn : W(M)(A) -t W(M)(A)]':;' HJ(Wn,A. ~A(M»). 

REMARK 3.6. We can describe explicitly the isomorphisms 

e2 : Ker[Fn : W(M)(A) -t W(M)(A)]':;' HomA_gr(Wn,A, ~(M»). 

e~ : Coker[Fn : W(M)(A) -t W(M)(A)]':;' HJ(Wn,A. ~JM»), 

induced from 

by 

Indeed, we define two formal power serieses 

E;~)(U; T) E Z(p)[M, Uo. UI , U2 ,· •. ]([To, TI •... , Tn-dl. 

F),~)(U;X. Y) E Z(p)[M, Uo, UI • U2•·· .]([Xo •... ,Xn-I. Yo, ... , Yn-d] 

E;~)(U; T) = ~[Ep,n(a.(M)U. T) -ll. 

1 
F),~)(U;X. Y) = M[Fp,n(a.(M)U;X. Y) -1]. 

respectively. Then, 
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(1) a 1-+ E~~)(a; T) gives rise to the isomorphism 

~~ : Ker[Fn : W(M)(A) _ W(M)(A)] ~ HOmA-grp;Vn,A, ~(M)); 

(2) a 1-+ F):;) (a; X, Y) gives rise to the isomorphism 

~~ : Coker[Fn : W(M)(A) _ W(M)(A)] ~ HJCWn,A, ~(M)). 

This is a consequence of the following Proposition 3.7, 3.8, 3.9 and Corollary 
3.11. 

PROPOSITION 3.7. We have 

E(M)(U +(M) V T) = E(M)(U· T) + E(M)(V T) + ME(M)(U· T)E(M)(V T) 
p,n 'p,n' p,n' p,n) p,n , . 

PROOF. It is sufficient to prove that 

1 + ME(M)(U +(M) V T) = [1 + ME(M)(U· T)][1 + ME(M)(V T)] p,n , p,n' p,n" 

that is to say, 

This is a consequence of the functional equation for Ep,n (U, T) since 
(t(M) (U +(M) V) = (t(M) (U) + (t(M) ( V). 

PROPOSITION 3.8. We have 

F),~)(U;X, Y) +F),~)(U;S(X, Y),Z) + MF),~)(U;X, Y)F),~)(U;S(X, Y),Z) 

= F),~)(U;X,S(Y,Z)) + F),~)(U; Y,Z) + MF),~)(U;X,S(y,Z))F),~)(U; Y,Z) 

and 

PROOF. It is sufficient to prove that 

[I + MF),~)(U;X, Y)][I + MF),~)(U;S(X, Y),Z)] 

= [1 +MF),~)(T;X,S(y,Z))][1 +MF),~)(U; Y,Z)] 

that is to say, 
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Fp,n(rx(Ml Uj X, Y)Fp,n(rx(Ml Uj SeX, Y), Z) 

= Fp,n(rx(MlUjX,S(Y,Z))Fp,n(rx(M)Uj Y,Z). 

This is a consequence of 2.4 (I). The second assersion follows immediately from 
2.4 (2). 

PROPOSITION 3.9. We have 

F),~l(S(Ml(U, V)jX, Y) 

= F)::l(UjX, Y) +F)::l(VjX, Y) + MF)::l(UjX, Y)F)::)(VjX, Y). 

PROOF. It is sufficient to prove that 

[I + MF(Ml(S(Ml(U V)· X Y)) = [I + MP(M)(U' X Y)][I + MP(M)(V' X Y)] p,n ), , p~n ,) p,n'" 

that is to say, 

p(Ml(rx(M)S(U V)·X y)=p(M)(rx(M)U'X y)p(Ml(rx(M)V-X Y) 
p,n )" p,n ,) p,n ')' 

This is a consequence of 2.4 (3). 

LEMMA 3.10 (cf. [8, Lemma 1.20]). Let A be a ring, and let B = 

A[M, tJ/(t2 - Mt), in which e denotes the image 01 t. Let I(TI, T2, ... , Tn) E 

A[TI, T2, ... , Tn] with 1(0,0, ... ,0) = 0, and put 

(Ml _~ I (TI,T2, ... ,Tn) - MI(MTI,MT2, ... ,MTn). 

Then I(Ml(TI, T2, ... , Tn) E A [M][TI , T2, ... , Tn) and 

el(Ml(TI, T2, ... , Tn) = l(eTI,eT2, ... ,eTn). 

COROLLARY 3.11. Let A be a Z(p) [M)-algebra, and let B = A[tJ/ (t2 - Mt), in 
which e denotes the image olt. Let aE W(M)(A), and put ea= (eao,eal,ea2,"')' 
Then: 

(1) 1 + eE~~)(aj T) = Ep,n(eaj T); 
(2) 1 +eF),~l(ajX, Y) = Fp,n(eajX, Y). 

PROOF. We may assume that A = Z(p) [M)[Uo, UI, U2, ... ) and a = U = 

(Uo, UI, U2, .. . ). Put 
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(M) _ 1 
aioi,---in_, (U) ~ M aioi,---in_, (MUo, MUI, MU2, --.). 

Then a~:;?-in_' (U) E Z(p) [MJ[Uo, UJ, U2, _ .. J since aioi,---in_, (U) has no constant term. 
Furthermore 

Now by Lemma 3.10 we have 

This implies that 

Ep,n(ea; T) = 1 + eE~~)(a; T). 

We can prove (2) similarly. 

EXAMPLE 3.12.1. E~~2(U; T) = Ep,n(U; T) - 1. 

EXAMPLE 3.12.2. E;~~(U; T) = I: Ur<Pr,n(T). 
r~O 

Indeed, by the definition we have 

1 + ME(M)(F T) = E (a(M)U' T) Pin' p,n , 

and 

log E (a(M) U· T) = ~ ~<P (a(M) U)<P (T). 'P,n ) 0 r r Tin 
r~O p 

Now note that, for r;;:: 0, 

Hence we have 

and therefore 

<Pr(MUo, MUI, ... , MUr) == pr MUr mod MP. 

logEp,n(a(M)U;T) == 2:= MUr<Pr,n(T) modMP, 
r~O 

Ep,n(a{M)U; T) == 1 + 2:= MUr<Pr,n(T) modM2_ 

r~O 
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Thus we obtain 

Ejlj,)(rx(M)U; T) == I: U/1.>r,n(T) mod M. 
r:2:0 

EXAMPLE 3.12.3. E;~~(U; T) = E Ur~r,I(T) = E UrTg'. 
r:2:0 r:2:0 

EXAMPLE 3.13.1. F),IJ(U;X, Y) = Fp,n(U;X, Y) - 1. 

(0) -
EXAMPLE 3.13.2. Fp,n(U;X, Y) = E Ur~r(Sn(X, Y)). 

r:2:0 

Indeed, by the definition we have 

1 + MF),":) (U,X, Y) = Fp,n(rx(M)U;X, Y) 

and 

(M). _ '" 1 (M) -log Fp,n(rt. U,X, Y) - L.J r~r(rx U)~r(Sn(X, Y)). 
r:2:0 P 

Now note that, for r ~ 0, 

~r(MUo,MUI,." ,MUr) == prMUr mod MP. 

Hence we have 

log Fp,n(rt.(M)U;X, Y) == I:MUr~r(Sn(X, Y)) mod MP, 
r:2:0 

and therefore 

Fp,n(rt.(M)U;X, Y) == 1 + I:MUr~r(Sn(X, Y)) modM2. 
r:2:0 

Thus we obtain 

F),":)(rx(M)U;X, Y) == I: Ur~r(Sn(X, Y)) mod M. 
r:2:0 

In particular, putting U = [1) = (1,0,0, ... ) and M = 0, we obtain 

F)?J([I);X, Y) = Sn,n(X, Y) = Sn(XO, ... ,Xn-I,O, Yo, ... , Yn-I,O) 

which is the 2-cocyle of Z2(Wn, Ga) defining the extesion Wn+l' 
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EXAMPLE 3.14. Let A be a Z(p)[M]-algebra. The homomorphism of formal 
groups a(M) : ~(M) ---t Gm,A induces a morphism of cochain complex 

(M) - * A A (M) - * A A 

a : C (Wn,A'~A ) ---t C (Wn,A,Gm,A)' 

We can verify the commutativity of the diagrams 

W(M) (A) 
«(M) 

W(A) ------t 

e~ 1 1 e~ 
C1(W, ~(M)) 1 A A 

------t C (Wn,A, Gm,A) n,A, :A 
«(M) 

and 

W(M)(A) 
«(M) 

W(A) ------t 

e~ 1 1 e~ 
Z2(w, ~(M)) n,A, :A 

2 A A 

------t Z (Wn A, Gm A)' 
«(M) " 

Moreover, we obtain a commutative diagram of cochain complexes 

D*(Wn,A' Gm,A) 

1 en 

and therefore commutative diagrams 

Ker[pn: W(M)(A) ---t W(M)(A)] ~ Ker[pn: W(A) ---t W(A)] 

el le 
and 
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Assume now the homothety by M is not bijective but injective on A, and put 
Ao = A/(M). Then we have a commutative diagram of cochain complexes with 
exact rows 

o -----> D*(W: {geM)) n,A, A -----> D*(Wn,A' Gm,A) -----> D*(Wn,Ao' Gm,Ao) -----> 0 

I (n I (n I (n 

o -----> C*(W: {g(M)) n,A, A -----> C*(Wn,A' Gm,A) -----> C*(Wn,Ao' Gm,Ao)· 

By the snake lemma the exact sequence 

, , (M) " " 
0-+ HOmA-gr(Wn,A, ~A ) -+ HOmA_gr( Wn,A, Gm,A) -+ HOmAo-gr( Wn,Ao, Gm,Ao) 

d 2' , (M) 2" 2" 
-+ HO (Wn,A, ~A ) -+ HO (Wn,A, Gm,A) -+ HO (Wn,Ao, Gm,Ao) -+ 0 

arises from the commutative diagram with exact rows 

W(A) -----+ W(Ao) -----+ 0 

IF" IF" 
o -----+ W(M)(A) -----+ W(A) -----+ W(Ao) ----t o. 

We conclude the section, by mentioning an analogue of Theorem 3.5 in the 
case of group schemes. 

First we recall two facts stated in [6] and [8]. 

REMARK 3.15 (cf. [6, Th. 2.8.1]). Let A be a Z(p)-algebra. Then 
(1) a 1-+ Ep,n(a; T) gives rise to the isomorphism 

o ' , -
~n : Ker[Fn : W(A) -+ W(A)] -+ HOmA-gr(Wn,A, Gm,A); 

(2) a 1-+ Fp,n(a;X, Y) gives rise to the isomorphism 

1 "- 2 
~n : Coker[Fn : W(A) -+ W(A)] -+ Ho (Wn,A, Gm,A). 

REMARK 3.16 (cf. [8]). Let A be a Z(p) [M]-algebra, and let W(M) denote the 
functor defined by 

{ 
() Mai is nilpotent for all i and } 

= (ao,al,a2, ... ) E W M (A); ai = 0 for all but a finite number of i . 
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Then we have a splitting exact sequence 

o ~ W(M) (A) ~ WeB) ~ W(A) ~ 0, 

where B = A[tJl(t2 - Mt). 

Now, we note that if M is nilpotent in A, then we have 

E}';.)(Uj T) E A[Uo, UI, U2, ... ][To, TI, .. " Tn-d, 

F),~)(UjX, Y) EA[Uo, UI, U2, ... ][Xo, ... ,Xn- l , Yo, ... , Yn-d. 

Therefore, combining Remark 3.15 and 3.16 similarly as in the proof of Theorem 

3.5, We can prove: 

PROPOSITION 3.17. Let A be a Z(p) [M]-algebra. Assume that M is nilpotent in 
A. Then 

and 

(1) a f-+ E~~) (aj T) gives rise to an isomorphism 

C;~ : Ker[Fn : W(M)(A) ~ W(M)(A)] ~ HOmA-gr(Wn,A, ~(M))j 

(2) a f-+ F),~) (aj X, Y) gives rise to an isomorphism 

C;~ : Coker[Fn : W(M)(A) ~ W(M)(A)] ~ H5(Wn,A, ~(M)). 

4. Functoriality 

We establish some functorialities among c;~ (i = 0, l,n = 1,2, ... ). 

PROPOSITION 4.1. Let A be a Z(p) [M]-algebra. Then: 
(1) The diagrams 

Ker[Fn: W(M)(A) ~ W(M)(A)] -----+ Ker[Fn+1 : W(M)(A) ~ W(M)(A)] 

~~ 1 1 ~~+I 
- -w) - -w) HOmA-gr(Wn,A, ~A) -----+ HOmA-gr(Wn+I,A, ~ ) 

R* 

are commutative. Here the first horizontal arrow denotes the canonical injection. 
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(2) The diagrams 

and 

are commutative. 

(3) The diagrams 

and 

are commutative. Here the third horizontal arrow denotes the canonical 

sUljection. 

(4) The diagrams 

Ker[F" : W(M)(A) -+ W(M)(A)] ~ Ker[Fn: W(M)(A) -+ W(M)(A)] 

~1 1~ 
A A (M) 

HOffiA_gr( Wn,A) ~A ) 

and 
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are commutative. Here the second and forth horizontal arrows denote the maps 

induced by endomorphism of Urn, defined by 

(To, TI,"" Tn-I) ~ (p~M)(a, T),pfM)(a, T), ... ,P~~{(a, T)), 

where a = (ao, al, ... , an-I) E Wn(A) and [a] = (ao, al, ... , an-I, 0, 0, ... ) E W(A). 

PROOF. The assertions can be deduced from following proposition as in the 
proof of the main theorem. 

and 

PROPOSITION 4.2. Let A be a Z(p)-algebra. Then: 

(1) The diagrams 

Ker[pn : W(A) -t W(A)] ____ Ker[pn+I : W(A) -t W(A)] 

e21 1 e2+, 

are commutative. Here the first horizontal arrow denotes the canonical in­
jection. 

(2) The diagrams 

Ker[pn : W(A) -t W(A)] ~ Ker[pn+1 : W(A) -t W(A)] 

e21 1 e2+, 

and 
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are commutative. 
(3) The diagrams 

Ker[Fn+1 : W(A) --7 W(A)J ~ Ker[Fn : W(A) --7 W(A)J 

~~+Il 1 ~~ 

and 

are commutative. Here the third horizontal arrow denotes the canonical surjection. 
(4) The diagrams 

Ker[F n : W(A) --7 W(A)J 
[a] 

Ker[Fn : W(A) --7 W(A)] ----+ 

(~ 1 1 ~~ 
HOffiA-gr(Wn,A, Gm,A) ----+ HOffiA-gr(Wn,A, Gm,A) 

and 

Coker[Fn : W(A) --7 W(A)J 
F"[aJ 

Coker[Fn : W(A) --7 W(A)J ----+ 

(,: 1 1 (~ 
2 A A ? A A 

Ho (Wn,A, Gm,A) ----+ Ho(Wn,A, Gm,A) 

are commutative. Here the second and forth horizontal arrows denote the maps 
induced by the endomorphism of Wn, defined by 

(To, TI, .. · , Tn-I) 1---7 (Po(a, T), PI (a, T), ... , Pn- I (a, T)), 

where a = (ao, al, ... , an-d E Wn(A) and raj = (ai, al, .. . ,an-I, 0, 0, ... ) E W(A). 
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(1),(3) and the second diagram of (4) are proved in [6, Lemma 2.9 and 
Remark 3.7]. Here we verify (2) and the first diagram of (4). 

(2): Put Fn(T) = (Fn,n(T),Fn+l,n(T),Fn+2,n(T), .. . ). 
The commutativity of the first diagram is a consequence of the the following 

equality 

where Fn+i,n(T) = Fn+i(To, TI, ... , Tn, 0, 0 ... ). Indeed, 

Ep,n+I(O, Uo, UI,· .. ; T)Ep,n(U;F(T)r l 

= exp [2: ~<Dr( U){ <Dr+l,n+1 (T) - <Dr,n(F(T))}] 
r~O p 

['" 1 ){ n (p,-n n+1 p,-n-l ] = exp f;::, pr <Dr( U p Fn,n T) + P Fn+l,n(T) + .. , + pr F;·,n(T)} 

= exp [2: ;r <Dr+n( U){F;"n(T)P' + pFn+l,n(TV,-1 + ... + pr Fr+n,n(Tn] 
r~O 

The commutativity of the second diagram is a consequence of the following 
equality 

Fp,n+I(FVU;X, Y)Fp,n(U;F(X),F(y))-1 

= Ep( U; Fn(X))Ep( U;Fn( Y))Ep( U;Fn(S(X, y)))-I. 

Indeed, put F(T)n = (Fo(T),FI(T), ... ,Fn- 1 (T),O, 0, ... ). Then, 

Therefore 

- <Dr+n(S(F(X)/l' F(Y)/l)) + <Dr+n,n(S(F(X) , F( Y))) 

= p/l<Dr(F/l(X)) + pn<Dr(Fn(Y)) - p/l<Dr(Fn(S(X, Y))). 



On the Extensions of Wn by fj(p.) over a Z(p)-Algebra 463 

Fp,n+1(FVU; X, Y)Fp,n(U;F(X),F(y))-1 

= exp [I: ~<l>r(U){P<l>r(Sn+I(X, Y)) - <l>r(Sn(F(X),F(y))n] 
r~OP 

= exp [I: :+n <l>r(U){pn<l>rCFn(X)) + pn<l>,(Fn(Y)) - pn<l>r(Fn(S(X, Y))n] 
,~oP 

- . - - -I 
= Ep(U; Fn(X))Ep(U; Fn(Y))Ep(U; Fn(S(X, Y))) . 

(4): The commutativity of the first diagram is a consequence of the following 
equality 

where 

Pn+i,n(X, Y) = Pn+i(XO,XI, ... ,Xn-I,O,O, ... , Yo, YI,"" Yn-I'O,O, ... ) 

and 

Xn = (XO,XI" .. ,Xn_I'O,O, ... ). 

Indeed, 

Ep,n(P(Xn, U); T)Ep,n(U;P(X; y))-I 

= exp [I: ~r <l>r(U){<l>r,n(X)<l>r,n(Y) - <l>r,n(X, Tn] 
r~O 

_ [I: 1 { n )p,-n n+1 )p,-n-I - exp -<l>r(U) p Pn n(X, Y + p Pn+1 n(X, Y 
P" , 

r~n 

+ ... + pr Pr,n(X, yn] 

_ [" 1 {( )P' ()p'-I - exp ~ -<l>n+r(U) Pn n X, Y + pPn+1 n X, Y 
r~OP' , ., 

+ ... + pr Pn+"n(X, yn] 

= Ep(Fn(u); Pn,n(X, Y),Pn+I,n(X, Y), .. . ). 
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PROPOSITION 4.3. The diagram 

Coker[pn: W(Ml(A) -; W(Ml(A)] 

le~ 

is commutative. Here the first horizontal arrow denotes the map induced by a 1---+ a, 

and a denotes the boundary map defined by the exact sequence of formal group 

schemes 

PROOF. The assertion can be deduced from following remark as in the proof 
of Theorem 3.5. 

REMARK 4.4 (cf. [6, Lemma 2.10]). The diagram 

Ker[Fn : W(A) -; W(A)] Coker[Fm : W(A) -; W(A)] 

e~ 1 1 e;, 

is commutative. Here the first horizontal arrow denotes the map induced by 
a 1---+ a, and a denotes the boundary map defined by the exact sequence of formal 
group schemes 

We can obtain the functorialities of the case of group schemes similarly as 
above. 

5. Some Results over a Discrete Valuation Ring 

In this section, we treat a case of extensons over a discrete valuation ring as 
done in Sekiguchi-Suwa [4] and [8]. 

Throughout the section, A denotes a discrete valuation ring and m (resp. K) 

the maximal ideal (resp. the field of fraction) of A. We denote by n a uni­
formizing parameter of A and by v the valuation of A normalizing by v(n) = l. 
Furethermore, we fix f.1 E m - {O} and put Aa = A/(f.1), ma = m/(f.1). 
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5.1. Now we assume that G is an affine group scheme over A and F is an fppf­

sheaf. Let .iti (F) denote the presheaf on Sch/A defined by X f---+ Hi (X, F). Then 

we have an exact sequence 

0--* HJ(G,F) --* Ext~(G,F) --* HJ(G,.itI(F)) --* Ht(G,F) --* Ext~(G,F) 

(cf. [Ch. III. 6, 2.5]). 

LEMMA 5.2. Hd(Wn,A, <;§Y») = 0 for i 2:: 1. 

PROOF. Since A is reduced, it is readily seen that Ci (Wn,A, <;§Y») ~ 
(1 + f.1.A)X for all i 2:: 1. And the boundary map is written as follows: ai(a) = 1 if 

i is even, and ai(a) = a if i is odd. It follows immediately that Hd(Wn,A, <;§Y») = 0 

for i 2:: 1. 

COROLLARY 5.3. Ext~(Wn,A' <;§Y») is isomorphic to the subgroup of 
HI ( Wn, A, <;§A(P») formed by the primitive elements. 

PROOF. Recall that a E HI(Wn,A' ~(Jl») is primitive if f.1.*(a) = prj(a) + 
pr~(a) in HI(Wn,A X Wn,A'<;§A(P»), where f.1. is the multiplication and prj; W",A X 

Wn,A --* Wn,A is the i-th projection. 

Applying the exact sequence of 5.1. to G = Wn,A and F = <;§Y), we have the 

exact sequence 

0--* HJ(W",A, '9jp») --* Ext~(Wn,A' <;§A(P») 

--* HJ(Wn,A,i"t'I(<;§A(P»)) --* Ht(Wn,A,<;§Y»)· 

But we have seen that 

III 5.2. Hence we obtain an isomorphism 

Ext~ (Wn,A, <;§Jp») -=. H6 (Wn,A,.it 1 (<;§Y»))· 

By the definition, H6(Wn,A,.it I(<;§A(P»)) is nothing but the subset of primitive 

elements in HI (Wn, A, <;§Jp»). 

LEMMA 5.4. The group HI (Wn,A, <;§Y») is isomorphic to 
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PROOF. Since Wn,A is fiat over A, the sequence 

(p) ,,(p) o ---+ ~ _ ---+ Gm,A ---+ i* (Gm,Ao) ---+ 0, 

where i: Spec Ao -7 Spec A is the canonical immersion, is exact on the (small) 

eStale site of Wn,A (cf. [5]). Thus we obtain an exact sequence 

qWn,A, Gm,A) -7 qWn,Ao' Gm,Ao) -7 H1(Wn,A, :§A(P)) -7 H1(Wn,A, Gm,A)' 

Note that we may calculate the cohomology group HI(Wn,A, :§jP)) for the eStale 

topology since ~p) is smooth over A (cf. Grothendieck [2]). Since the affine ring 

of Wn,A is a unique factorzation domain, 

Hence the assertion follows from the following calculations: 

where the canonical map A x -7 Ao is surjective. 

COROLLARY 5.5. Ext~ (Wn,A, ~p)) is isomorphic to 

Next we give an explicit description of the extensions of Wn,A by :§)p) , corre­

sponding to a primitive element. 

5.6. Let F(To, ... , Tn-I) be a polynomial III A[To, ... , Tn-d, satisfying the 
functional equation 

1) F(O, 0, ... ,0) == I mod Jl; 
2) F(Xo, ... , Xn-I)F(Yo, ... , Yn-d == F(So(X, Y), ... , Sn-I (X, Y)) mod Jl. 
Put T = (To, T I, ... , Tn-I) and we define a smooth affine commutative group 

scheme tf~p;F) over A as follow: 

fP(p;F)-S [ 1] <an - pec A To, T I, ... , Tn-I, Tn, - F( ) 
JlTn + To, ... , Tn-I 
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1) law of multiplication 

2) unit 

3) inverse 

T; I-t S;(T ® 1,1 ® T) (0:::;;; i :::;;; n - I), 

Tn 1-+ f.J.Tn ® Tn + Tn ® F(T) + F(T) ® Tn 

+! [F(T) ® F(T) - F(S(T ® I, 1 ® T)))i 
f.J. 

T;I-tO (O:::;;;i:::;;;n-l), 
1 

Tn I-t - [1 - F(O, ... , O))i 
f.J. 

T; 1-+ f;(T) (0:::;;; i:::;;; n - I), 

Tn I-+! [T F(r,1 T) -F(fo(T),II(T), ... ,In-I(T))], 
f.J. f.J. n + 0, ... , n-I 

where fo(T),I1 (T), ... ,In-I (T) are polynomials defining the inverse on Wn. It is 
well known that if p > 2, (fo(T),II(T), ... ,In-I (T)) = (-To, -TI, ... , -Tn-I). 

Moreover, we define a homomorphism of group schemes 

~(p.) = Spec A [T 1 ] --T S(p.jF) 
:A '1 + f.J.T n 

= Spec A [To, ... , Tn-I, Tn, F(r, ~) T. ] 
0,···, n-I + f.J. n 

by 

(To, ... , Tn-I, Tn) 1-+ (0, ... ,0, T + ~ [1 - F(O, ... ,0))) 

and a homomorphism 

s~p.jF) = Spec A [To, ... , Tn-I, Tn, F(r, ~) T] --T Wn,A 
0,···, n-I + f.J. n 

= Spec A[To, ... , Tn-d 

by 

(To, . .. , Tn-I) 1-+ (To, . .. , Tn-I). 
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Then the sequence of group schemes 

o -t C5(P.) -t tt.(p.;F) -t W. A -t 0 
:A n n, 

is exact, and its class correspondents to [F(To, ... ,Tn-l) mod,u)EHI(Wn,A, 
~(p.)). 

5.7. From 5.5 and 5.6, F I--t [SJp.;F)) defines an isomorphism 

a: HOmAO-gr(Wn,Ao, Gm,Ao) ~ Ext~(Wn,A'~(P.)). 

Now note that F(To, ... , Tn-I) is invertible in A[[To, ... , Tn-d). Then 

(To,··., Tn-I, Tn) I--t (To, ... , Tn-I, F(T, To T )) 
0,···, n-I 

defines an isomorphism of formal groups 

~( 'F) - ~ Snp.· = Spf A [[To, ... , Tn-I, Tn)) -t Iff = Spf A[[To, . .. , Tn-I, Tn)), 

where i is the extension of Wn,A by ~Jp) defined by the 2-cocycle 

1 [F(X)F(Y) ] 2 ~ ~ (p) 
(aF)(X,y)=~ F(S(X,y))-1 EZo(Wn,A,C5A ). 

Furthermore, defining a homomorphism 

Ext~(Wn,A' C5JP.)) -t HJ(Wn,A, ~A(P)) 

by 

we obtain a commutative diagram with exact rows 

where d is the homomorphism in Example 3.14. 
Assume now that A is of mixed characteristics 0 and p. Let a E Ker[Fn : 

W(K) -t W(K)]. Then ar (r ~ n) is determined inductively by 
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EXAMPLE 5.7.1. If V(fl) > v(p) j (p - 1) + 1, then the canonical map 

A 1 (p,) 1 A A (p,) 
S I-t S : ExtA(Wn,A, ~ ) -t ExtA(Wn,A, <;§A ) 

is not injective. 

Indeed, take (ao,al,'" ,an-I) such that 
(1) v(ai) > v(p)j(p - 1) for any i; 

(2) v(ai) < V(fl) for some i. 

Define a E W(K) inductively by <l>r(a) = 0 for r ~ n. Then a is an element 
of Ker[P : W(A) -t W(A)] and ~im v(ai) = co. Therefore a is an element of 

A A 1--+00 

Ker[P : W(Ao) -t W(Ao)]. On the other hand, a¢. (0,0, ... ) mod fl since 
v(ai) < V(fl) for some i. 

These imply that 
(1) the class [SSf1;F)] is not trivial in Ext~(Wn,A'<;§A(p,)), 
(2) the image of [iS f1;F)] is trivial in Ext~(Wn,A' {§Y)). 

Here P(T) = En,p(a; T) mod fl E Ao[To, . .. , Tn-J 

EXAMPLE 5.7.2. If P l' v(p) and V(fl) ~ (2p - 1)v(p)j(p3 - p2), then the 

reduction map 

is zero, and therefore, the canonical map 

is injective. 
Indeed, take ao, al E A and define a = (ao, aI, a2,"') E Ker[p2 : W(K) -t 

W(K)] inductively by <l>(a) = O. Especially a2 = ab2 j p2 + af j p. Then v(ab2 j p2) 
i= v(afl p) since p l' v(p), which implies that v(a2) = min{v(ab2 j p2), v(afl pH. 
Furthermore it is verified that, if v(ao) ~ (2p - 1)v(p)j(p3 - p2) and v(al) ~ 
v(p)j(p - 1), then v(ai) ~ v(p)j(p - 1) for any i, which implies that a == 
(0,0,0, ... ) mod fl. On the other hand, it is verified that, if v(ao) < (2p - l)v(p)j 
(p3 _ p2) or v(al) < v(p)j(p - 1), then lim v(ar) = -co, which implies that a ¢ 

r_OO 
Ker[p2 : W(A) -t W(A)]. Hence the result. 
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