# GENERALIZED TATE COHOMOLOGY 

By

Alina $\mathrm{I}_{\mathrm{Acob}}$


#### Abstract

We consider two classes of left $R$-modules, $\mathscr{P}$ and $\mathscr{C}$, such that $\mathscr{P} \subset \mathscr{C}$. If the module $M$ has a $\mathscr{P}$-resolution and a $\mathscr{C}$ resolution then for any module $N$ and $n \geq 0$ we define generalized Tate cohomology modules $\widehat{\text { Ext }}{ }_{\mathscr{Q}, \mathscr{P}}^{n}(M, N)$ and show that we get a long exact sequence connecting these modules and the modules $\operatorname{Ext}_{\mathscr{C}}^{n}(M, N)$ and $\operatorname{Ext} t_{\mathscr{P}}^{n}(M, N)$. When $\mathscr{C}$ is the class of Gorenstein projective modules, $\mathscr{P}$ is the class of projective modules and when $M$ has a complete resolution we show that the modules $\widehat{E x} t_{\mathscr{Q}, \mathscr{P}}^{n}(M, N)$ for $n \geq 1$ are the usual Tate cohomology modules and prove that our exact sequence gives an exact sequence provided by Avramov and Martsinkovsky. Then we show that there is a dual result. We also prove that over Gorenstein rings Tate cohomology $\widehat{\text { xxt }_{R}^{n}}(M, N)$ can be computed using either a complete resolution of $M$ or a complete injective resolution of $N$. And so, using our dual result, we obtain Avramov and Martsinkovsky's exact sequence under hypotheses different from theirs.


## 1. Introduction

We consider two classes of left $R$-modules $\mathscr{P}, \mathscr{C}$ such that $\operatorname{Proj} \subset \mathscr{P} \subset \mathscr{C}$, where Proj is the class of projective modules. Let $M$ be a left $R$-module. Let $\mathbf{P}$. be a deleted $\mathscr{P}$-resolution of $M, \mathbf{C}$. a deleted $\mathscr{C}$-resolution of $M$ (see Section 2 for definitions), let $u: \mathbf{P} \rightarrow \mathbf{C}$. be a chain map induced by $I d_{M}$, and $M(u)$ the associated mapping cone. We define the generalized Tate cohomology module $\widehat{E x t} t_{\mathscr{C}, \mathscr{P}}^{n}(M, N)$ by the equality $\widehat{E x t}_{\mathscr{C}_{, \mathscr{P}}^{n}}(M, N)=H^{n+1}(\operatorname{Hom}(M(u), N))$, for any $n \geq 0$ and any left $R$-module $N$. We show that $\widehat{E x t_{\mathscr{C}, \mathscr{P}}^{n}}(M,-)$ is well-defined. We

[^0]also show that there is an exact sequence connecting these modules and the modules $\operatorname{Ext}_{\mathscr{Q}}^{n}(M, N)$ and $\operatorname{Ext}_{\mathscr{P}}^{n}(M, N)$ :
\[

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{\mathscr{C}}^{1}(M, N) \rightarrow \operatorname{Ext} t_{\mathscr{P}}^{1}(M, N) \rightarrow \widehat{\operatorname{Ex}} t_{\mathscr{C}, \mathscr{P}}^{1}(M, N) \rightarrow \cdots \tag{1}
\end{equation*}
$$

\]

We prove (Proposition 1) that when we apply this procedure to $\mathscr{C}=G o r \operatorname{Proj}$, $\mathscr{P}=\operatorname{Proj}$, over a left noetherian ring $R$, for an $R$-module $M$ with Gor proj dim $M$ $=g<\infty$, the modules $\widehat{E x t}{ }_{\mathscr{C}, \mathscr{P}}^{n}(M, N)$ are the usual Tate cohomology modules for any $n \geq 1$. In this case our exact sequence (1) becomes L. L. Avramov and A. Martsinkovsky's exact sequence ([1], th. 7.1):

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \widehat{\operatorname{Ext}_{R}^{1}}(M, N) \rightarrow \cdots \\
& \rightarrow \operatorname{Ext}_{\mathscr{G}}^{g}(M, N) \rightarrow \operatorname{Ext}_{R}^{g}(M, N) \rightarrow \widehat{\operatorname{Ex}} t_{R}^{g}(M, N) \rightarrow 0
\end{aligned}
$$

Our proof works in a more general case, for any module $M$ of finite Gorenstein projective dimension, whether finitely generated or not.

There is also a dual result (Theorem 1). If Gorinj $\operatorname{dim} N=d<\infty$ then the $d$ th cosyzygy $H$ of an injective resolution of $N$ is a Gorenstein injective module. So there exists an exact sequence $\mathscr{E}: \cdots \rightarrow E_{1} \rightarrow E_{0} \rightarrow E_{-1} \rightarrow E_{-2} \rightarrow \cdots$ of injective modules such that $\operatorname{Hom}(I, \mathscr{E})$ is exact for any injective left $R$-module $I$ and $H=\operatorname{Ker}\left(E_{0} \rightarrow E_{-1}\right)$. We call such sequence a complete injective resolution of $N$. We show that a complete injective resolution of $N$ is unique up to homotopy. For each left $R$-module $M$ and for each $n \in \boldsymbol{Z}$ let $\overline{E x t}_{R}^{n}(M, N) \stackrel{\text { def }}{=}$ $H^{n}(\operatorname{Hom}(M, \mathscr{E}))$. A dual argument of the proof of Proposition 1 shows the existence of an exact sequence $0 \rightarrow \operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \overline{\operatorname{Ext}}_{R}^{1}(M, N)$ $\rightarrow \operatorname{Ext}_{\mathscr{G}_{\mathscr{G}}}^{2}(M, N) \rightarrow \cdots \rightarrow \operatorname{Ext}_{\mathscr{G}_{\mathscr{F}}}^{d}(M, N) \rightarrow \operatorname{Ext}_{R}^{d}(M, N) \rightarrow \overline{\operatorname{Ext}}_{R}^{d}(M, N) \rightarrow 0$ where $\operatorname{Ext}_{\mathscr{G}_{\mathscr{D}}}(M, N)$ are the right derived functors of $\operatorname{Hom}(M, N)$, computed using a right Gorenstein injective resolution of $N$. If Gor proj $\operatorname{dim} M<\infty$ then $\operatorname{Ext}_{\mathscr{G}}^{i}(M, N) \simeq \operatorname{Ext}_{\mathscr{G} \mathscr{G}}^{i}(M, N)$, for all $i \geq 0$ ([4], Theorem 3.6). So in this case we obtain an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \overline{\operatorname{Ext}}_{R}^{1}(M, N) \rightarrow \cdots
$$

We prove (Theorem 2) that over Gorenstein rings we have $\overline{\operatorname{Ext}}{ }_{R}^{n}(M, N) \simeq$ $\widehat{E x t} t_{R}^{n}(M, N)$ for all left $R$-modules $M, N$, for any $n \in Z$. Thus, over Gorenstein rings there is a new way of computing the Tate cohomology.

## 2. Preliminaries

Let $R$ be an associative ring with 1 and let $\mathscr{P}$ be a class of left $R$ modules.

Defintion 1 [3]. For a left $R$-module $M$ a morphism $\phi: P \rightarrow M$ where $P \in \mathscr{P}$ is a $\mathscr{P}$-precover of $M$ if $\operatorname{Hom}\left(P^{\prime}, P\right) \rightarrow \operatorname{Hom}\left(P^{\prime}, M\right) \rightarrow 0$ is exact for any $P^{\prime} \in \mathscr{P}$.

Defintion 2. A $\mathscr{P}$-resolution of a left $R$-module $M$ is a complex $\mathbf{P}: \cdots \rightarrow$ $P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ (not necessarily exact) with each $P_{i} \in \mathscr{P}$ and such that for any $P^{\prime} \in \mathscr{P}$ the complex $\operatorname{Hom}\left(P^{\prime}, \mathbf{P}\right)$ is exact.

Throughout the paper we refer to the complex P.: $\rightarrow \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$ as a deleted $\mathscr{P}$ resolution of $M$.

We note that a complex $\mathbf{P}$ as in Definition 2 is a $\mathscr{P}$-resolution if and only if $P_{0} \rightarrow M, P_{1} \rightarrow \operatorname{Ker}\left(P_{0} \rightarrow M\right)$ and $P_{i} \rightarrow \operatorname{Ker}\left(P_{i-1} \rightarrow P_{i-2}\right)$ for $i \geq 2$ are $\mathscr{D}_{-}$ precovers. If $\mathscr{P}$ contains all the projective left $R$-modules then any $\mathscr{P}$-precover is a surjective map and therefore any $\mathscr{P}$-resolution is an exact complex.

A $\mathscr{P}$-resolution of a left $R$-module $M$ is unique up to homotopy ([3], pg. 169) and so it can be used to compute derived functors.

Defintion 3. Let $M$ be a left $R$-module that has a $\mathscr{P}$-resolution $\mathbf{P}: \cdots \rightarrow$ $P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$. Then $\operatorname{Ext} t_{\mathscr{R}}^{n}(M, N)=H^{n}(\operatorname{Hom}(\mathbf{P}, N))$ for any left $R$-module $N$ and any $n \geq 0$, where $\mathbf{P}$. is the deleted resolution.

We prove the existence of the exact sequence (1).
Let $\mathscr{P}, \mathscr{C}$ be two classes of left $R$-modules such that $\operatorname{Proj} \subset \mathscr{P} \subset \mathscr{C}$ where Proj is the class of projective modules. Let $M$ be a left $R$-module that has both a $\mathscr{P}$-resolution $\mathbf{P}: \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ and a $\mathscr{C}$-resolution $\mathbf{C}: \cdots \rightarrow C_{1} \rightarrow$ $C_{0} \rightarrow M \rightarrow 0$.
$P_{i} \in \mathscr{P} \subset \mathscr{C}$ so $\operatorname{Hom}\left(P_{i}, \mathbf{C}\right)$ is an exact complex for any $i \geq 0$. It follows that there are morphisms $P_{i} \rightarrow C_{i}$ making

into a commutative diagram.
Let $u: \mathbf{P} \rightarrow \mathbf{C}, u=\left(u_{i}\right)_{i \geq 0}$ be such a chain map induced by $I d_{M}$ and let $\overline{M(u)}$ be the associated mapping cone. Since $0 \rightarrow \mathbf{C} \rightarrow \overline{M(u)} \rightarrow \mathbf{P}[1] \rightarrow 0$ is exact and both $\mathbf{P}$ and $\mathbf{C}$ are exact complexes, the exactness of $\overline{M(u)}$ follows. $\overline{M(u)}$ has the exact subcomplex $0 \rightarrow M \xrightarrow{I d} M \rightarrow 0$. Forming the quotient, we get an exact
complex, $M^{\prime}(u)$, which is the mapping cone of the chain map $u: \mathbf{P} \rightarrow \mathbf{C}$. (P. and C. being the deleted $\mathscr{P}, \mathscr{C}$-resolutions). The sequence $0 \rightarrow \mathbf{C} . \rightarrow M(u) \rightarrow \mathbf{P}$.[1] $\rightarrow$ 0 is split exact in each degree, so for any left $R$-module $N$ we have an exact sequence of complexes $0 \rightarrow \operatorname{Hom}(\mathbf{P} .[1], N) \rightarrow \operatorname{Hom}(M(u), N) \rightarrow \operatorname{Hom}(\mathbf{C} ., N) \rightarrow 0$ and therefore an associated cohomology exact sequence: $\cdots \rightarrow H^{n}(\operatorname{Hom}(M(u)$, $N)) \rightarrow H^{n}(\operatorname{Hom}(\mathbf{C} ., N)) \rightarrow H^{n+1}(\operatorname{Hom}(\mathbf{P} .[1], N)) \rightarrow H^{n+1}(\operatorname{Hom}(M(u), N)) \rightarrow$ $H^{n+1}(\operatorname{Hom}(\mathbf{C} ., N)) \rightarrow \cdots$ Since $M(u)$ is exact and the functor $\operatorname{Hom}(-, N)$ is left exact, it follows that $H^{0}(\operatorname{Hom}(M(u), N))=H^{1}(\operatorname{Hom}(M(u), N))=0$. We have $H^{0}(\operatorname{Hom}(\mathbf{C} ., N)) \simeq \operatorname{Hom}(M, N)$ and $H^{1}(\operatorname{Hom}(\mathbf{P} .[1], N)) \simeq \operatorname{Hom}(M, N)$. So, the long exact sequence above is: $0 \rightarrow \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}(M, N) \rightarrow 0 \rightarrow$ $H^{1}(\operatorname{Hom}(\mathbf{C} ., N)) \rightarrow H^{2}(\operatorname{Hom}(\mathbf{P} .[1], N)) \rightarrow H^{2}(\operatorname{Hom}(M(u), N)) \rightarrow \cdots$ After factoring out the exact sequence $0 \rightarrow \operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}(M, N) \rightarrow 0$ we obtain the exact sequence (1):

$$
0 \rightarrow \operatorname{Ext}_{\mathscr{Q}}^{1}(M, N) \rightarrow \operatorname{Ext}_{\mathscr{P}}^{1}(M, N) \rightarrow \widehat{\operatorname{Ext}} t_{\mathscr{C}, \mathscr{P}}^{1}(M, N) \rightarrow \cdots
$$

We prove that the generalized Tate cohomology $\widehat{\operatorname{Ex}} t_{\mathscr{C}, \mathscr{P}}(M,-)$ is well defined.
Let $\mathscr{P}, \mathscr{C}$ be two classes of left $R$-modules such that $\mathscr{P} \subset \mathscr{C}$.
Let $\mathbf{P}, \mathbf{P}^{\prime}$ be two $\mathscr{P}$-resolutions of $M$ and let $\mathbf{C}, \mathbf{C}^{\prime}$ be two $\mathscr{C}$-resolutions of $M$.

$$
\begin{aligned}
& \mathbf{P}: \cdots \xrightarrow{f_{2}} P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} M \rightarrow 0, \quad \mathbf{P}^{\prime}: \cdots \xrightarrow{f_{2}^{\prime}} P_{1}^{\prime} \xrightarrow{f_{1}^{\prime}} P_{0}^{\prime} \xrightarrow{f_{0}^{\prime}} M \rightarrow 0 \\
& \mathbf{C}: \cdots \xrightarrow{g_{2}} C_{1} \xrightarrow{g_{1}} C_{0} \xrightarrow{g_{0}} M \rightarrow 0, \quad \mathbf{C}^{\prime}: \cdots \xrightarrow{g_{2}^{\prime}} C_{1}^{\prime} \xrightarrow{g_{1}^{\prime}} C_{0}^{\prime} \xrightarrow{g_{0}^{\prime}} M \rightarrow 0
\end{aligned}
$$

There exist maps of complexes $u: \mathbf{P} \rightarrow \mathbf{C}$ and $v: \mathbf{P}^{\prime} \rightarrow \mathbf{C}^{\prime}$, both induced by $I d_{M} \cdot \overline{M(u)}: \cdots \rightarrow C_{3} \oplus P_{2} \xrightarrow{\delta_{3}} C_{2} \oplus P_{1} \xrightarrow{\delta_{2}} C_{1} \oplus P_{0} \xrightarrow{\delta_{1}} C_{0} \oplus M \xrightarrow{\delta_{0}} M \rightarrow 0$ and $\overline{M(v)}: \cdots \rightarrow C_{3}^{\prime} \oplus P_{2}^{\prime} \xrightarrow{\delta_{3}^{\prime}} C_{2}^{\prime} \oplus P_{1}^{\prime} \xrightarrow{\delta^{\prime}} C_{1}^{\prime} \oplus P_{0}^{\prime} \xrightarrow{\delta_{1}^{\prime}} C_{0}^{\prime} \oplus M \xrightarrow{\delta_{0}^{\prime}} M \rightarrow 0$ (with $\delta_{n}(x, y)$ $=\left(g_{n}(x)+u_{n-1}(y),-f_{n-1}(y)\right)$ for $n \geq 1, \delta_{0}(x, y)=g_{0}(x)+y, \delta_{n}^{\prime}(x, y)=\left(g_{n}^{\prime}(x)+\right.$ $\left.v_{n-1}(y),-f_{n-1}^{\prime}(y)\right)$ for $\left.n \geq 1, \delta_{0}^{\prime}(x, y)=g_{0}^{\prime}(x)+y\right)$ are the associated mapping cones.
$M(u): \cdots \rightarrow C_{3} \oplus P_{2} \xrightarrow{\delta_{3}} C_{2} \oplus P_{1} \xrightarrow{\delta_{2}} C_{1} \oplus P_{0} \xrightarrow{\bar{\delta}_{1}} C_{0} \rightarrow 0 \quad$ (with $\quad \overline{\delta_{1}}(x, y)=$ $\left.g_{1}(x)+u_{0}(y)\right)$ and $M(v): \cdots \rightarrow C_{3}^{\prime} \oplus P_{2}^{\prime} \xrightarrow[\rightarrow]{\delta_{3}^{\prime}} C_{2}^{\prime} \oplus P_{1}^{\prime} \xrightarrow{\delta_{2}^{\prime}} C_{1}^{\prime} \oplus P_{0}^{\prime} \xrightarrow{\overline{\delta_{1}^{\prime}}} C_{0}^{\prime} \rightarrow 0$ (with
$\left.\overline{\delta_{1}^{\prime}}(x, y)=g_{1}^{\prime}(x)+v_{0}(y)\right)$ are the mapping cones of $u: \mathbf{P} . \rightarrow \mathbf{C}$. and $v: \mathbf{P}^{\prime} . \rightarrow \mathbf{C}^{\prime} .$.

Since the exact sequence of complexes $0 \rightarrow \mathbf{C} \rightarrow \overline{M(u)} \rightarrow \mathbf{P}[1] \rightarrow 0$ is split exact in each degree, for each ${ }_{R} F$ we have an exact sequence: $0 \rightarrow \operatorname{Hom}(F, \mathbf{C})$ $\rightarrow \operatorname{Hom}(F, \overline{M(u)}) \rightarrow \operatorname{Hom}(F, \mathbf{P}[1]) \rightarrow 0$. If $F \in \mathscr{P} \subset \mathscr{C}$ then both complexes $\operatorname{Hom}(F, \mathbf{C})$ and $\operatorname{Hom}(F, \mathbf{P}[1])$ are exact, so the exactness of $\operatorname{Hom}(F, \overline{M(u)})$ follows.

Each $P_{i} \in \mathscr{P}$, so by the above, the complex $\operatorname{Hom}\left(P_{i}, \overline{M(u)}\right)$ is exact.

Let $\bar{M}$ denote the complex $0 \rightarrow M \xrightarrow{I d} M \rightarrow 0$. The exact sequence of complexes $0 \rightarrow \bar{M} \rightarrow \overline{M(u)} \rightarrow M(u) \rightarrow 0$ is split exact in each degree. Consequently the sequence $0 \rightarrow \operatorname{Hom}\left(P_{i}, \bar{M}\right) \rightarrow \operatorname{Hom}\left(P_{i}, \overline{M(u)}\right) \rightarrow \operatorname{Hom}\left(P_{i}, M(u)\right) \rightarrow 0$ is exact for any $i \geq 0$. Since both $\operatorname{Hom}\left(P_{i}, \overline{M(u)}\right)$ and $\operatorname{Hom}\left(P_{i}, \bar{M}\right)$ are exact complexes, it follows that

$$
\begin{equation*}
\operatorname{Hom}\left(P_{i}, M(u)\right) \text { is an exact complex, } \tag{2}
\end{equation*}
$$

for any $i \geq 0$.
The identity map $I d_{M}$ induces maps of complexes $h: \mathbf{P} \rightarrow \mathbf{P}^{\prime}$. and $k$ : C. $\rightarrow \mathbf{C}^{\prime}$.

Both $v \circ h: \mathbf{P} . \rightarrow \mathbf{C}^{\prime}$. and $k \circ u: \mathbf{P} \rightarrow \mathbf{C}^{\prime}$. are maps of complexes induced by $I d_{M}$, so $v \circ h$ and $k \circ u$ are homotopic. Hence there exists $s_{i} \in \operatorname{Hom}\left(P_{i}, C_{i+1}^{\prime}\right), i \geq 0$ such that $v_{0} \circ h_{0}-k_{0} \circ u_{0}=g_{1}^{\prime} \circ s_{0}$ and $v_{n} \circ h_{n}-k_{n} \circ u_{n}=g_{n+1}^{\prime} \circ s_{n}+s_{n-1} \circ f_{n}$ for any $n \geq 1$.

Then $\omega: M(u) \rightarrow M(v)$ defined by $\bar{\omega}: C_{0} \rightarrow C_{0}^{\prime}, \bar{\omega}=k_{0}, \omega_{n}: C_{n+1} \oplus P_{n} \rightarrow$ $C_{n+1}^{\prime} \oplus P_{n}^{\prime}, \omega_{n}(x, y)=\left(k_{n+1}(x)-s_{n}(y), h_{n}(y)\right)$ for any $n \geq 0$, is a map of complexes.

The identity map $I d_{M}$ also induces maps of complexes $l: \mathbf{P}^{\prime} . \rightarrow \mathbf{P} ., t:$ $\mathbf{C}^{\prime} . \rightarrow \mathbf{C}$. Then $t \circ v: \mathbf{P}^{\prime} . \rightarrow \mathbf{C}$. and $u \circ l: \mathbf{P}^{\prime} . \rightarrow \mathbf{C}$. are homotopic.

So we have a map of complexes $\psi: M(v) \rightarrow M(u)$ where $\psi_{n}: C_{n+1}^{\prime} \oplus P_{n}^{\prime} \rightarrow$ $C_{n+1} \oplus P_{n}$ is defined by $\psi_{n}(x, y)=\left(t_{n+1}(x)-\bar{s}_{n}(y), l_{n}(y)\right), n \geq 0$ (with $\bar{s}_{n}: P_{n}^{\prime} \rightarrow$ $C_{n+1}$ such that $u_{n} \circ l_{n}-t_{n} \circ v_{n}=\bar{s}_{n-1} \circ f_{n}^{\prime}+g_{n+1} \circ \bar{s}_{n}, \forall n \geq 1, u_{0} \circ l_{0}-t_{0} \circ v_{0}=$ $\left.g_{1} \circ \bar{s}_{0}\right)$ and $\bar{\psi}: C_{0}^{\prime} \rightarrow C_{0}, \bar{\psi}=t_{0}$.

We prove that $\psi \circ \omega$ is homotopic to $I d_{M(u)}$.
Since $t \circ k: \mathbf{C} . \rightarrow \mathbf{C}$. is a chain map induced by $I d_{M}$, we have $t \circ k \sim I d_{\mathbf{C}}$. So there exist maps $\beta_{i} \in \operatorname{Hom}\left(C_{i}, C_{i+1}\right), i \geq 0$ such that $t_{0} \circ k_{0}-I d=g_{1} \circ \beta_{0}$ and $t_{i} \circ k_{i}-I d=\beta_{i-1} \circ g_{i}+g_{i+1} \circ \beta_{i}, \forall i \geq 1$.

Let $\quad \chi_{0}: C_{0} \rightarrow C_{1} \oplus P_{0}, \quad \chi_{0}(x)=\left(\beta_{0}(x), 0\right), \quad \forall x \in C_{0} . \quad$ Then $\overline{\delta_{1}} \circ \chi_{0}(x)=$ $\bar{\delta}_{1}\left(\beta_{0}(x), 0\right)=g_{1}\left(\beta_{0}(x)\right)+u_{0}(0)=\left(t_{0} \circ k_{0}-I d\right)(x)=(\bar{\psi} \circ \bar{\omega}-I d)(x), \forall x \in C_{0}$.

We have $\overline{\delta_{1}} \circ\left(\psi_{0} \circ \omega_{0}-\chi_{0} \circ \overline{\delta_{1}}-I d\right)=\overline{\delta_{1}} \circ \psi_{0} \circ \omega_{0}-\left(\overline{\delta_{1}} \circ \chi_{0}\right) \circ \overline{\delta_{1}}-\overline{\delta_{1}}=t_{0} \circ$ $k_{0} \circ \overline{\delta_{1}}-\left(t_{0} \circ k_{0}-I d\right) \circ \overline{\delta_{1}}-\overline{\delta_{1}}=0$.

Let $r_{0}: P_{0} \rightarrow C_{1} \oplus P_{0}, r_{0}=\left(\psi_{0} \circ \omega_{0}-I d-\chi_{0} \circ \overline{\delta_{1}}\right) \circ e_{0}$ with $e_{0}: P_{0} \rightarrow C_{1} \oplus$ $P_{0}, e_{0}(y)=(0, y)$. We have $\overline{\delta_{1}} \circ r_{0}=\overline{\delta_{1}} \circ\left(\psi_{0} \circ \omega_{0}-I d-\chi_{0} \circ \overline{\delta_{1}}\right) \circ e_{0}=0$. Since $r_{0} \in \operatorname{Ker} \operatorname{Hom}\left(P_{0}, \overline{\delta_{1}}\right)=\operatorname{Im} \operatorname{Hom}\left(P_{0}, \delta_{2}\right)$ (by (2)) it follows that $r_{0}=\delta_{2} \circ \gamma_{1}$ for some $\gamma_{1} \in \operatorname{Hom}\left(P_{0}, C_{2} \oplus P_{1}\right)$. Hence $\left(\psi_{0} \circ \omega_{0}-I d-\chi_{0} \circ \overline{\delta_{1}}\right)(0, y)=\delta_{2}\left(\gamma_{1}(y)\right)$.

Also we have $\left(\psi_{0} \circ \omega_{0}-I d-\chi_{0} \circ \overline{\delta_{1}}\right)(x, 0)=\psi_{0}\left(\omega_{0}(x, 0)\right)-(x, 0)-$ $\chi_{0}\left(\overline{\delta_{1}}(x, 0)\right)=\psi_{0}\left(k_{1}(x), 0\right)-(x, 0)-\chi_{0}\left(g_{1}(x)\right)=\left(\left(t_{1} \circ k_{1}-I d-\beta_{0} \circ g_{1}\right)(x), 0\right)=$ $\left(\left(g_{2} \circ \beta_{1}\right)(x), 0\right)=\delta_{2}\left(\beta_{1}(x), 0\right)$.

So $\quad\left(\psi_{0} \circ \omega_{0}-I d-\chi_{0} \circ \overline{\delta_{1}}\right)(x, y)=\delta_{2} \circ \chi_{1}(x, y) \quad$ where $\quad \chi_{1}: C_{1} \oplus P_{0} \rightarrow C_{2}$ $\oplus P_{1}, \chi_{1}(x, y)=\left(\beta_{1}(x), 0\right)+\gamma_{1}(y)$. Hence $\psi_{0} \circ \omega_{0}-I d=\chi_{0} \circ \overline{\delta_{1}}+\delta_{2} \circ \chi_{1}$.

Similarly, there exists $\chi_{i} \in \operatorname{Hom}\left(C_{i} \oplus P_{i-1}, C_{i+1} \oplus P_{i}\right)$ such that $\psi_{i} \circ \omega_{i}-I d=$ $\chi_{i} \circ \delta_{i+1}+\delta_{i+2} \circ \chi_{i+1}, \forall i \geq 1$.

Thus $\psi \circ \omega \sim I d_{M(u)}$. Similarly, $\omega \circ \psi \sim I d_{M(v)}$. Then $H^{n}(\operatorname{Hom}(M(v), N)) \simeq$ $H^{n}(H o m(M(u), N))$ for any ${ }_{R} N$, for any $n \geq 0$.

REMARK 1. The proof above does not depend on $\mathscr{P}, \mathscr{C}$ containing all the projective $R$-modules. It works for any two classes $\mathscr{P}, \mathscr{C}$ of left $R$-modules such that $\mathscr{P} \subset \mathscr{C}$. And even without assuming that $\mathscr{P}, \mathscr{C}$ contain the projectives we still get an Avramov-Martsinkovsky type sequence. Let $\mathscr{P}, \mathscr{C}$ be two classes of left $R$-modules such that $\mathscr{P} \subset \mathscr{C}$. If the $R$-module $M$ has $a \mathscr{P}$-resolution $\mathbf{P}$ and $a$ $\mathscr{C}$-resolution $\mathbf{C}$ then $I d_{M}$ induces a chain map $u: \mathbf{P} . \rightarrow \mathbf{C}$. and we have an exact sequence of complexes $0 \rightarrow \mathbf{C} . \rightarrow M(u) \rightarrow \mathbf{P} .[1] \rightarrow 0$ which is split exact in each degree, so $0 \rightarrow \operatorname{Hom}(\mathbf{P} .[1], N) \rightarrow \operatorname{Hom}(M(u), N) \rightarrow \operatorname{Hom}(\mathbf{C} ., N) \rightarrow 0$ is still exact for any $R$-module $N$. Its associated long exact sequence is: $0 \rightarrow H^{0}(\operatorname{Hom}(M(u)$, $N)) \rightarrow \operatorname{Ext}_{\mathscr{C}}^{0}(M, N) \rightarrow \operatorname{Ext}_{\mathscr{P}}^{0}(M, N) \rightarrow \widehat{\operatorname{Ext}_{\mathscr{C}, \mathscr{P}}^{0}}(M, N) \rightarrow \operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \cdots \quad$ (with $\widehat{\operatorname{Exx}}_{\mathscr{Q}, \mathscr{D}}^{n}(M, N)=H^{n+1}(\operatorname{Hom}(M(u), N))$ for any $\left.n \geq 0\right)$.

Example 1. Let $R=\boldsymbol{Z}, \mathscr{P}=$ the class of projective $\boldsymbol{Z}$-modules, $\mathscr{T}=$ the class of torsion free modules (so $\mathscr{P} \subset \mathscr{T}), M=\boldsymbol{Z} /{ }_{2 Z}, N=\boldsymbol{Z} /{ }_{2 Z}$. A $\mathscr{P}$-resolution of $M$ is $0 \rightarrow \boldsymbol{Z} \xrightarrow{2} \boldsymbol{Z} \xrightarrow{\pi} \boldsymbol{Z} / 2 \boldsymbol{Z} \rightarrow 0 . A$ $\mathscr{T}$-resolution of $M$ is $0 \rightarrow 2 \hat{\boldsymbol{Z}}_{2} \rightarrow \hat{\boldsymbol{Z}}_{2} \xrightarrow{\varphi}$ $\boldsymbol{Z} / 2 \boldsymbol{Z} \rightarrow 0$, with $\varphi\left(\sum_{i=0}^{\infty} \alpha_{i} \cdot 2^{i}\right)=a_{0}$. There is a map of complexes $u: P . \rightarrow T .(P$. , T. are the deleted $\mathscr{P}, \mathscr{T}$-resolutions) and the mapping cone $M(u): 0 \rightarrow \boldsymbol{Z} \rightarrow$ $2 \hat{\boldsymbol{Z}}_{2} \oplus \boldsymbol{Z} \rightarrow \hat{\boldsymbol{Z}}_{2} \rightarrow 0$ is exact. Since the class $\mathscr{T}$ of torsion free $\boldsymbol{Z}$-modules coincides with the class of flat $\boldsymbol{Z}$-modules and $\mathscr{P} \subset \mathscr{T}, M(u)$ is an exact sequence of flat $\boldsymbol{Z}$-modules. We have $\operatorname{Hom}(\boldsymbol{Z} / 2 \boldsymbol{Z}, \boldsymbol{Q} / \boldsymbol{Z}) \simeq \boldsymbol{Z} / 2 \boldsymbol{Z}$. So $\boldsymbol{Z} / 2 \boldsymbol{Z}$ is pure injective and therefore cotorsion. It follows that $\operatorname{Hom}(M(u), \boldsymbol{Z} / 2 \boldsymbol{Z})$ is an exact complex and therefore $\widehat{E_{X x}}{ }_{\mathscr{C}, \mathscr{P}}^{n}\left(\boldsymbol{Z} /{ }_{2 Z}, \boldsymbol{Z} /{ }_{2 Z}\right)=0$ for all $n$. So, in this case, the exact sequence $0 \rightarrow \operatorname{Ext}_{\mathscr{T}}^{1}\left(\boldsymbol{Z} /_{2 \boldsymbol{Z}}, \boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow \operatorname{Ext}_{\boldsymbol{Z}}^{1}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}, \boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow \widehat{\operatorname{Ex}} t_{\mathscr{T}, \mathscr{P}}^{1}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}, \boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow \operatorname{Ext}_{\mathscr{T}}^{2}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}} \boldsymbol{Z}\right.$, $\left.\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow \cdots$ is $0 \rightarrow \operatorname{Ext}_{\mathscr{T}}^{1}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}, \boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow \operatorname{Ext}_{\boldsymbol{Z}}^{1}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}, \boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right) \rightarrow 0$ with $\operatorname{Ext}_{\boldsymbol{Z}}^{1}\left(\boldsymbol{Z} /{ }_{2 \boldsymbol{Z}}\right.$, $Z / 2 Z) \simeq Z / 2 Z$.

## 3. Avramov-Martsinkovsky's Exact Sequence

For the rest of the article $R$ denotes a left noetherian ring (unless otherwise specified) and $R$-module means left $R$-module. For unexplained terminology and notation please see [1] and [3].

Proposition 1 below shows that when $\mathscr{P}$ is the class of projective $R$-modules, $\mathscr{G}$ is the class of Gorenstein projective $R$-modules and $M$ is an $R$-module of finite Gorenstein projective dimension, the modules $\widehat{\operatorname{Ext}_{\mathscr{G}, \mathscr{P}}^{n}}(M, N)$ are the usual Tate cohomology modules for any $n \geq 1$.

We recall first the following:

Defintion 4 ([1]). A complete resolution of an $R$-module $M$ is a diagram $\mathbf{T} \xrightarrow{u} \mathbf{P} \xrightarrow{\pi} M$ where $\mathbf{P} \xrightarrow{\pi} M$ is a projective resolution of $M, \mathbf{T}$ is a totally acyclic complex, $u$ is a morphism of complexes and $u_{n}$ is bijective for all $n \gg 0$. If $\mathbf{T} \xrightarrow{u} \mathbf{P} \xrightarrow{\pi} M$ is such a complete resolution of $M$ then for each left $R$-module $N$ and for each $n \in \boldsymbol{Z}$ the usual Tate cohomology module $\widehat{\operatorname{Ext}_{R}^{n}}(M, N)$ is defined by the equality $\widehat{\operatorname{Ext}}{ }_{R}^{n}(M, N)=H^{n}(\operatorname{Hom}(\mathbf{T}, N))$.

Proposition 1. If $M$ is an $R$-module with Gor proj $\operatorname{dim} M<\infty$ then for each $R$-module $N$ we have $\widehat{\operatorname{Exx}_{\mathscr{G}, \mathscr{P}}^{n}}(M, N) \simeq \widehat{\operatorname{Ext}_{R}^{n}}(M, N)$ for any $n \geq 1$.

Proof. Let $g=$ Gor proj $\operatorname{dim} M$.
We start by constructing a complete resolution of $M$.
If $0 \longrightarrow C \xrightarrow{i} P_{g-1} \xrightarrow{f_{g-1}} P_{g-2} \xrightarrow{f_{g-2}} \cdots \longrightarrow P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{\pi} M \longrightarrow 0$ is a partial projective resolution of $M$ then $C$ is a Gorenstein projective module ([5], Theorem 2.20). Hence there exists an exact sequence $\mathbf{T}: \cdots \longrightarrow p^{-2} \xrightarrow{d_{-2}} P^{-1} \xrightarrow{d_{-1}}$ $P^{0} \xrightarrow{d_{0}} P^{1} \longrightarrow \cdots$ of projective modules such that $C=\operatorname{Ker} d_{0}$ and $\operatorname{Hom}(\mathbf{T}, P)$ is an exact complex for any projective $R$-module $P$. In particular $\operatorname{Hom}(\mathbf{T}, R)$ is exact. Since each $P^{n}$ is a projective module and $H_{n}(\mathbf{T})=0=H_{n}\left(\mathbf{T}^{*}\right)$ for any integer $n$, the complex $\mathbf{T}$ is totally acyclic.

Since $C=\operatorname{Im} d_{-1}=\operatorname{Ker} f_{g-1}$ and $\cdots \longrightarrow P^{-2} \xrightarrow{d_{-2}} P^{-1} \xrightarrow{d_{-1}} C \longrightarrow 0$ is exact, the complex $\mathbf{P}: \cdots \longrightarrow P^{-2} \xrightarrow{d_{-2}} P^{-1} \xrightarrow{\text { iod } d_{-1}} P_{g-1} \xrightarrow{f_{g-1}} P_{g-2} \longrightarrow \cdots \longrightarrow P_{1} \xrightarrow{f_{1}}$ $P_{0} \xrightarrow{\pi} M \longrightarrow 0$ is a projective resolution of $M$.


Since $P_{g-1}$ is projective, the complex $\operatorname{Hom}\left(\mathbf{T}, P_{g-1}\right)$ is exact. We have $i \circ d_{-1} \in$ $\operatorname{Ker} \operatorname{Hom}\left(d_{-2}, P_{g-1}\right)=\operatorname{Im} \operatorname{Hom}\left(d_{-1}, P_{g-1}\right)$. So there exists $u_{g-1} \in \operatorname{Hom}\left(P^{0}, P_{g-1}\right)$ such that $i \circ d_{-1}=u_{g-1} \circ d_{-1}$. Similarly there exist $u_{g-2}, \ldots, u_{0}$ that make the diagram commutative. Since $u: \mathbf{T} \rightarrow \mathbf{P}$ (with $u_{0}, u_{1}, \ldots, u_{g-1}$ as above and $u_{n}=$
$I d_{P_{g-1-n}}$ for $\left.n \geq g\right)$ is a morphism of complexes, $u_{n}$ is bijective for $n \geq g, \mathbf{T}$ is a totally acyclic complex and $\mathbf{P} \rightarrow M$ is a projective resolution of $M$, it follows that $\mathbf{T} \xrightarrow{u} \mathbf{P} \xrightarrow{\pi} M$ is a complete resolution of $M$.

We use now the projective resolution $\mathbf{P}$ and the complete resolution $\mathbf{T}$ to construct a Gorenstein projective resolution of $M$.

Let $D=\operatorname{Im} d_{g-1}$. Then $D$ is a Gorenstein projective module ([5], Obs. 2.2) and there is a commutative diagram:

with $u$ defined by: $u\left(d_{g-1}(x)\right)=\pi\left(u_{0}(x)\right)$.
Since both rows are exact complexes, the associated mapping cone $\overline{\mathscr{C}}: 0 \longrightarrow C \xrightarrow{\Delta} C \oplus P^{0} \xrightarrow{\delta_{0}} P_{g-1} \oplus P^{1} \xrightarrow{\delta_{1}} P_{g-2} \oplus P^{2} \longrightarrow \cdots \longrightarrow P_{1} \oplus P^{g-1} \xrightarrow{\delta_{g-1}}$ $P_{0} \oplus D \xrightarrow{\beta} M \longrightarrow 0$ is also an exact complex.
$\overline{\mathscr{C}}$ has the exact subcomplex: $0 \rightarrow C \xrightarrow{\sim} C \rightarrow \underset{\delta_{0}}{0}$. Forming the quotient complex, we get an exact complex: $0 \longrightarrow 0 \longrightarrow P^{0} \xrightarrow{\delta_{0}} P_{g-1} \oplus P^{1} \xrightarrow{\delta_{1}} P_{g-2} \oplus P^{2}$ $\longrightarrow \cdots \longrightarrow P_{1} \oplus P^{g-1} \xrightarrow{\delta_{g-1}} P_{0} \oplus D \xrightarrow{\beta} M \longrightarrow 0$.

Let $L$ be a Gorenstein projective module. Since $\operatorname{proj} \operatorname{dim} \operatorname{Ker} \beta<\infty$, we have $E x t_{R}^{1}(L, \operatorname{Ker} \beta)=0$ ([5], Proposition 2.3). The sequence $0 \rightarrow \operatorname{Ker} . \beta \rightarrow P_{0} \oplus D \rightarrow$ $M \rightarrow 0$ is exact, so we have the associated exact sequence: $0 \rightarrow \operatorname{Hom}(L, \operatorname{Ker} \beta) \rightarrow$ $\operatorname{Hom}\left(L, P_{0} \oplus D\right) \rightarrow \operatorname{Hom}(L, M) \rightarrow \operatorname{Ext}_{R}^{1}(L, \operatorname{Ker} \beta)=0$. Thus $P_{0} \oplus D \rightarrow M$ is a Gorenstein projective precover. Similarly $P_{1} \oplus P^{g-1} \rightarrow \operatorname{Ker} \beta$ is a Gorenstein projective precover, $\ldots, P^{0} \rightarrow \operatorname{Ker} \delta_{1}$ is a Gorenstein projective precover, so $\mathbf{G}$ : $0 \rightarrow P^{0} \rightarrow P_{g-1} \oplus P^{1} \rightarrow P_{g-2} \oplus P^{2} \rightarrow \cdots \rightarrow P_{0} \oplus D \rightarrow M \rightarrow 0$ is a Gorenstein projective resolution of $M$.

There is a map of complexes $e: \mathbf{P} \rightarrow \mathbf{G}$

with

$$
\begin{aligned}
e_{0}: P_{0} & \rightarrow P_{0} \oplus D, \quad e_{0}(x)=(x, 0) \\
e_{j}: P_{j} & \rightarrow P_{j} \oplus P^{g-j}, \quad e_{j}(x)=(x, 0) \quad 1 \leq j \leq g-1
\end{aligned}
$$

$\mathbf{P}$ is a projective resolution of $M, \mathbf{G}$ is a Gorenstein projective resolution of $M$ and $e: \mathbf{P} \rightarrow \mathbf{G}$ is a chain map induced by $I d_{M}$, so $\widehat{\text { Ext }_{\mathscr{g}, \mathscr{P}}^{n}}(M, N)=$ $H^{n+1}(\operatorname{Hom}(M(e), N)), \forall n \geq 0$, where $M(e)$ is the mapping cone of $e: \mathbf{P} . \rightarrow \mathbf{G}$..

Let

$$
\overline{\mathbf{T}}: \cdots \xrightarrow{d_{-2}} P^{-1} \xrightarrow{d_{-1}} P^{0} \longrightarrow \cdots \longrightarrow P^{g-2} \xrightarrow{d_{g}-2} P^{g-1} \xrightarrow{d_{g-1}} D \longrightarrow 0 .
$$

We prove that $M(e)$ and $\overline{\mathbf{T}}[1]$ are homotopically equivalent.
There is a map of complexes $\alpha: \overline{\mathbf{T}}[1] \rightarrow M(e)$ with
$\alpha_{0}: P^{0} \rightarrow P^{0} \oplus P_{g-1}, \alpha_{0}(x)=\left(x,-u_{g-1}(x)\right) \forall x \in P^{0}$;
$\alpha_{j}: P^{j} \rightarrow P_{g-j} \oplus P^{j} \oplus P_{g-j-1}, \quad \alpha_{j}(x)=\left(0, x,-u_{g-j-1}(x)\right), \quad \forall x \in P^{j}, \quad 1 \leq j \leq$ $g-1$
$\alpha^{\prime}: D \rightarrow P_{0} \oplus D, \alpha^{\prime}(x)=(0, x) \forall x \in D ; \quad \alpha_{j}=-I d_{P^{j}}$ if $j \leq-1$ is odd; $\alpha_{j}=$ $I d_{P j}$ if $j \leq-1$ is even.

There is also a map of complexes $l: M(e) \rightarrow \mathbf{T}[1]$ :
$l_{0}: P^{0} \oplus P_{g-1} \rightarrow P^{0} \quad l_{0}(x, y)=x \forall(x, y) \in P^{0} \oplus P_{g-1}$
$l_{j}: P_{g-j} \oplus P^{j} \oplus P_{g-j-1} \rightarrow P^{j} \quad l_{j}(x, y, z)=y \quad \forall(x, y, z) \in P_{g-j} \oplus P^{j} \oplus P_{g-j-1} 1 \leq$ $j \leq g-1$
$l^{\prime}: P^{0} \oplus D \rightarrow D l^{\prime}(x, y)=y \forall(x, y) \in P^{0} \oplus D$
$l_{j}=-I d_{P^{j}}$ if $j \leq-1$ is odd; $l_{j}=I d_{P^{j}}$ if $j \leq-1$ is even.
We have

$$
\begin{equation*}
l \circ \alpha=I d_{\overline{\mathbf{T}}[1]} \quad \text { and } \quad \alpha \circ l \sim I d_{M(e)} \tag{3}
\end{equation*}
$$

(a chain homotopy between $\alpha \circ l$ and $I d_{M}$ is given by the maps:
$\chi_{0}: P_{0} \oplus D \rightarrow P_{1} \oplus P^{g-1} \oplus P_{0}, \chi_{0}(x, y)=(0,0,-x)$
$\chi_{j}: P_{j} \oplus P^{g-j} \oplus P_{j-1} \rightarrow P_{j+1} \oplus P^{g-j-1} \oplus P_{j}, \quad \chi_{j}(x, y, z)=(0,0,-x), \quad 1 \leq j \leq$ $g-2$
$\left.\chi_{g-1}: P_{g-1} \oplus P^{1} \oplus P_{g-2} \rightarrow P^{0} \oplus P_{g-1}, \chi_{g-1}(x, y, z)=(0,-x)\right)$
By (3) we have $H^{n+1}(\operatorname{Hom}(M(e), N)) \simeq H^{n+1}(\operatorname{Hom}(\overline{\mathscr{T}}[1], N))$ that is $\widehat{\operatorname{Ext}_{\mathscr{G}, \mathscr{P}}^{n}}(M, N)=\widehat{\operatorname{Exx}_{R}^{n}}(M, N)$, for any ${ }_{R} N$, for all $n \geq 1$.

Corollary 1 (Avramov-Martsinkovsky). Let $M$ be an $R$-module with Gor proj $\operatorname{dim} M=g<\infty$. For each $R$-module $N$ there is an exact sequence: $0 \rightarrow$ $\operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \widehat{\operatorname{Ext}}_{R}^{1}(M, N) \rightarrow \cdots \rightarrow \operatorname{Ext}_{\mathscr{G}}^{n}(M, N) \rightarrow \operatorname{Ext}_{R}^{n}(M, N)$ $\rightarrow \widehat{\operatorname{Ext}_{R}^{n}}(M, N) \rightarrow \cdots \rightarrow \operatorname{Ext}_{R}^{g}(M, N) \rightarrow \widehat{\operatorname{Ext}_{R}^{g}}(M, N) \rightarrow 0$.

Proof. By (1) there is an exact sequence: $0 \rightarrow \operatorname{Ext}_{\mathscr{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N)$ $\rightarrow \widehat{\operatorname{Ext}}_{\underline{\mathscr{G}}, \mathscr{P}}^{1}(M, N) \rightarrow \cdots$.

By Proposition 1 we have $\widehat{E x t} \epsilon_{\mathscr{G}, \mathscr{P}}(M, N) \simeq \widehat{E x t} t_{R}^{i}(M, N), \forall i \geq 1$.

Since $\operatorname{Ext}_{G}^{g+i}(M, N)=0, \forall i \geq 1$ the exact sequence above gives us: $0 \rightarrow$ $\operatorname{Ext}_{\epsilon_{\mathscr{G}}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \widehat{\operatorname{Ext}_{R}^{1}}(M, N) \rightarrow \cdots \rightarrow \operatorname{Ext}_{\mathscr{G}}^{n}(M, N) \rightarrow \operatorname{Ext}_{R}^{n}(M, N)$ $\rightarrow \widehat{E x t}_{R}^{n}(M, N) \rightarrow \cdots \rightarrow E x t_{R}^{g}(M, N) \rightarrow \widehat{E x t}{ }_{R}^{g}(M, N) \rightarrow 0$.

## 4. Computing the Tate Cohomology Using Complete Injective Resolutions

The classical groups $\operatorname{Ext}_{R}^{n}(M, N)$ can be computed using either a projective resolution of $M$ or an injective resolution of $N$. In this section we want to prove an analogous result for the groups $\widehat{E x t}_{R}^{n}(M, N)$. We note that we cannot use a straightforward modification of the proof in classical case. This is basically because the associated double complex in our case is not a first (or third) quadrant one and so we cannot use the usual machinery of spectral sequences.

We start by defining a complete injective resolution.
Let $N$ be an $R$-module with Gorinj $\operatorname{dim} N=d<\infty$.
If $0 \longrightarrow N \longrightarrow E^{0} \xrightarrow{f_{0}} E^{1} \xrightarrow{f_{1}} \cdots \longrightarrow E^{d-1} \xrightarrow{f_{d-1}} H \longrightarrow 0$ is a partial injective resolution of $N$, then $H$ is a Gorenstein injective module ([5], Theorem 2.22). Hence there exists a $\operatorname{Hom}(\operatorname{Inj},-)$ exact sequence

$$
\mathscr{E}: \cdots \longrightarrow E_{2} \xrightarrow{d_{2}} E_{1} \xrightarrow{d_{1}} E_{0} \xrightarrow{d_{0}} E_{-1} \xrightarrow{d_{-1}} E_{-2} \xrightarrow{d_{-2}} \cdots
$$

of injective modules such that $\mathscr{E}$ is exact and $H=\operatorname{Ker} d_{0}([3], 10.1 .1)$.
We say that $\mathscr{E}$ is a complete injective resolution of $N$.
For each module ${ }_{R} M$ and each $i \in \boldsymbol{Z}$ let $\overline{E x t}{ }_{R}^{i}(M, N) \stackrel{\text { def }}{=} H^{i}(\operatorname{Hom}(M, \mathscr{E}))$.
We prove that any two complete injective resolutions of $N$ are homotopically equivalent.

Let $\mathscr{E}: \cdots \longrightarrow I^{-1} \xrightarrow{g_{-1}} I^{0} \xrightarrow{g_{0}} I^{1} \xrightarrow{g_{1}} I^{2} \longrightarrow \cdots$ and $\overline{\mathscr{E}}: \cdots \longrightarrow \bar{I}^{-1} \xrightarrow{g_{-1}^{\prime}} \bar{I}^{0} \xrightarrow{g_{0}^{\prime}}$ $\bar{I}^{1} \xrightarrow{g_{1}^{\prime}} \cdots$ be two complete injective resolutions of $N$ corresponding to two injective resolutions, $\mathcal{N}$ and $\overline{\mathcal{N}}$, of $N\left(H=\operatorname{Ker} g_{0}=\operatorname{Im} g_{-1}\right.$ is the $d$ th cosyzygy of $\mathscr{N}$ and $\bar{H}=\operatorname{Ker} g_{0}^{\prime}=\operatorname{Im} g_{-1}^{\prime}$ is the $d$ th cosyzygy of $\left.\overline{\mathcal{N}}\right)$.

If $\mathscr{H}$ is the injective resolution of $H$ obtained from $\mathscr{N}$ and $\overline{\mathscr{H}}$ is the injective resolution of $\bar{H}$ obtained from $\overline{\mathcal{N}}$ then $\mathscr{H}$ and $\overline{\mathscr{H}}$ are homotopically equivalent (since the two injective resolutions of $N, \mathscr{N}$ and $\overline{\mathcal{N}}$, are homotopically equivalent).

Since $\mathscr{E}^{\prime}: 0 \rightarrow H \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ is an injective resolution of $H$ it follows that $\mathscr{E}^{\prime}$ and $\mathscr{H}$ are homotopically equivalent. Similarly $\overline{\mathscr{E}}^{\prime}: 0 \rightarrow \bar{H} \rightarrow \overline{I^{0}} \rightarrow \overline{I^{1}}$ $\rightarrow \cdots$ is homotopically equivalent to $\overline{\mathscr{H}}$. Then, by the above, $\mathscr{E}^{\prime}$ and $\overline{\mathscr{E}}^{\prime}$ are homotopically equivalent. So there exist chain maps $u: \mathscr{E}^{\prime} \rightarrow \overline{\mathscr{E}}^{\prime}$ and $v: \overline{\mathscr{E}}^{\prime} \rightarrow \mathscr{E}^{\prime}$ (u defined by $\bar{u} \in \operatorname{Hom}(H, \bar{H}), u_{j} \in \operatorname{Hom}\left(I^{j}, \overline{\bar{I}}^{j}\right), j \geq 0$ and $v$ defined by $\bar{v} \in$
$\operatorname{Hom}(\bar{H}, H)$ and $\left.v_{j} \in \operatorname{Hom}\left(\bar{I}^{j}, I^{j}\right)\right)$, there exist $\beta \in \operatorname{Hom}\left(I^{0}, H\right), \beta_{j} \in \operatorname{Hom}\left(I^{j}, I^{j-1}\right)$, $j \geq 1$ such that $\bar{v} \circ \bar{u}-I d=\beta \circ i$ (where $i: H \rightarrow I^{0}$ is the inclusion map), and

$$
\begin{aligned}
& v_{0} \circ u_{0}-I d=\beta_{1} \circ g_{0}+i \circ \beta \\
& v_{j} \circ u_{j}-I d=g_{j-1} \circ \beta_{j}+\beta_{j+1} \circ g_{j}, \quad \forall j \geq 1 .
\end{aligned}
$$

Since $\mathscr{E}^{\prime \prime}: \cdots \rightarrow I^{-2} \rightarrow I^{-1} \rightarrow H \rightarrow 0$ is an injective resolvent of $H$ ([2], 1.3) and $\overline{\mathscr{E}^{\prime \prime}}: \cdots \rightarrow \bar{I}^{-2} \rightarrow \bar{I}^{-1} \rightarrow \bar{H} \rightarrow 0$ is an injective resolvent of $\bar{H}, \bar{u} \in \operatorname{Hom}(H, \bar{H})$ induces a map of complexes $u: \mathscr{E}^{\prime \prime} \rightarrow \overline{\mathscr{E}^{\prime \prime}}, u=\left(u_{j}\right)_{j \leq-1}$. Similarly, there is a map of complexes $v: \overline{\mathscr{E}}^{\prime \prime} \rightarrow \mathscr{E}^{\prime \prime}, v=\left(v_{j}\right)_{j \leq-1}$, induced by $\bar{v} \in \operatorname{Hom}(\bar{H}, H)$.

Since $I^{0}$ is injective and $g_{-1}: I^{-1} \rightarrow H$ is an injective precover, there exists $\beta_{0} \in \operatorname{Hom}\left(I^{0}, I^{-1}\right)$ such that $\beta=g_{-1} \circ \beta_{0}$. So $v_{0} \circ u_{0}-I d=\beta_{1} \circ g_{0}+i \circ \beta=\beta_{1} \circ$ $g_{0}+g_{-1} \circ \beta_{0}$.

We have $g_{-1} \circ\left(v_{-1} \circ u_{-1}-I d-\beta_{0} \circ g_{-1}\right)=0 \Leftrightarrow \operatorname{Im}\left(v_{-1} \circ u_{-1}-I d-\beta_{0} \circ g_{-1}\right)$ $\subset \operatorname{Ker} g_{-1}$. Since $I^{-1}$ is injective and $I^{-2} \xrightarrow{g-2} \operatorname{Ker} g_{-1}$ is an injective precover, there is $\beta_{-1} \in \operatorname{Hom}\left(I^{-1}, I^{-2}\right)$ such that $v_{-1} \circ u_{-1}-I d-\beta_{0} \circ g_{-1}=g_{-2} \circ \beta_{-1}$.

Similarly, there exist $\beta_{j} \in \operatorname{Hom}\left(I^{j}, I^{j-1}\right), \forall j \leq-1$ such that $v_{j} \circ u_{j}-I d=$ $\beta_{j+1} \circ g_{j}+g_{j-1} \circ \beta_{j}, \forall j \leq-1$. Thus $v \circ u \sim I d_{\mathcal{E}}$. Similarly $u \circ v \sim I d_{\overline{\mathcal{E}}}$.

Hence $H^{i}(\operatorname{Hom}(M, \mathscr{E})) \simeq H^{i}(\operatorname{Hom}(M, \overline{\mathscr{E}}))$ for any ${ }_{R} M$, for all $i \in Z$.
So $\overline{E x t}{ }_{R}^{n}(-, N)$ is well-defined.
If $\mathscr{N}$. is a deleted injective resolution of $N, \mathscr{G}$. is a deleted Gorenstein injective resolution of $N$ and $v: \mathscr{G} . \rightarrow \mathcal{N}_{.}$is a chain map induced by $I d_{N}$ then a dual argument of the proof of Theorem 1 shows that the cohomology of $\operatorname{Hom}(M, M(v))$ gives us the functor $\overline{\operatorname{Ext}}_{R}(M, N)$ and that there is an exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}_{\mathscr{G}_{\mathscr{G}}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \overline{\operatorname{Ext}}{ }_{R}^{1}(M, N) \rightarrow \operatorname{Ext}_{\mathscr{G}_{\mathscr{F}}}^{2}(M, N) \\
& \rightarrow \cdots \rightarrow \operatorname{Ext}_{\mathscr{C G F}_{\mathscr{H}}^{d}}^{d}(M, N) \rightarrow \operatorname{Ext}_{R}^{d}(M, N) \rightarrow \overline{\operatorname{Ext}_{R}^{d}(M, N) \rightarrow 0}
\end{aligned}
$$

where $\operatorname{Ext}_{\mathscr{G G}_{\mathscr{G}}}^{i}(M, N)=H^{i}(\operatorname{Hom}(M, \mathscr{G})$.$) for any i \geq 0$.
If Gor proj $\operatorname{dim} M<\infty$ then $\operatorname{Ext}_{\mathscr{G}}^{i}(M, N) \simeq \operatorname{Ext}_{\mathscr{G} \mathscr{G}}^{i}(M, N)$ for any $i \geq 0$ ([4], Theorem 3.6).

Thus we have:

Theorem 1. Let $N$ be an $R$-module with Gorinj $\operatorname{dim} N=d<\infty$. For each $R$-module $M$ with Gorproj $\operatorname{dim} M<\infty$ there is an exact sequence:

$$
0 \rightarrow \operatorname{Ext}_{\mathscr{G}_{G}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \overline{\operatorname{Ext}}_{R}^{1}(M, N) \rightarrow \cdots
$$

Theorem 2 shows that over Gorenstein rings $\overline{E x t}_{R}^{n}(M, N) \simeq \widehat{E x t} r_{R}^{n}(M, N)$ for any left $R$-modules $M$ and $N$, for any $n \in Z$.

Theorem 2. If $R$ is a Gorenstein ring then $\overline{\operatorname{Ext}}_{R}^{n}(M, N) \simeq \widehat{E x t}{ }_{R}^{n}(M, N)$ for any $R$-modules $M, N$ for any $n \in Z$.

Proof. Let $g=$ Gorproj $\operatorname{dim} M$ and $d=G o r i n j \operatorname{dim} N . R$ is a Gorenstein ring, so $g<\infty$ ([3], Corollary 11.5.8) and $d<\infty$ (this follows from [3], Theorem 11.2.1).

We are using the notations of Proposition 1 and Theorem 1.

- We prove first that if $M$ is Gorenstein projective then $\widehat{\operatorname{Ext}}{ }_{R}^{n}(M, N) \simeq$ $\overline{\operatorname{Ext}_{R}^{n}}(M, N)$ for any $n \in \boldsymbol{Z}$.

Since $M$ is Gorenstein projective we have a complete resolution $\mathbf{T} \xrightarrow{u} \mathbf{P} \xrightarrow{\pi} M$ with $T^{n}=P^{n}, \forall n \geq 0$ and $u_{n}=i d_{P n}, \forall n \geq 0$.

So

$$
\begin{equation*}
\widehat{\operatorname{Ext}} t_{R}^{n}(M, N) \simeq \operatorname{Ext}_{R}^{n}(M, N) \quad \forall n \geq 1 \tag{4}
\end{equation*}
$$

We have the exact sequence (by Theorem 1):

$$
0 \rightarrow \operatorname{Ext}_{\epsilon_{\mathscr{G}}}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \overline{\operatorname{Ext}}_{R}^{1}(M, N) \rightarrow \operatorname{Ext}_{\mathscr{G}_{\mathscr{G}}^{2}}^{2}(M, N) \rightarrow \cdots
$$

Since $\operatorname{Ext}_{\mathscr{G}}^{i}(M, N)=0, \forall i \geq 1$ it follows that

$$
\begin{equation*}
\overline{\operatorname{Ext}}_{R}^{i}(M, N) \simeq E x t_{R}^{i}(M, N), \quad \forall i \geq 1 \tag{5}
\end{equation*}
$$

By (4) and (5) we have $\overline{\operatorname{Ext}_{R}^{i}}(M, N) \simeq \widehat{\operatorname{Ext}}{ }_{R}^{i}(M, N) \simeq \operatorname{Ext} t_{R}^{i}(M, N)$, for all $i \geq 1$.

- Case $n \leq 0$

Let $n=-k, k \geq 0$.
Let $\mathscr{E}$ be a complete injective resolution of $N$.
Since $\mathbf{T}: \cdots \longrightarrow P^{-2} \xrightarrow{d_{-}} P^{-1} \xrightarrow{d_{-1}} P^{0} \xrightarrow{d_{0}} P^{1} \xrightarrow{d_{1}} P^{2} \longrightarrow \cdots$ is exact with each $P^{i}$ projective and such that $\operatorname{Hom}(\mathbf{T}, Q)$ is exact for any projective module $Q$, it follows that $M^{i}=\operatorname{Im} d_{i}$ is a Gorenstein projective module for any $i \in \boldsymbol{Z}$ ([5], Obs. 2.2).

Let $M^{1}=\operatorname{Im} d_{1}$. Since $0 \rightarrow M \rightarrow P^{1} \rightarrow M^{1} \rightarrow 0$ is exact and all the terms of $\mathscr{E}$ are injective modules, we have an exact sequence of complexes $0 \rightarrow$ $\operatorname{Hom}\left(M^{1}, \mathscr{E}\right) \rightarrow \operatorname{Hom}\left(P^{1}, \mathscr{E}\right) \rightarrow \operatorname{Hom}(M, \mathscr{E}) \rightarrow 0$ and therefore an associated long exact sequence:

$$
\begin{align*}
\cdots & \rightarrow H^{i}\left(\operatorname{Hom}\left(P^{1}, \mathscr{E}\right)\right) \rightarrow H^{i}(\operatorname{Hom}(M, \mathscr{E}))  \tag{6}\\
& \rightarrow H^{i+1}\left(\operatorname{Hom}\left(M^{1}, \mathscr{E}\right)\right) \rightarrow H^{i+1}\left(\operatorname{Hom}\left(P^{1}, \mathscr{E}\right)\right) \rightarrow \cdots
\end{align*}
$$

Since a complete injective resolution $\mathscr{E}$ of $N$ is exact and $P^{1}$ is projective, the complex $\operatorname{Hom}\left(P^{1}, \mathscr{E}\right)$ is exact. Then, by (6), we have $H^{i}(\operatorname{Hom}(M, \mathscr{E})) \simeq$ $H^{i+1}\left(H o m\left(M^{1}, \mathscr{E}\right)\right) \Leftrightarrow \overline{E x t} t_{R}^{i}(M, N) \simeq \overline{E x t}{ }_{R}^{i+1}\left(M^{1}, N\right)$ for any ${ }_{R} N$, for any $i \in Z$.

Similarly,

$$
\begin{equation*}
\overline{\operatorname{Ext}}_{R}^{i}(M, N) \simeq \overline{\operatorname{Ext}}{ }_{R}^{i+k+1}\left(M^{k+1}, N\right) \tag{7}
\end{equation*}
$$

for any ${ }_{R} N$ for all $i \in \boldsymbol{Z}$ where $M^{k+1}=\operatorname{Im} d_{k+1} \in$ Gor Proj.
Since $R$ is a Gorenstein ring there is an exact sequence $0 \rightarrow G^{\prime} \rightarrow L^{\prime} \rightarrow$ $N \rightarrow 0$ with proj $\operatorname{dim} L^{\prime}<\infty$ and $G^{\prime}$ a Gorenstein injective module ([3], Exercise 6, pp. 277).

Since each term of a complete resolution $\mathbf{T}$ is a projective module, we have an exact sequence of complexes $0 \rightarrow \operatorname{Hom}\left(\mathbf{T}, G^{\prime}\right) \rightarrow \operatorname{Hom}\left(\mathbf{T}, L^{\prime}\right) \rightarrow \operatorname{Hom}(\mathbf{T}, N)$ $\rightarrow 0$ and therefore an associated long exact sequence:

$$
\begin{align*}
\cdots & \rightarrow H^{i}\left(\operatorname{Hom}\left(\mathbf{T}, G^{\prime}\right)\right) \rightarrow H^{i}\left(\operatorname{Hom}\left(\mathbf{T}, L^{\prime}\right)\right) \rightarrow H^{i}(\operatorname{Hom}(\mathbf{T}, N))  \tag{8}\\
& \rightarrow H^{i+1}\left(\operatorname{Hom}\left(\mathbf{T}, G^{\prime}\right)\right) \rightarrow H^{i+1}\left(\operatorname{Hom}\left(\mathbf{T}, L^{\prime}\right)\right) \rightarrow \cdots
\end{align*}
$$

Since $\operatorname{proj} \operatorname{dim} L^{\prime}<\infty$ it follows that $\operatorname{Hom}\left(\mathbf{T}, L^{\prime}\right)$ is an exact complex ([5], Proposition 2.3). Then, by (8), we have $H^{i}(\operatorname{Hom}(\mathbf{T}, N)) \simeq H^{i+1}\left(\operatorname{Hom}\left(\mathbf{T}, G^{\prime}\right)\right)$ that is

$$
\begin{equation*}
\widehat{E x t_{R}^{i}}(M, N) \simeq \widehat{E x t_{R}^{i+1}}\left(M, G^{\prime}\right) \tag{9}
\end{equation*}
$$

for any $i \in \boldsymbol{Z}$ and for any ${ }_{R} M$.
Let $\overline{\mathscr{E}}: \cdots \longrightarrow \bar{E}_{-2} \xrightarrow{g_{-2}} \bar{E}_{-1} \xrightarrow{g_{-1}} \bar{E}_{0} \xrightarrow{g_{0}} \bar{E}_{1} \xrightarrow{g_{1}} \bar{E}_{2} \longrightarrow \cdots$ be a complete injective resolution of the Gorenstein injective module $G^{\prime}\left(G^{\prime}=\operatorname{Ker} g_{0}=\operatorname{Im} g_{-1}\right)$ and let $G_{i}=\operatorname{Ker} g_{i}$.

We have (same argument as above)

$$
\begin{equation*}
\widehat{E x t}_{R}^{i}(M, N) \simeq \widehat{E x t}_{R}^{i+k+1}\left(M, G_{-k}\right), \quad \forall i \in \boldsymbol{Z} \tag{10}
\end{equation*}
$$

for any ${ }_{R} M$, where $G_{-k}=\operatorname{Ker} g_{-k}$.
By (7), $\overline{\operatorname{Ext}}_{R}^{-k}(M, N) \simeq \overline{\operatorname{Ext}}{ }_{R}^{1}\left(M^{k+1}, N\right) \simeq \operatorname{Ext}_{R}^{1}\left(M^{k+1}, N\right) \simeq \widehat{\operatorname{Ext}} t_{R}^{1}\left(M^{k+1}, N\right)$, (since $M^{k+1}$ is Gorenstein projective). Then, by (10), $\widehat{\operatorname{Ext}_{R}^{1}}\left(M^{k+1}, N\right) \simeq$ $\widehat{E x t}{ }_{R}^{k+2}\left(M^{k+1}, G_{-k}\right) \simeq E x t_{R}^{k+2}\left(M^{k+1}, G_{-k}\right)$.

So $\overline{E x t}_{R}^{-k}(M, N) \simeq E x t_{R}^{k+2}\left(M^{k+1}, G_{-k}\right)$.
By (10), $\quad \widehat{E x t}{ }_{R}^{-k}(M, N) \simeq \widehat{E x t} t_{R}^{1}\left(M, G_{-k}\right) \simeq E x t_{R}^{1}\left(M, G_{-k}\right) \simeq \widehat{E x t}{ }_{R}^{1}\left(M, G_{-k}\right)$,
(since $M$ is Gorenstein projective). Then, by (7), $\overline{\operatorname{Ext}}{ }_{R}^{1}\left(M, G_{-k}\right) \simeq \overline{E x t}_{R}^{k+2}\left(M^{k+1}\right.$, $\left.G_{-k}\right) \simeq E x t_{R}^{k+2}\left(M^{k+1}, G_{-k}\right)$.

So $\widehat{E x t}_{R}^{-k}(M, N) \simeq E x t_{R}^{k+2}\left(M^{k+1}, G_{-k}\right) \simeq \overline{E x t}_{R}^{-k}(M, N)$ for any $k \in \boldsymbol{Z}, k \geq 0$.
Hence $\overline{\operatorname{Ext}}_{R}^{n}(M, N) \simeq \widehat{E x t} t_{R}^{n}(M, N)$ for any $n \in \boldsymbol{Z}$, if $M$ is Gorenstein projective.

Similarly, $\overline{\operatorname{Ext}}{ }_{R}^{n}(M, N) \simeq \widehat{\operatorname{Ex}}{ }_{R}^{n}(M, N)$ for any $n \in Z$, if $N$ is Gorenstein injective.

- Case $g=$ Gor proj $\operatorname{dim} M \geq 1$
$R$ is a Gorenstein ring, so there is an exact sequence $0 \rightarrow M \rightarrow L \rightarrow C^{\prime} \rightarrow 0$ with proj $\operatorname{dim} L<\infty$ and $C^{\prime}$ a Gorenstein projective module (the same argument used in [6], Corollary 3.3.7, gives this result for $R$-modules).

Since proj $\operatorname{dim} L<\infty$ it follows that

$$
\begin{equation*}
\operatorname{Hom}(L, \mathscr{E}) \text { is an exact complex. } \tag{11}
\end{equation*}
$$

Since $0 \rightarrow M \rightarrow L \rightarrow C^{\prime} \rightarrow 0$ is exact and each term of $\mathscr{E}$ is an injective module we have an exact sequence of complexes $0 \rightarrow \operatorname{Hom}\left(C^{\prime}, \mathscr{E}\right) \rightarrow \operatorname{Hom}(L, \mathscr{E})$ $\rightarrow \operatorname{Hom}(M, \mathscr{E}) \rightarrow 0$ and therefore an associated long exact sequence: $H^{n}\left(\operatorname{Hom}\left(C^{\prime}, \mathscr{E}\right)\right) \rightarrow H^{n}(\operatorname{Hom}(L, \mathscr{E})) \rightarrow H^{n}(\operatorname{Hom}(M, \mathscr{E})) \rightarrow H^{n+1}\left(\operatorname{Hom}\left(C^{\prime}, \mathscr{E}\right)\right) \rightarrow$ $H^{n+1}(\operatorname{Hom}(L, \mathscr{E})) \rightarrow \cdots$

By (11) we have $H^{n}(\operatorname{Hom}(L, \mathscr{E}))=0 \quad \forall n \in Z$. So

$$
\begin{align*}
& H^{n}(H o m  \tag{12}\\
&(M, \mathscr{E})) \simeq H^{n+1}\left(\operatorname{Hom}\left(C^{\prime}, \mathscr{E}\right)\right) \\
& \Leftrightarrow \overline{E x t}_{R}^{n}(M, N) \simeq \overline{E x t}_{R}^{n+1}\left(C^{\prime}, N\right)
\end{align*}
$$

for any ${ }_{R} N$, for any $n \in \boldsymbol{Z}$.
So $\overline{E x t}_{R}^{n}(M, N) \simeq \overline{E x t}_{R}^{n+1}\left(C^{\prime}, N\right) \simeq \widehat{E x t}_{R}^{n+1}\left(C^{\prime}, N\right)$ (since $C^{\prime} \in G o r \operatorname{Proj}$ ) for any ${ }_{R} N$, for all $n \in \boldsymbol{Z}$.

By (9) $\widehat{E x} t_{R}^{n+1}\left(C^{\prime}, N\right) \simeq \widehat{E x t} t_{R}^{n+2}\left(C^{\prime}, G^{\prime}\right) \forall n \in Z$. (where $0 \rightarrow G^{\prime} \rightarrow L^{\prime} \rightarrow N \rightarrow$ 0 is exact, $\left.G^{\prime} \in G o r \operatorname{Inj}, L \in \mathscr{L}\right)$

Hence $\overline{\operatorname{Ext}_{R}^{n}}(M, N) \simeq \widehat{\operatorname{Ext}_{R}^{n+2}}\left(C^{\prime}, G^{\prime}\right) \quad \forall n \in Z$.
By (9) $\widehat{E x t} t_{R}^{n}(M, N) \simeq \widehat{E x t} R_{R}^{n+1}\left(M, G^{\prime}\right) \simeq \overline{E x t}_{R}^{n+1}\left(M, G^{\prime}\right)$ (since $G^{\prime}$ is Gorenstein injective), for all $n \in \boldsymbol{Z}$. Then, by (12) $\overline{E x t}{ }_{R}^{n+1}\left(M, G^{\prime}\right) \simeq \overline{E x t}{ }_{R}^{n+2}\left(C^{\prime}, G^{\prime}\right) \simeq$ $\widehat{E x t}{ }_{R}^{n+2}\left(C^{\prime}, G^{\prime}\right)$ (since $C^{\prime}$ is Gorenstein projective) for all $n \in \boldsymbol{Z}$.

Hence $\overline{\operatorname{Ext}_{R}^{n}}(M, N) \simeq \widehat{E x} t_{R}^{n+2}\left(C^{\prime}, G^{\prime}\right) \simeq \widehat{E x} t_{R}^{n}(M, N) \quad \forall n \in \boldsymbol{Z}$.

Remark 2. Theorem 2 shows that over Gorenstein rings there is a new way of computing the Tate cohomology, i.e. by using a complete injective resolution of $N$.

In a subsequent publication we hope to show how we can exploit this procedure to gain new information about Tate cohomology modules.

Theorem 1 together with Theorem 2 give us the following result:
Let $R$ be a Gorenstein ring, let $N$ be an $R$-module with $\operatorname{Gor} \operatorname{inj} \operatorname{dim} N=$ $d<\infty$. For each $R$-module $M$ there is an exact sequence:

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(M, N) \rightarrow \widehat{\operatorname{Ext}} t_{R}^{1}(M, N) \rightarrow \cdots \\
& \rightarrow \operatorname{Ext}_{R}^{d}(M, N) \rightarrow \widehat{\operatorname{Ex}} t_{R}^{d}(M, N) \rightarrow 0
\end{aligned}
$$

Theorem 2 allows us to give an easy proof of the existence of a long exact sequence of Tate cohomology associated with any short exact sequence $0 \rightarrow$ $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$.

Theorem 3. Let $R$ be a Gorenstein ring. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of $R$-modules. For any $R$-module $N$ there exists a long exact sequence of Tate cohomology modules $\cdots \rightarrow \widehat{\operatorname{Ext}_{R}^{n}}\left(M^{\prime \prime}, N\right) \rightarrow \widehat{\operatorname{Exx}_{R}^{n}}(M, N) \rightarrow$ $\widehat{E x} t_{R}^{n}\left(M^{\prime}, N\right) \rightarrow \widehat{E x} t_{R}^{n+1}\left(M^{\prime \prime}, N\right) \rightarrow \cdots$

Proof. Let $\mathscr{E}$ be a complete injective resolution of $N$. Then, by Theorem 2, $\widehat{E x t} R_{R}^{n}(M, N) \simeq H^{n}(\operatorname{Hom}(M, \mathscr{E}))$ for any ${ }_{R} M$ and any $n \in \boldsymbol{Z}$.

Since $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is exact and each term of $\mathscr{E}$ is an injective module, we have an exact sequence of complexes: $0 \rightarrow \operatorname{Hom}\left(M^{\prime \prime}, \mathscr{E}\right) \rightarrow$ $\operatorname{Hom}(M, \mathscr{E}) \rightarrow \operatorname{Hom}\left(M^{\prime}, \mathscr{E}\right) \rightarrow 0$.

Its associated cohomology exact sequence is the desired long exact sequence.

Remark 3. J. Asadollahi and Sh. Salarian also have a proof of the claim of Theorem 2 in a recent preprint (Gorenstein Local Cohomology Modules) of theirs.

## Acknowledgement

The author would like to thank Professor Edgar Enochs for his numerous advices and guidance in putting together this paper.

## References

[1] L. L. Avramov and A. Martsinkovsky. Absolute, Relative and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc., 3(85):393-440, 2002.
[2] E. E. Enochs and O. M. G. Jenda. Gorenstein injective and projective modules. Mathematische Zeitschrift, (220):611-633, 1995.
[3] E. E. Enochs and O. M. G. Jenda. Relative Homological Algebra. Walter de Gruyter, 2000. De Gruyter Exposition in Math; 30.
[4] H. Holm. Gorenstein derived functors. Proc. of Amer. Math. Soc., 132(7):1913-1923, 2004.
[5] H. Holm. Gorenstein homological dimensions. J. Pure and Appl. Alg., 189:167-193, 2004.
[6] J. R. García Rozas. Covers and evelopes in the category of complexes of modules. C R C Press LLC, 1999.

Department of Mathematics
University of Kentucky
Lexington, Kentucky 40506-0027 USA
Email: iacob@ms.uky.edu


[^0]:    2000 Mathematics Subject Classification. Primary 16E05; Secondary 18G25.
    Received April 30, 2004.
    Revised August 30, 2004.

