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GENERALIZED TATE COHOMOLOGY

By
Alina Iacos

Abstract. We consider two classes of left R-modules,  and ¥,
such that # < 4. If the module M has a ZP-resolution and a ¥%-
resolution then for any module N and n > 0 we define generalized
Tate cohomology modules E\xtg,)g,(M ,N) and show that we get a
long exact sequence connecting these modules and the modules
Ext}(M,N) and Extj(M,N). When % is the class of Gorenstein
projective modules, £ is the class of projective modules and when M
has a complete resolution we show that the modules E/‘;t%g,(M ,N)
for n > 1 are the usual Tate cohomology modules and prove that our
exact sequence gives an exact sequence provided by Avramov and
Martsinkovsky. Then we show that there is a dual result. We also
prove that over Gorenstein rings Tate cohomology E;t};(M ,N) can
be computed using either a complete resolution of M or a complete
injective resolution of N. And so, using our dual result, we obtain
Avramov and Martsinkovsky’s exact sequence under hypotheses
different from theirs.

1. Introduction

We consider two classes of left R-modules &2, € such that Proj = ? < &,
where Proj is the class of projective modules. Let M be a left R-module. Let P.
be a deleted 2-resolution of M, C. a deleted %-resolution of M (see Section 2 for
definitions), let u:P. — C. be a chain map induced by Idy, and M(u) the
associated mapping cone. We define the generalized Tate cohomology module
Ext% »(M,N) by the equality Ext% »(M,N) = H”“(Hom(M(u) N)), for any
n >0 and any left R-module N. We show that Ext%, »(M,—) is well-defined. We
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also show that there is an exact sequence connecting these modules and the
modules Extl(M,N) and Ext}(M,N):

(1) 0 — Exty(M,N) — Exty(M,N) — Extly o(M,N) — - -

We prove (Proposition 1) that when we apply this procedure to € = Gor Proj,
2P = Proj, over a left noetherian ring R, for an R-module M with Gor proj dim M
= g < oo, the modules E;t:“,) #(M,N) are the usual Tate cohomology modules for
any n > 1. In this case our exact sequence (1) becomes L. L. Avramov and A.
Martsinkovsky’s exact sequence ([1], th. 7.1):

0 — Exty(M,N) — Exty(M,N) — Exty(M,N) — - --

— Exty(M,N) — Ext4(M,N) — Extj(M,N) — 0

Our proof works in a more general case, for any module M of finite Gorenstein
projective dimension, whether finitely generated or not.

There is also a dual result (Theorem 1). If Gorinjdim N =d < co then the
dth cosyzygy H of an injective resolution of N is a Gorenstein injective module.
So there exists an exact sequence & :---— E - Ey—»FE_ | —>E_,— --- of
injective modules such that Hom(I,&) is exact for any injective left R-module
I and H = Ker(Ey — E_;). We call such sequence a complete injective resolu-
tion of N. We show that a complete injective resolution of N is unique up to
homotopy. For each left R-module M and for each ne Z let Exti(M,N) %ef
H"(Hom(M,&)). A dual argument of the proof of Proposition 1 shows the
existence of an exact sequence 0 — Extl,(M,N) — Exty(M,N) — Exth(M,N)
— Extys;(M,N) — -+ — Ext$;(M,N) — Ext(M,N) — Ext4(M,N) — 0
where Ext},;(M,N) are the right derived functors of Hom(M,N), computed
using a right Gorenstein injective resolution of N. If Gorprojdim M < co then
Exty(M,N) ~ Exty;(M,N), for all i >0 ([4], Theorem 3.6). So in this case we
obtain an exact sequence

0 — Exty(M,N) — Exty(M,N) — Exty(M,N) — - --

We prove (Theorem 2) that over Gorenstein rings we have Exti(M,N) ~
Ext}(M,N) for all left R-modules M, N, for any n e Z. Thus, over Gorenstein
rings there is a new way of computing the Tate cohomology.

2. Preliminaries

Let R be an associative ring with 1 and let 2 be a class of left R-
modules.
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DermiTiON 1 [3]. For a left R-module M a morphism ¢ : P— M where
PeP is a P-precover of M if Hom(P',P) — Hom(P',M) — 0 is exact for any
P e

DEFRINITION 2. A P-resolution of a left R-module M is a complex P : -+ —
P, — Py — M — 0 (not necessarily exact) with each P; € ? and such that for any
P' € P the complex Hom(P',P) is exact.

Throughout the paper we refer to the complex P.:---— Py — Py — 0 as a
deleted P resolution of M.

We note that a complex P as in Definition 2 is a £-resolution if and only
if Pp— M, Py — Ker(Py — M) and P; — Ker(P;_; — P;_5) for i >2 are &-
precovers. If 2 contains all the projective left R-modules then any 2-precover is
a surjective map and therefore any Z-resolution is an exact complex.

A P-resolution of a left R-module M is unique up to homotopy ([3], pg. 169)
and so it can be used to compute derived functors.

DerINITION 3. Let M be a left R-module that has a P-resolution P : - —
Py — Py — M — 0. Then Extj(M,N) = H"(Hom(P.,N)) for any left R-module
N and any n =0, where P. is the deleted resolution.

We prove the existence of the exact sequence (1).

Let 2, € be two classes of left R-modules such that Proj « # < € where
Proj is the class of projective modules. Let M be a left R-module that has both a
P-resolution P:---— Py - Py— M — 0 and a ¥-resolution C:--- — C; —
Co— M — 0.

P;e P =¥ so Hom(P;,C) is an exact complex for any i > 0. It follows that
there are morphisms P; — C; making

P Py Py M 0
oo
C: - o) Co M 0

into a commutative diagram.
Let u:P — C, u= (4;);5, be such a chain map induced by Idys and let
M (u) be the associated mapping cone. Since 0 — C — M (u) — P[1] — 0 is exact

and both P and C are exact complexes, the exactness of M (u) follows. M (u) has
the exact subcomplex 0 — M B m—o. Forming the quotient, we get an exact
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complex, M{u), which is the mapping cone of the chain map u: P. — C. (P. and
C. being the deleted &2, ¥-resolutions). The sequence 0 — C. — M(u) — P.[1] —
0 is split exact in each degree, so for any left R-module N we have an exact
sequence of complexes 0 — Hom(P.[1],N) — Hom(M(u),N) — Hom(C.,N) — 0
and therefore an associated cohomology exact sequence: --- — H"(Hom(M (u),
N)) — H"(Hom(C.,N)) — H"'(Hom(P.[1],N)) — H""'(Hom(M(u),N)) —
H™1(Hom(C.,N)) — --- Since M(u) is exact and the functor Hom(—,N) is
left exact, it follows that HO(Hom(M(u),N)) = H'(Hom(M(u),N)) =0. We
have HO(Hom(C.,N)) ~ Hom(M,N) and H'(Hom(P.[1],N)) ~ Hom(M,N).
So, the long exact sequence above is: 0 — Hom(M,N) — Hom(M,N) — 0 —
H'(Hom(C.,N)) — H*(Hom(P.[1],N)) — H?(Hom(M (u),N)) — --- After fac-
toring out the exact sequence 0 — Hom(M,N) = Hom(M,N) — 0 we obtain the
exact sequence (1):

0 — Extly(M,N) — Exty(M,N) — Exty 5(M,N) —

We prove that the generalized Tate cohomology b:)?l@)g(M ,—) is well defined.
Let #, € be two classes of left R-modules such that # c &.
Let P, P’ be two 2-resolutions of M and let C, C' be two %-resolutions
of M.

Pmﬁﬂﬂ%ﬁMHQP%~éHi%ﬁMe0

/gl ,go

C: Bt mao - EBalalyo

There exist maps of complexes u:P - C and v: P — C, both induced
MM. M(u) .. —>§C3(—BP2 _)¢SC‘2®P1 —)JCI (‘BP()—)(SC()(-DMHM—)O and
M@): - - Ci®P, 3 C,®P, 2 Cl@®@P) - CL®M —= M — 0 (with 6,(x, )
= (Gn() + a1 (), ot () For 1> 1, So(x, %) = go(x) + 3, 34(x,¥) = (gh() +
Un=1(¥), =f_ (»)) for n>1, 8y(x,y) = g¢(x) + y) are the associated mapping
cones.

M(u):~-——>C3®P2—>C2®P1——-)C]@Po—)Co——)O (Wlth 51()6 y)
g1(x) +uo(y)) and M(v):---— C;@ P} %, C; @ P %, C| @ P % Cy — 0 (with
8/(x, ) = g!(x) + vo(y)) are the mapping cones of u: P. — C. and v: P’. — C'..

Since the exact sequence of complexes 0 — C — M(u) — P[1] — 0 is split
exact in each degree, for each zxF we have an exact sequence: 0 — Hom(F,C)
— Hom(F,M(u)) — Hom(F,P[1]) - 0. If Fe? % then both complexes
Hom(F,C) and Hom(F,P[1]) are exact, so the exactness of Hom(F, M u))
follows.

Each P; e 2, so by the above, the complex Hom(P;, M(u)) is exact.
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Let M denote the complex 0 — M % M — 0. The exact sequence of com-
plexes 0 — M — M(u) — M(u) — 0 is split exact in each degree. Consequently
the sequence 0 — Hom(P;, M) — Hom(P;, M(u)) — Hom(P;, M(u)) — 0 is exact
for any i > 0. Since both Hom(P;, M(x)) and Hom(P;, M) are exact complexes, it
follows that

(2) Hom(P;, M (u)) is an exact complex,

for any i > 0.

The identity map Idy induces maps of complexes A:P.— P’. and k:
C.—C..

Both voh:P. — C'. and kou:P. — C'. are maps of complexes induced by
Idy, so vo h and k o u are homotopic. Hence there exists s; € Hom(P;, C/,,), i =20
such that vy o kg — koo ug = g{ 0 So and v, © hy — Ky 0 Uy = g, | © Sn + Sp—1 © f fOr
any n>1.

Then w : M(u) — M(v) defined by @: Co — Cy, @ = ko, wp : Coy1 @ Pp —
Chrp1 @ P, wp(x,y) = (knt1(x) — $2(¥), hn(y)) for any n >0, is a map of com-
plexes.

The identity map Idy also induces maps of complexes [:P'.—P., t:
C'.— C.. Then tov:P’. — C. and uo/:P’. — C. are homotopic.

So we have a map of complexes Y : M(v) — M(u) where , : C,, @ P, —
Cnt1 @ P, is defined by ¥,(x, y) = (tny1(x) = 5:(»), 1s(¥)), n =0 (with 5, : P, —
Cut1 such that u, 00, —t,00, =84-10 f, + gnt1 038, V=1, ugolg—toovy =
g105) and ¥ : Cg — Co, ¥ = fo.

We prove that o w is homotopic to Idas).

Since to k : C. — C. is a chain map induced by Id,s, we have to k ~ Idc. So
there exist maps f; € Hom(C;, Ciy1), i >0 such that tpoko—Id =g;0f, and
tioki—Id=pf;_j0gi+gi10p, Vix 1.

Let x0:Co— Ci @ Py, xo(x) = (Bo(x),0), VxeCo. Then &) oyy(x)=
51 (Bo(3),0) = g1 (Bo()) +1(0) = (1o ko ~ Id)(x) = (F 0 & — Fd)(x), ¥ € Cu

We have d; o (Ygowo—yp001 —Id) =d10yg0wo— (010)) 001 —d1 =1fho
kood, — (tyo ko — Id) 0 5, -6, =0.

Let ro: Pg— Ci @ Py, ro = (Ipoowo—ld—xooé—l)oeo with ey : Po— C1 @
Py, eo(y) = (0, ). We have 8 org =61 0 (Yoo wo—Id —x061) oeg = 0. Since
ro € Ker Hom(Py,6,) = Im Hom(Py,6,) (by (2)) it follows that ro =J,0y, for
some y; € Hom(Py, C; ® Py). Hence (g0 wo —Id — x3061)(0,) = 52(y1(»)).

Also we have (Yyo0wq—Id — x5081)(x,0) = Yo(wo(x,0)) — (x,0) —
%01(x,0)) = Yo (k1(x),0) — (x,0) — x0(g1(x)) = (1 o k1 — Id — By 0 g1)(x),0) =
((g2 0 81)(x),0) = 62(B, (), 0).
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So  (Ygowo—1Id—yy08))(x,y) =80x,(x,y) where x;:Ci@®Py— C;
@ P1, x1 (%, ») = (B (x),0) +71(»). Hence Y0 wo—1d =g 001 +d2 0 5.

Similarly, there exists y; € Hom(C; @ P;_1, Ciy1 @ P;) such that y; o w; — Id =
X © 01 +0i42 0 gy, Vix 1.

Thus ¥ o @ ~ Idy,). Similarly, @ oy ~ Idy). Then H"(Hom(M(v),N)) ~
H"(Hom(M (u),N)) for any grN, for any n > 0.

ReMARK 1. The proof above does not depend on P, € containing all the
projective R-modules. It works for any two classes P, € of left R-modules such
that P < €. And even without assuming that P, € contain the projectives we
still get an Avramov-Martsinkovsky type sequence. Let P, € be two classes of
left R-modules such that ? = €. If the R-module M has a P-resolution P and a
@-resolution C then Idy induces a chain map u:P. — C. and we have an exact
sequence of complexes 0 — C. — M(u) — P.[1] — 0 which is split exact in each
degree, so 0 — Hom(P.[1],N) — Hom(M(u),N) — Hom(C.,N) — 0 is still exact
for any R-module N. Its associated long exact sequence is: 0 — H°(Hom(M (u),
N)) — Exty(M,N) — Ext}(M,N) — Ext} 5(M,N) — Extly(M,N) — --- (with
E)?t(}’g,(M, N) = H™'(Hom(M (u),N)) for any n > 0).

ExamPLE 1. Let R=Z, P =the class of projective Z-modules, I = the
class of torsion free modules (so P <« I), M = Z/,,, N = Z/,,. A P-resolution of
M is O—>Z—2—>Z—N+Z/22—>O. A T-resolution of M is 0—2Z, — 2,5
Z/,, — 0, with (p(i o - 2’) = ag. There is a map of complexes u: P. — T. (P.,

i=0

T. are the deleted P, T -resolutions) and the mapping cone M(u):0— Z —
22, ®Z — Z, — 0 is exact. Since the class I of torsion free Z-modules co-
incides with the class of flat Z-modules and P < I, M(u) is an exact sequence
of flat Z-modules. We have Hom(Z/,;,Q/;) ~ Z/,5. So Z/,; is pure injective
and therefore cotorsion. It follows that Hom(M (u), Z/,,) is an exact complex and
therefore E/\xt%,@(Z/ZZ,Z/zz) =0 for all n. So, in this case, the exact sequence
0 = Exty(Z}yz,Z}z) — Exty(Z)z,Z}rz) — E\’“!y,@(Z/zz’Z/zz) — Exty(Z)yz,
Zyz) = - is 0= Exty(Z)yz,Z)yz) — Exty(Z}yz,Z},z) — 0 with Exty(Z/yg,
Z}rz) = Z}pg-

3. Avramov-Martsinkovsky’s Exact Sequence

For the rest of the article R denotes a left noetherian ring (unless otherwise
specified) and R-module means left R-module. For unexplained terminology and
notation please see [1] and [3].
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Proposition 1 below shows that when & is the class of projective R-modules,
¢ is the class of Gorenstein projective R-modules and M is an R-module of finite
Gorenstein projective dimension, the modules E/;tg’@(M ,N) are the usual Tate
cohomology modules for any n > 1.

We recall first the following:

DermaTioN 4 ([1]). A complete resolution of an R-module M is a diagram
TSP S M where PS5 M is a projective resolution of M, T is a totally acyclic
complex, u is a morphism of complexes and w, is bijective for all n>0. If
TS5 P 5 M is such a complete resolution of M then for each left R-module N and
for each ne Z the usual Tate cohomology module E\m‘]’é(M ,N) is defined by the
equality Ext}(M,N) = H"(Hom(T,N)).

PROPOSITION 1. If M is an R-module with Gorproj dim M < oo then for each
R-module N we have Exty »(M,N) zfx\tR{’(M ,N) for any n> 1.

ProOF. Let g = Gorprojdim M.

We start by constructing a complete resolution of M.

f0-—C—p P23 PPy M —0 s a partial
projective resolution of M then C is a Gorenstein projective module ([5],
Theorem 2.20). Hence there exists an exact sequence T : --- — P~2 =5 p=1 =
POD Pl of projective modules such that C = Ker dy and Hom(T, P)
is an exact complex for any projective R-module P. In particular Hom(T, R) is
exact. Since each P" is a projective module and H,(T) =0 = H,(T*) for any
integer n, the complex T is totally acyclic.

Since C=Imd_) = Ker f;-; and --- — P72 Iy p1 L0 is exact,
the complex P:---—p2 %2 p1Php Jop Pl
Py -5 M — 0 is a projective resolution of M.

d, 1 dg-—2 dg—l

T:ooyp1 %, po 4 p1 4 pg-2 % pg-1 Yl pg
| [ S
p;..._ﬁp—lii’-_‘,pg_lﬂpg_zﬁ...__, Pl Py — 00—

Since P,_; is projective, the complex Hom(T,P,_;) is exact. We have iod_; €
Ker Hom(d_5, Py—1) = Im Hom(d_1, P,_1). So there exists u,—; € Hom(P° P, ;)
such that iod_; =uy;_) od_;. Similarly there exist u, 5,...,uo that make the
diagram commutative. Since u: T — P (with uo, u1,...,uy—1 as above and u, =
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Idpg-1-» for n > g) is a morphism of complexes, u, is bijective for n>g, T is a
totally acyclic complex and P — M is a projective resolution of M, it follows that
TS5 PS5 M is a complete resolution of M.

We use now the projective resolution P and the complete resolution T to
construct a Gorenstein projective resolution of M.

Let D =1Imd,_;. Then D is a Gorenstein projective module ([5], Obs. 2.2)
and there is a commutative diagram:

0—sC—m PO N, p1 4, p2 %, pe2 % pe1 &L p g
“ J,uﬂ—l Jvu,,..z luﬂq l“l luo J/u
0 C—n Py 2P, 2 p s 2 P Py M — 0

with u defined by: u(dy—1(x)) = n(uo(x)).

Since both rows are exact complexes the associated mapping cone
z: O——>C——+C®P°—» P @P NP L, ®P — . — P @ P
Po®D —» M — 0 is also an exact complex.

# has the exact subcomplex: 0 — C = C — 0. Forming the quotient
complex, we get an exact complex: 0 — 0 — P® = P, ; @ P! R P, _,®P?
— . — PP S %1 PO@D—E—)M—HO

Let L be a Gorenstein projective module. Since proj dim Ker f < oo, we have
Exth(L,Ker ) =0 ([5], Proposition 2.3). The sequence 0 — Ker.f — Py @ D —
M — 0 is exact, so we have the associated exact sequence: 0 — Hom(L, Ker ) —
Hom(L, Py ® D) — Hom(L,M) — Exth(L,Ker f) =0. Thus Po@®D — M is a
Gorenstein projective precover. Similarly P, @ P9~! — Ker f is a Gorenstein
projective precover, ...,P° — Ker §; is a Gorenstein projective precover, so G :
0P P ®@P' P ,®P?— - > Py®D— M—0 is a Gorenstein
projective resolution of M.

There is a map of complexes ¢: P — G
Jo-t A

o P Py “H..— P 5 Pp S M—0

N, Lol

o 0 — PO N, g_l@pli)..._,})l@pg—lii'_,po@p A omM—o

d_. d-
-2 2 P_1 1

with
ep . P() — Po @D, eo(x) = (X,O)

ejin—ﬁPj®Pg—j, ej(x)z(x,O) 1$]Sg—1
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P is a projective resolution of M, G is a Gorenstein projective resolution of

M and e¢:P— G is a chain map induced by Idy, so E);t{';,g,(M,N)=

H"(Hom(M(e),N)), ¥n > 0, where M (e) is the mapping cone of e: P. — G..
Let

1 do

dpa L

T:... 52, pt &, po_, .., pe-2 52 po- D— 0.

We prove that M(e) and T[1] are homotopically equivalent.

There is a map of complexes «: T[1] — M (e) with

ag: PO — PO@® Py, ap(x) = (x, —ug—1(x)) Vxe P

w: Pl - P @P Py, oj(x)=(0,x,—uy_j_1(x)), VxeP/, 1<j<
g—1

o' :D—=Py®D, o/(x) =(0,x) VxeD; aj=—Idp; if j<—1 is odd; o =
Idp; if j < —1 is even.

There is also a map of complexes /: M(e) — T[1]:

lo: PP@ P,y — PO Iy(x,y) = x ¥(x,») e P°® Py,

L P j®@P @ Pyj1— Pl lj(x,y,2)=y V(x,y,2) € Pl @ P/ @ Ppjy 1 <
j<g-1

I':PP®D— D I'(x,y) =y VY(x,y) e P°® D

Iy =—Idp; if j<—1is odd; [ = Idp; if j < —1 is even.

We have

3) loa= IdT[l] and  aol~ Idy

(a chain homotopy between ao/ and Idy, is given by the maps:
m %®D—Uﬁ@m4®Pmm@y) (0,0, -x)
Pi®PV@P = P @PUTI @ P, x(x,9,2)=(0,0,—x), 1<;<
g— 2
Xg—l3Pg~1@P1<‘BPg-2”"PO@Pg—1> Xg-1(%, ,2) = (0, —x))
By (3) we have H"™'(Hom(M(e),N))~ H"*'(Hom(J[1],N)) that is
Ext}y 5(M,N) = Ext(M,N), for any gN, for all n> 1. O

CoROLLARY 1 (Avramov-Martsinkovsky). Let M be an R-module with
Gorprojdim M = g < oo. For each R-module N there is an exact sequence: 0 —
Extg(M N) — Exth(M,N) — ExtR(M N) -+ — Extf(M,N) — Ext}(M,N)
~ ExtR(M N)— - — Extj(M,N) — ExtR(M N)—0.

PROOF. By (1) there is an exact sequence: 0 — Ext}(M,N) — Exty(M,N)
By Proposmon 1 we have Extg »(M,N) ~ Exti(M,N), Vi>1.
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Since Ext@”(M ,N)=0, Vi>1 the exact sequence above gives us: 0 —
Exty(M,N) — Exth(M,N) — Exty(M,N) — --- — Ext}(M,N) — Ext}(M,N)
— Ext}(M,N) — --- — Ext},(M,N) — Ext}(M,N) — 0. O

4. Computing the Tate Cohomology Using Complete Injective Resolutions

The classical groups Extj(M,N) can be computed using either a projective
resolution of M or an injective resolution of N. In this section we want to prove
an analogous result for the groups E/';t)’;(M ,N). We note that we cannot use a
straightforward modification of the proof in classical case. This is basically
because the associated double complex in our case is not a first (or third)
quadrant one and so we cannot use the usual machinery of spectral sequences.

We start by defining a complete injective resolution.

Let N be an R-module with Gorinjdim N =d < 0.

If0—N—E Lopt f L Eet L g0 is a partial injec-
tive resolution of N, then H is a Gorenstein injective module ([5], Theorem 2.22).
Hence there exists a Hom(Inj,—) exact sequence

d. d d d_ d_
é’:“'-——)Ez—z—)El——lnEo—g—)E_]—I)E_2—2>H~

of injective modules such that & is exact and H = Kerd, ([3], 10.1.1).

We say that & is a complete injective resolution of N.

For each module M and each ie Z let Exti(M,N) ' Hi(Hom(M, 8)).

We prove that any two complete injective resolutions of N are homotopically

equivalent. , )
Let&: s 150 % 1 9 2 and &1L,

= 9 S . .

I' =5 ... be two complete injective resolutions of N corresponding to two

injective resolutions, 4 and A, of N (H = Ker go = Im g_, is the dth cosyzygy
of # and H = Ker g =Img', is the dth cosyzygy of 4).

If # is the injective resolution of H obtained from A4 and # is the
injective resolution of H obtained from 4 then 3 and 3 are homotopically
equivalent (since the two injective resolutions of N, A" and 4, are homotopically
equivalent).

Since &' :0— H — I° = I' — ... is an injective resolution of H it follows
that &' and # are homotopically equivalent. Similarly &' :0 — H — 10 — I
— -+ is homotopically equivalent to #. Then, by the above, &’ and &’ are
homotopically equivalent. So there exist chain maps u: &' — & and v: &' — &’
(u defined by @e Hom(H,H), uje Hom(I’,I’), j>0 and v defined by e
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Hom(H, H) and v; € Hom(I/, I)), there exist 8 € Hom(I°, H), §; € Hom(I/, '),
j =1 such that bo#t—Id = Boi (where i: H — I° is the inclusion map), and

vwouy—Id=pogo+iofp,

vjouj——Id=gj_1Oﬁj+ﬂj+1°9j> ijl

Since &”:---— I"2 - I"! - H — 0 is an injective resolvent of H ([2],,1.3) and
& ... -»T2-T1'5 H-0is an injective resolvent of H, i e Hom(H,H)
induces a map of complexes u : &> & u= (4);<—;- Similarly, there is a map
of complexes v:&" — &", v= (v));._,, induced by 5 e Hom(H, H).

Since I° is injective and g_; : I~! — H is an injective precover, there exists
Bo € Hom(I%,I71) such that f=g_j0f,. So vpouy—Id=p 0go+iof=po0
go + g-10 By

We have g_j o (voyou_y —Id —Byo0g-1) =0 Im(v_you_y —Id — fy0g_1)
< Ker g_;. Since 1! is injective and 12 22 Ker g-1 18 an injective precover, there
is f_, € Hom(I7',172) such that v_jou_j —Id —fyog_1 =g-s0p_,.

Similarly, there exist f; € Hom(I/,I’™"), Vj < —1 such that vjow —1Id =
Biy109j+gj-10pB;, Vj < —1. Thus vou ~ Idg. Similarly uov ~ Ids.

Hence H'(Hom(M,&)) ~ H'(Hom(M,&)) for any rM, for all ie Z.

So Ext}(—,N) is well-defined.

If A&, is a deleted injective resolution of N, ¥. is a deleted Gorenstein
injective resolution of N and v:¥%. — . is a chain map induced by Idy then
a dual argument of the proof of Theorem 1 shows that the cohomology of
Hom(M,M(v)) gives us the functor Extr(M,N) and that there is an exact
sequence

0 — Exty,(M,N) — Exty(M,N) — Exiy(M,N) — Ext%,(M,N)
— - — Extd,(M,N) — Ext4(M,N) — Ext4(M,N) — 0

where Extl,(M,N) = H'(Hom(M,%.)) for any i > 0.

If Gorprojdim M < co then Exty(M,N) ~ Ext,,(M,N) for any i >0 ([4],
Theorem 3.6).

Thus we have:

THEOREM 1. Let N be an R-module with Gorinjdim N = d < co. For each
R-module M with Gorprojdim M < co there is an exact sequence:

0 — Exty,(M,N) — Exty(M,N) — Exty(M,N) — - --
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Theorem 2 shows that over Gorenstein rings Exti(M,N) ~ Ext}(M,N) for any
left R-modules M and N, for any ne Z.

THEOREM 2. If R is a Gorenstein ring then Exii(M,N) ~ Ext}(M,N) for
any R-modules M, N for any ne Z.

Proor. Let g = Gorprojdim M and d = Gorinjdim N. R is a Gorenstein
ring, so g < oo ([3], Corollary 11.5.8) and d < oo (this follows from [3], Theorem
11.2.1).

We are using the notations of Proposition 1 and Theorem 1.

+ We prove first that if M is Gorenstein projective then Eftﬁ(M ,N) ~
Ext%(M,N) for any ne Z.

Since M is Gorenstein projective we have a complete resolution T — P 5 M

with 7" = P", Y¥n >0 and u, = idp», Yn > 0.
So

(4) Ext}(M,N) ~ Ext}y(M,N) Vn>1
We have the exact sequence (by Theorem 1):
0 — Exty(M,N) — Exty(M,N) — Exty(M,N) — ExtZ(M,N) — - --

Since Exty,(M,N) =0, Vi>1 it follows that
(5) Exto(M,N) ~ Exty(M,N), Vix1
By (4) and (5) we have Exty(M,N) ~ Exti(M,N) ~ Exti(M,N), for all i> 1.

*+ Case n<0
Let n=-k, k>0.

Let & be a complete injective resolution of N.

Since T: -+ —» P2 22 p=1 &, po %, p1t 4, p2 s exact with each
P! projective and such that Hom(T, Q) is exact for any projective module Q, it
follows that M’ = Im d; is a Gorenstein projective module for any i € Z ([5], Obs.
2.2).

Let M! =Imd,. Since 0 - M — P' — M! — 0 is exact and all the terms
of & are injective modules, we have an exact sequence of complexes 0 —

Hom(M', &) — Hom(P',&) — Hom(M, &) — 0 and therefore an associated long
exact sequence:
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(6) - — H'(Hom(P',&)) — H'(Hom(M, &))
— H*Y (Hom(M', &)) — H™* (Hom(P',&)) — -

Since a complete injective resolution & of N is exact and P! is projective,

the complex Hom(P!,&) is exact. Then, by (6), we have H'(Hom(M,&)) ~

H™*(Hom(M', &)) < Exth(M,N) ~ Exti™ (M, N) for any gN, for any ie Z.
Similarly,

(7 Exth(M,N) ~ Ext 1 (M 1) N)

for any gN for all ie Z where M**! = Imdyy, € Gor Proj.

Since R is a Gorenstein ring there is an exact sequence 0 — G' — L' —
N — 0 with projdim L' < oo and G’ a Gorenstein injective module ([3], Exercise
6, pp. 277).

Since each term of a complete resolution T is a projective module, we have
an exact sequence of complexes 0 — Hom(T,G') — Hom(T,L') — Hom(T,N)
— 0 and therefore an associated long exact sequence:

(8) -+ — H'(Hom(T, G")) — H'(Hom(T,L")) — H'(Hom(T, N))
N H’H'I(Hom(T, GI)) - Hi+1(H0m(T, L/)) N

Since projdim L' < co it follows that Hom(T,L') is an exact complex ([5],
Proposition 2.3). Then, by (8), we have H'(Hom(T,N)) ~ H™*!(Hom(T,G"))
that is

9) Exth(M,N) ~ Extit' (M, G")

for any ie Z and for any g M.

Let ésl ~'-————)E_2E)_—E__1£>E0£)E1LE2—->H- be a complete
injective resolution of the Gorenstein injective module G’ (G’ = Ker gy = Im g_)
and let G; = Ker g;.

We have (same argument as above)
(10) Exth(M,N) ~ Exti™\(M,G_), VieZ

for any gM, where G_, = Ker g_y.

By (7), ExtizgF(M,N) =~ ExtL(M**' N) ~ Extk(M**',N) ~ Exty(M*+, N),
(since M**! is Gorenstein projective). Then, by (10), Extk(M*! N) ~
ExtSP(M* G_) ~ ExtkP2(M* G_y).

So Extgh(M,N) ~ Extkt2(M*+!, G_;).

By (10), Extz“(M,N) =~ Exth(M,G_;) ~ Extk(M,G_) ~ ExtL(M,G_y),
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(since M is Gorenstein projective). Then, by (7), Extk(M, G_;) ~ Ext&t?(M*+!]
G-i) ~ ExtE2(M*1, G_y).

So ExtzF(M,N) ~ Exts?(M**, G_;) ~ Exig*(M,N) for any ke Z, k > 0.

Hence Ext}(M,N) zlfftl"g(M, N) for any ne Z, if M is Gorenstein pro-
jective.

Similarly, Ext3(M,N) ~ Ext3(M,N) for any neZ, if N is Gorenstein
injective.

« Case g = Gorprojdim M > 1

R is a Gorenstein ring, so there is an exact sequence 0 — M — L — C’ — 0 with
projdim L < oo and C’ a Gorenstein projective module (the same argument used
in [6], Corollary 3.3.7, gives this result for R-modules).

Since projdim L < oo it follows that

(11) Hom(L, &) is an exact complex.

Since 0 > M —-L— C'"—0 is exact and each term of & is an injective
module we have an exact sequence of complexes 0 — Hom(C’, &) — Hom(L, &)
— Hom(M,&) — 0 and therefore an associated long exact sequence: --- —
H"(Hom(C',&)) — H"(Hom(L,&)) — H"(Hom(M,&)) — H"*'(Hom(C', &)) —
H"™(Hom(L, &) — - --

By (11) we have H"(Hom(L,&)) =0 Vne Z. So

(12) H"(Hom(M,&)) ~ H™ (Hom(C', &))
& Exth(M,N) ~ Exti™1(C',N)

for any gN, for any ne Z.

So Exth(M,N) ~ Extit'(C',N) ~ Ext}*'(C',N) (since C’e Gor Proj) for
any zN, for all ne Z.

By (9) Exti*(C',N) ~ ExtI*2(C',G') Vne Z. (where 0 —» G' — L' — N —
0 is exact, G' € GorInj, L € %)

Hence Exti(M,N) ~ Ext}t2(C',G') Vne Z.

By (9) Exti(M,N) =~ Extit'(M,G') ~ Extit'(M,G') (since G’ is Goren-
stein injective), for all ne Z. Then, by (12) Extat'(M,G') ~ Extit?*(C',G') ~
E/\xtj’ﬁz(C’ ,G') (since C' is Gorenstein projective) for all ne Z.

Hence Ext}(M,N) ~ Exti*2(C',G') ~ Ext}(M,N) Vne Z. 0O

REMARK 2. Theorem 2 shows that over Gorenstein rings there is a new way of
computing the Tate cohomology, i.e. by using a complete injective resolution of N.
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In a subsequent publication we hope to show how we can exploit this procedure
to gain new information about Tate cohomology modules.

Theorem 1 together with Theorem 2 give us the following result:
Let R be a Gorenstein ring, let N be an R-module with Gorinjdim N =
d < oo. For each R-module M there is an exact sequence:

0 — Extt(M,N) — Exth(M,N) — ExtL(M,N) — .-
— Extd(M,N) — Extd(M,N) — 0.

Theorem 2 allows us to give an easy proof of the existence of a long exact
sequence of Tate cohomology associated with any short exact sequence 0 —
M —- M- M'—O0.

THEOREM 3. Let R be a Gorenstein ring. Let 0 — M' — M — M" — 0 be
an exact sequence of R-modules. For any R-module N there exists a long exact
sequence of Tate cohomology modules ---—»Ef)?tj’é(M”,N) —»Iz{x\t}é(M,N) —
Exti(M',N) — Exti*'(M",N) — - -

Proor. Let & be a complete injective resolution of N. Then, by Theorem 2,
E/;t}’z(M,N) ~ H"(Hom(M,&)) for any gkM and any ne Z.

Since 0 - M’ — M — M" — 0 is exact and each term of & is an injec-
tive module, we have an exact sequence of complexes: 0 — Hom(M",&) —
Hom(M,&) — Hom(M',&) — 0.

Its associated cohomology exact sequence is the desired long exact sequence.

O

ReMARK 3. J. Asadollahi and Sh. Salarian also have a proof of the claim of
Theorem 2 in a recent preprint (Gorenstein Local Cohomology Modules) of theirs.
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