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Abstract

In this paper, we propose a general spiked model called the power spiked
model in high-dimensional settings. We derive relations among the data di-
mension, the sample size and the high-dimensional noise structure. We first
consider asymptotic properties of the conventional estimator of eigenvalues.
We show that the estimator is affected by the high-dimensional noise struc-
ture directly, so that it becomes inconsistent. In order to overcome such
difficulties in a high-dimensional situation, we develop new principal com-
ponent analysis (PCA) methods called the noise-reduction methodology and
the cross-data-matrix methodology under the power spiked model. We show
that the new PCA methods can enjoy consistency properties not only for
eigenvalues but also for PC directions and PC scores in high-dimensional
settings.

Keywords: Cross-data-matrix methodology; HDLSS; Large p small n;
Microarray data; Noise-reduction methodology.

1. Introduction

The high-dimension, low-sample-size (HDLSS) data situations occur in
many areas of modern science such as genetic microarrays, medical imaging,
text recognition, finance, chemometrics, and so on. The asymptotic studies
of this type of data are becoming increasingly relevant. The asymptotic
behavior of eigenvalues of the sample covariance matrix had been studied
by several references when the data dimension, d, and the sample size, n,
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Figure 1: Estimates of the first fifteen eigenvalues for the microarray data sets. The
estimates were given by the noise-reduction estimator.

increase at the same rate, i.e. n/d → c > 0, under the assumption that all
eigenvalues are just constants (see [7, 8, 13, 14, 17, 18]). Let us see Table 1
and Fig. 1. We observed eigenvalues for three well-known microarray data
sets by using the three estimators: Conventional estimator, λ̂oj (Corollary

3.3); noise-reduction estimator, λ́oj (Corollary 4.1); and cross-data-matrix
estimator, λ̃oj (Corollary 5.1). The asymptotic properties of the estimators
are given in Sections 3-5. The microarray data sets are as follows: Colon
cancer data with 2000 genes consisting of colon tumor (40 samples) and
normal colon (22 samples) given by Alon et al. [2]; leukemia data with 7129
genes consisting of ALL (47 samples) and AML (25 samples) given by Golub
et al. [11]; and prostate cancer data with 12600 genes consisting of normal
prostate (50 samples) and prostate tumor (52 samples) given by Singh et
al. [19]. We obtained the estimates after normalizing the scale of each data
set, that is, for instance, λ̂ojs are the sample eigenvalues of each correlation
matrix. We summarized the results for the first three eigenvalues by using
the three estimators in Table 1. We also visualized the first fifteen eigenvalues
given by the noise-reduction estimator in Fig. 1. We observed that each n/d
is quite small and the first several eigenvalues are much larger than the rest
especially when d is very high. It is crucial to take the facts into account
when constructing a model of eigenvalues.

In recent years, substantial work has been done on HDLSS asymptotic
theory. Ahn et al. [1], Hall et al. [12], and Yata and Aoshima [22] explored
several types of geometric representations on HDLSS data. Jung and Marron
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Table 1: Estimates of the first three eigenvalues for the microarray data sets. The estimates
were given by three methods: Conventional estimator, λ̂oj ; noise-reduction estimator, λ́oj ;

and cross-data-matrix estimator, λ̃oj .

n n/d λ̂o1, λ̂o2, λ̂o3 λ́o1, λ́o2, λ́o3 λ̃o1, λ̃o2, λ̃o3

Colon cancer data with 2000 (= d) genes given by Alon et al. [2]

Colon 40 0.02 949, 228, 150 922, 205, 131 895, 194, 98
Normal 22 0.011 922, 170, 137 868, 122, 94 827, 137, 91

Two types of leukemia data with 7129 (= d) genes given by Golub et al. [11]

ALL 47 0.0066 1148, 841, 342 1015, 724, 231 941, 685, 208
AML 25 0.0035 1344, 733, 488 1093, 504, 271 1004, 441, 260

Prostate cancer data with 12600 (= d) genes given by Singh et al. [19]

Normal 50 0.004 6748, 561, 426 6626, 448, 320 6360, 331, 287
Prostate 52 0.0041 6095, 685, 511 5965, 566, 401 5987, 568, 370

[15] investigated consistency properties of the eigenvalues and eigenvectors
of the sample covariance matrix. Yata and Aoshima [22] gave consistent es-
timators of both the eigenvalues and eigenvectors together with the principal
component (PC) scores by a method called the noise-reduction methodol-
ogy. The HDLSS asymptotic theory had been created under the assumption
that either the population distribution is Gaussian or the random variables
in a sphered data matrix have a ρ-mixing dependency. However, Yata and
Aoshima [20] developed the asymptotic theory by assuming neither the Gaus-
sian assumption nor the ρ-mixing condition. Moreover, Yata and Aoshima
[21] created a new PCA called the cross-data-matrix methodology that pro-
vides consistent estimators of both the eigenvalues and eigenvectors together
with PC scores and is applicable to constructing an unbiased estimator in
nonparametric settings. Aoshima and Yata [3, 4] developed a variety of high-
dimensional statistical inference based on the geometric representations by
using the cross-data-matrix methodology.

In this paper, suppose we have a d×n data matrixX(d) = [x1(d), ...,xn(d)],
where xj(d) = (x1j(d), ..., xdj(d))

T , j = 1, ..., n, are independent and identi-
cally distributed (i.i.d.) as a d-dimensional distribution with mean zero and
positive definite covariance matrix Σd. The eigen-decomposition of Σd is
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Σd = HdΛdH
T
d , where Λd is a diagonal matrix of eigenvalues, λ1(d) ≥ · · · ≥

λd(d)(> 0), and Hd = [h1(d), ...,hd(d)] is an orthogonal matrix of the corre-

sponding eigenvectors. LetX(d) = HdΛ
1/2
d Z(d). Then, Z(d) is a d×n sphered

data matrix from a distribution with the identity covariance matrix. Here,
we write Z(d) = [z1(d), ..., zd(d)]

T and zj(d) = (zj1(d), ..., zjn(d))
T , j = 1, ..., d.

Note that E(zji(d)zj′i(d)) = 0 (j ̸= j′) and Var(zj(d)) = In, where In is the
n-dimensional identity matrix. Hereafter, the subscript d will be omitted for
the sake of simplicity when it does not cause any confusion. We assume that
the fourth moments of each variable in Z are uniformly bounded. Note that
if X is Gaussian, zijs are i.i.d. standard normal random variables.

We assume the following assumption as necessary:

(A-i) We consider a factor model as follows:

X = ΓW , (1)

where Γ = (γ1, ...,γt) is a d × t matrix for some t ≥ d such that
ΓΓT =

∑t
i=1 γiγ

T
i = Σ, E(wij) = 0, Var(wij) = 1 and E(wijwi′j) = 0

for i ̸= i′. Here, wij (i = 1, ..., t; j = 1, ..., n) is the (i, j) element of W .
Note that xk =

∑t
i=1 γiwik. As for wijs, we assume that the fourth

moments of wijs are uniformly bounded,

E(w2
pkw

2
qk) = 1 and E(wpkwqkwrkwsk) = 0

for all p ̸= q, r, s (k = 1, ..., n).

See Bai and Saranadasa [5] and Chen and Qin [10] for the details about
(1). On the other hand, Baik and Silverstein [8] and Yata and Aoshima [22]
assumed that

(A-ii) zjk, j = 1, ..., d (k = 1, ..., n), are independent (or i.i.d. for [8]),

which includes the case that X is Gaussian. We emphasize that (A-i) is
milder than (A-ii) from the fact that (1) holds when Γ = HΛ1/2 andW = Z.

Remark 1. If there exists at least one coefficient vector γj such that ||γj|| →
∞ as d → ∞ in (1), it follows that λi → ∞ as d → ∞ for first several is,
where || · || denotes the Euclidean norm. Namely, if there exists at least one
factor having influences on many variates of xk, the first several eigenvalues
become significantly large for high-dimensional data.
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In Section 2, we propose a new model of eigenvalues, λjs, called the power
spiked model. In the following sections, we rigorously investigate the power
spiked model. In Section 3, we show that the conventional estimator, λ̂j, is
affected by the high-dimensional noise structure and the dependency of zijs
directly. In Sections 4-5, we develop the noise-reduction methodology and
the cross-data-matrix methodology under the power spiked model, and show
that the methods can enjoy the consistency property and the asymptotic nor-
mality with respect to the eigenvalues. In Section 6, we verify performances
of the methods by using simulation experiments. In Sections 7-8, we also
provide consistent estimators of PC directions and PC scores and give their
asymptotic properties.

2. The power spiked model

In this section, we introduce a new spiked model called the power spiked
model. The sample covariance matrix is S = n−1XXT . We consider the n×
n dual sample covariance matrix defined by SD = n−1XTX. Let λ̂1 ≥ · · · ≥
λ̂n ≥ 0 be the eigenvalues of SD. Let us write the eigen-decomposition of
SD as SD =

∑n
j=1 λ̂jûjû

T
j . Note that SD and S share non-zero eigenvalues.

Johnstone [13] considered a spiked model as follows:

λj (> 1), j = 1, ...,m, are fixed and λj = 1 (j = m+ 1, ..., d). (2)

Here,m (< d) is an unknown and fixed positive integer. Then, the asymptotic
behavior of the eigenvalues of the sample covariance matrix was studied by
several references when d and n increase at the same rate, i.e. n/d → c > 0.
See [7, 13, 14, 18] for Gaussian assumptions, and [8, 17] for non-Gaussian
but i.i.d. assumptions as in (A-ii). Paul [18] also considered the asymptotic
behavior of the eigenvectors and Lee et al. [17] considered that of the PC
scores under (2). For the latter part in (2), the condition such as λm+1 =
· · · = λd = 1 is quite strict. Under a mild condition without assuming
λm+1 = · · · = λd = 1 in (2), Bai and Ding [6] considered the estimation of
the forward eigenvalues. However, we note that the former part in (2) is
also a strict condition since the eigenvalues probably depend on d and it is
probable that λj → ∞ as d → ∞ for the first several js (see Table 1 and
Fig. 1). We also note that the HDLSS context (d >> n) does not accept the
convergence rate such as n/d → c > 0.

Jung and Marron [15], Jung et al. [16] and Yata and Aoshima [20, 21, 22]
considered different models such as λj → ∞ as d → ∞ for the first several
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js when d → ∞ while n is fixed in [15, 16, 22] or n → ∞ in [20, 21, 22]. For
example, Yata and Aoshima [20] considered a general spiked model:

λi = aid
αi (i = 1, ...,m) and λj = cj (j = m+ 1, ..., d). (3)

Here, ai(> 0), cj(> 0) and αi(α1 ≥ · · · ≥ αm > 0) are unknown constants
preserving the order that λ1 ≥ · · · ≥ λd, and m (< d) is an unknown and
positive fixed integer. Then, Yata and Aoshima [20] showed that the sample
eigenvalues are consistent under some conditions as follows: It holds for
j (≤ m) that

λ̂j

λj

= 1 + op(1) (4)

under the conditions that

(YA-i) d → ∞ and n → ∞ for j such that αj > 1;

(YA-ii) d → ∞ and d2−2αj/n → 0 for j such that αj ∈ (0, 1].

The condition described by “d → ∞ and n → ∞” in (YA-i) is a mild
condition in the sense that one can choose n free from d (e.g., n may be much
smaller than d such as n = log d). However, it should be noted that (YA-i)-
(YA-ii) heavily depend on the latter (noise) part of (3) in which

∑d
i=m+1 λi =

O(d). Also, note that (3) does not always cover situations in which the first
several eigenvalues are relatively large compared to the rest.

Now, we propose a new spiked model which develops (3) in order to study
consistency properties of PCA in more extensive high-dimensional situations.
Let Σ = Σ(1) +Σ(2), where Σ(1) =

∑m
i=1 λihih

T
i and Σ(2) =

∑d
i=m+1 λihih

T
i

with some unknown and positive fixed integerm (< d). Here, Σ(1) is regarded
as an intrinsic part and Σ(2) is regarded as a noise part. Then, if there exists
a positive fixed integer km such that

lim
d→∞

tr(Σkm
(2))

λkm
m

= 0, (5)

we call such λ1 ≥ · · · ≥ λd the power spiked model. Note that the spiked
model given by (3) is one of the power spiked models when km > 1/αm.
Under (5), it holds that

lim
d→∞

tr(Σkm
(2))

1/km

λm

≥ lim
d→∞

λm+1

λm

= 0.
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Figure 2: Illustrations of the power spiked model. The left panel has one spiked point in
(5) with m = 3 and the right panel has two spiked points in (5) with m = 2 or m = 5.

Hence, there exists at least one spiked point such as limd→∞ λj+1/λj = 0 in
(5). Remember that we observed a spiked point in Fig. 1 when d = 12600.
Fig. 2 is illustrations of the spiked model.

Proposition 2.1. If there exist some positive fixed integer j and constant
α (> 0) such that

λj+1

λj

= O(d−α),

such eigenvalues satisfy the power spiked model given by (5) with m = j.

Remark 2. One of the advantages of the power spiked model is the flexibility
to adapt to most high-dimensional data sets. One does not need to assume
a specific function, such as λi = aid

αi in (3), of d in the power spiked model.
The power spiked model depends only on spiked points such as in Fig. 2.
Also, one can check the validity of the parameter, km, in (5) by using the
cross-data-matrix methodology. See Section 5.2 about the details.

Remark 3. Let us consider an interesting example such as λ1 = d, λ2 =
d1/2, λ3 = d1/3, ..., λd = d1/d. From Proposition 2.1, the above example
is included in the power spiked model given by (5) with any positive fixed
integer m. Note that (3) cannot describe the above example.

Remark 4. If all eigenvalues are bounded such as lim infd→∞ λj > 0 and
lim supd→∞ λj < ∞, (5) does not hold. See Bickel and Levina [9] for such
a situation. However, we emphasize that the first several eigenvalues should
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naturally depend on d such as λj → ∞ as d → ∞ for high-dimensional data
as observed in Table 1 and Fig. 1.

3. Asymptotic properties of the sample eigenvalues

In this section, we consider the sample eigenvalues, λ̂js, under the power
spiked model in either case of the following for j (≤ m):

(B-i) lim
d→∞

tr(Σ2
(2))

λ2
j

= 0 or (B-ii) lim sup
d→∞

tr(Σ2
(2))

λ2
j

> 0.

3.1. In case of (B-i)

We assume the following conditions as necessary:

(C-i)
Var(

∑d
s=m+1 λsz

2
sk)

nλ2
j

=

∑d
r,s=m+1 λrλsE{(z2rk − 1)(z2sk − 1)}

nλ2
j

= o(1);

(C-ii)
tr(Σ(2))

nλj

= o(1).

Now, we consider an asymptotic property of SD. Let us write that
SD = n−1

∑m
s=1 λszsz

T
s + n−1

∑d
s=m+1 λszsz

T
s . The second term is the noise

part. Here, by using Markov’s inequality, for any τ > 0 and j (≤ m) sat-
isfying (B-i), one has as d → ∞ that P [

∑n
k ̸=k′{

∑d
s=m+1 λszskzsk′/(nλj)}2 >

τ ] ≤ τ−1tr(Σ2
(2))/λ

2
j → 0, and P [

∑n
k=1{

∑d
s=m+1 λs(z

2
sk − 1)/(nλj)}2 > τ ] ≤

τ−1Var(
∑d

s=m+1 λsz
2
sk)/(nλ

2
j) → 0 under (C-i). Let en = (e1, ..., en)

T be an
arbitrary (random) n-vector such that ||en|| = 1. Then, we have that

∣∣∣ n∑
k=1

e2k

d∑
s=m+1

λs(z
2
sk − 1)

nλj

∣∣∣ ≤ { n∑
k=1

e4k

}1/2{ n∑
k=1

( d∑
s=m+1

λs(z
2
sk − 1)

nλj

)2}1/2

= op(1),∣∣∣ n∑
k ̸=k′

ekek′
d∑

s=m+1

λszskzsk′

nλj

∣∣∣ ≤ { n∑
k ̸=k′

e2ke
2
k′

}1/2{ n∑
k ̸=k′

( d∑
s=m+1

λszskzsk′

nλj

)2}1/2

= op(1)

from the facts that
∑n

k=1 e
4
k ≤ 1 w.p.1 and

∑n
k ̸=k′ e

2
ke

2
k′ ≤ 1 w.p.1. Hence,

the noise part is consistent in the sense that eT
n (n

−1
∑d

s=m+1 λszsz
T
s )en/λj =
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eT
n{n−1

∑d
s=m+1 λs(zsz

T
s − In)}en/λj + tr(Σ(2))/(nλj) = tr(Σ(2))/(nλj) +

op(1) under (C-i), so that

λ̂j

λj

= ûT
j

SD

λj

ûj = ûT
j

∑m
s=1 λszsz

T
s

nλj

ûj +
tr(Σ(2))

nλj

+ op(1). (6)

Then, we have the following results.

Theorem 3.1. For j (≤ m) satisfying (B-i), it holds as d → ∞ and n → ∞
that

λ̂j

λj

= 1 +
tr(Σ(2))

nλj

+ op(1) (7)

under (C-i). In addition, if (C-ii) is satisfied for j (≤ m), λ̂js are consistent
in the sense of (4).

Remark 5. The asymptotic property in (7) is derived from the geomet-
ric representations given by Yata and Aoshima [22]. From (7), the sample
eigenvalues are inconsistent in the sense that lim sup λ̂j/λj > 1 in probability
under (C-i) when lim sup tr(Σ(2))/(nλj) > 0 for j (≤ m) satisfying (B-i).

From Lemma 1 in Appendix, under (A-i), we note that

d∑
r,s=m+1

λrλsE{(z2rk − 1)(z2sk − 1)} = O{tr(Σ2
(2))}.

Then, for j (≤ m) satisfying (B-i), (C-i) holds under (A-i). Hence, we have
the following result.

Corollary 3.1. Assume (A-i). Then, for j (≤ m) satisfying (B-i), (4) holds
as d → ∞ and n → ∞ under (C-ii), and (7) holds as d → ∞ and n → ∞.

Let Var(z2jk) = Mj (< ∞) for j = 1, ...,m. We assume for j (≤ m) that
λj has multiplicity one in the following sense:

(C-iii) lim inf
d→∞

∣∣∣λj′

λj

− 1
∣∣∣ > 0 for all j′(̸= j) = 1, ...,m.

We also assume for j (≤ m) that

(C-iv)
tr(Σ(2))

2

nλ2
j

= o(1).
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Then, we have the following result.

Theorem 3.2. Assume lim infd→∞ Mj > 0. Then, for j (≤ m) satisfying
(B-i), it holds as d → ∞ and n → ∞ that√

n

Mj

( λ̂j

λj

− 1
)
⇒ N(0, 1) (8)

under (C-iii) and (C-iv). Here, “⇒” denotes the convergence in distribution
and N(0, 1) denotes a random variable distributed as the standard normal
distribution.

Remark 6. Note that
∑d

r,s=m+1 λrλsE{(z2rk − 1)(z2sk − 1)} = O{tr(Σ(2))
2}.

Thus for j (≤ m) satisfying (B-i), (4) holds as d → ∞ and n → ∞ under
(C-iv).

3.2. In case of (B-ii)

We assume the following conditions as necessary:

(C-v)
Var(

∑d
p̸=q≥m+1 λpλqzpkzpk′zqkzqk′)

n2λ4
j

=

∑d
p̸=q,r ̸=s≥m+1 λpλqλrλs{E(zpkzqkzrkzsk)}2

n2λ4
j

= o(1) (k ̸= k′);

(C-vi)
tr(Σ2

(2))
2

nλ4
j

= o(1).

Here,
∑d

p̸=q,r ̸=s≥m+1 denotes the summation of p, q, r, s(= m + 1, ..., d) such
that p ̸= q, r ̸= s. (C-v) and (C-vi) are sufficient conditions to hold (6) in
case of (B-ii). See Lemmas 2 and 3 in Appendix for the details. Then, we
have the following results.

Theorem 3.3. For j (≤ m) satisfying (B-ii), (4) holds as d → ∞ and
n → ∞ under (C-i), (C-ii), (C-v) and (C-vi), and (7) holds as d → ∞ and
n → ∞ under (C-i), (C-v) and (C-vi).

Remark 7. Note that
∑d

p̸=q,r ̸=s≥m+1 λpλqλrλs{E(zpkzqkzrkzsk)}2 = O{tr(
Σ(2))

4}. Thus for j (≤ m) satisfying (B-ii), (4) holds as d → ∞ and n → ∞
under (C-iv).
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Theorem 3.4. Assume lim infd→∞ Mj > 0. Then, for j (≤ m) satisfying
(B-ii), (8) holds as d → ∞ and n → ∞ under (C-iii) and (C-iv).

From Lemma 1, we note that

d∑
p ̸=q,r ̸=s≥m+1

λpλqλrλs{E(zpkzqkzrkzsk)}2 = O{tr(Σ2
(2))

2}

under (A-i). Then, (C-v) holds under (A-i) and (C-vi). Hence, we have the
following result.

Corollary 3.2. Assume (A-i). Then, for j (≤ m) satisfying (B-ii), (4) holds
as d → ∞ and n → ∞ under (C-ii) and (C-vi), and (7) holds as d → ∞
and n → ∞ under (C-vi).

Corollary 3.3. When the population mean may not be zero, let SoD = (n−
1)−1(X − X)T (X − X) having d × n matrix, X = [x̄n, ..., x̄n], with x̄n =∑n

k=1 xk/n. Let λ̂o1 ≥ · · · ≥ λ̂on−1 ≥ 0 be the eigenvalues of SoD Then, after

replacing λ̂js with λ̂ojs, all the results in this section are still justified.

4. Asymptotic properties of the noise-reduction methodology

Yata and Aoshima [22] proposed a method for eigenvalues estimation
called the noise-reduction (NR) methodology that was brought by a certain
geometric representation. The NR methodology gives an estimator of λj by

λ́j = λ̂j −
tr(SD)−

∑j
i=1 λ̂i

n− j
(j = 1, ..., n− 1). (9)

Note that λ́j ≥ 0 (j = 1, ..., n−1). Then, Yata and Aoshima [22] showed that

λ́j has several consistency properties under (3) and (A-ii). In this section,

we investigate λ́j under the power spiked model.
Now, we consider an easy example of (5) whenm = 1 and limd→∞ tr(Σ2

(2))

/λ2
1 = 0. It holds that Var(

∑n
k=1

∑d
s=m+1 λsz

2
sk/n)/λ

2
j = o(1) under (C-i).

Thus from (7) in Theorem 3.1, we have as d → ∞ and n → ∞ that

tr(SD)− λ̂1

(n− 1)λ1

=
λ1 + tr(Σ(2))− λ1{1 + tr(Σ(2))/(nλ1)}

(n− 1)λ1

+ op(1)

=
tr(Σ(2))

nλ1

+ op(1)
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under (C-i) from the facts that tr(SD) =
∑n

k=1

∑d
s=1 λsz

2
sk/n and

∑n
k=1 z

2
1k/n

= 1 + op(1). Then, from (7), it holds that

λ́1

λ1

=
λ̂1

λ1

−
tr(Σ(2))

nλ1

+ op(1) = 1 + op(1).

Contrary to Theorem 3.1, λ́1 is consistent with λ1 as d → ∞ and n → ∞
under (B-i) and (C-i), but without (C-ii).

In general, we have the following results for the NR methodology.

Theorem 4.1. For j (≤ m) satisfying (B-i), it holds as d → ∞ and n → ∞
that

λ́j

λj

= 1 + op(1) (10)

under (C-i).

Theorem 4.2. Assume lim infd→∞ Mj > 0. Then, for j (≤ m) satisfying
(B-i), it holds as d → ∞ and n → ∞ that√

n

Mj

( λ́j

λj

− 1
)
⇒ N(0, 1) (11)

under (C-i) and (C-iii).

Next, for j (≤ m) satisfying (B-ii), we can claim the following results.

Theorem 4.3. For j (≤ m) satisfying (B-ii), (10) holds as d → ∞ and
n → ∞ under (C-i), (C-v) and (C-vi), and (11) holds as d → ∞ and n → ∞
under (C-i), (C-iii), (C-v), (C-vi) and lim infd→∞Mj > 0.

Remark 8. Assume (A-i). Then, for j (≤ m) satisfying (B-i), (10) holds as
d → ∞ and n → ∞, and (11) holds as d → ∞ and n → ∞ under (C-iii) and
lim infd→∞ Mj > 0. On the other hand, for j (≤ m) satisfying (B-ii), (10)
holds as d → ∞ and n → ∞ under (C-vi), and (11) holds as d → ∞ and
n → ∞ under (C-iii), (C-vi) and lim infd→∞ Mj > 0.

Corollary 4.1. When the population mean may not be zero, we define λ́oj =

λ̂oj − {tr(SoD) −
∑j

i=1 λ̂oi}/(n − 1 − j) (j = 1, ..., n − 2), where SoD and

λ̂ojs are given in Corollary 3.3. Then, after replacing λ́js with λ́ojs, all the
results of this section are still justified.
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5. Asymptotic properties of the cross-data-matrix methodology

5.1. Eigenvalues estimation
Yata and Aoshima [21] provided another method for eigenvalues estima-

tion called the cross-data-matrix (CDM) methodology. Suppose that we di-
vide a data matrix, X = [x1, ...,xn], into X1 = [x11, ...,x1n1 ] and X2 =
[x21, ...,x2n2 ] at random with n1 = ⌈n/2⌉ and n2 = n − n1, where ⌈x⌉
denotes the smallest integer ≥ x. Note that X1 and X2 are indepen-
dent. Then, Yata and Aoshima [21] defined SD(1) = (n1n2)

−1/2XT
1X2 or

SD(2) = (n1n2)
−1/2XT

2X1 (= ST
D(1)) as a cross data matrix. Note that SD(1)

is an n1×n2 matrix and rank(SD(1)) ≤ n2. The CDM methodology gives an

estimator of λj by the singular value, λ̃j, of SD(1). Yata and Aoshima [21]

showed that λ̃j has several consistency properties under (3). In this section,
we investigate λ̃j under the power spiked model.

Let X i = HΛ1/2Zi, where Zi = [zi1, ..., zid]
T and zij = (zij1, ..., zijni

)T ,

i = 1, 2; j = 1, ..., d. Then, we have SD(1) = (n1n2)
−1/2

∑d
j=1 λjz1jz

T
2j.

When we consider the singular value decomposition of SD(1), it follows that

SD(1) =
∑n2

j=1 λ̃jũj(1)ũ
T
j(2), where λ̃1 ≥ · · · ≥ λ̃n2(≥ 0) denote singular values

of SD(1), and ũj(1) (or ũj(2)) denotes a unit left- (or right-) singular vec-

tor corresponding to λ̃j (j = 1, ..., n2). Note that ũj(i) is available as an
eigenvector of SD(i)S

T
D(i) for each i. Then, we adjust the sign of ũj(2) by

ũj(2) = Sign(ũT
j(1)SD(1)ũj(2)) ũj(2).

Now, we consider an easy example when m = 1 and limd→∞ tr(Σ2
(2))/λ

2
1

= 0. Let us write that λ−1
1 SD(1) = (n1n2)

−1/2 z11z
T
21 + (n1n2)

−1/2λ−1
1

∑d
j=2

λjz1jz
T
2j. Here, by using Markov’s inequality, for any τ > 0, one has that

P
{ n1∑

i′=1

n2∑
j′=1

( d∑
j=2

λjz1ji′z2jj′

(n1n2)1/2λ1

)2

> τ
}
≤ τ−1tr(Σ2

(2))/λ
2
1 = o(1)

as d → ∞ when n → ∞ or when n is fixed. Let eini
= (ei1, ..., eini

)T be an
arbitrary (random) ni-vector such that ||eini

|| = 1 for i = 1, 2. Then, we
have that∣∣∣ n1∑

i′=1

n2∑
j′=1

e1i′e2j′
d∑

j=2

λjz1ji′z2jj′

(n1n2)1/2λ1

∣∣∣
≤

{ n1∑
i′=1

n2∑
j′=1

e21i′e
2
2j′

}1/2{ n1∑
i′=1

n2∑
j′=1

( λjz1ji′z2jj′

(n1n2)1/2λ1

)2}1/2

= op(1)

13



from the fact that
∑n1

i′=1

∑n2

j′=1 e
2
1i′e

2
2j′ = 1. It follows that λ−1

1 eT
1n1

SD(1)e2n2

= (n1n2)
−1/2eT

1n1
z11z

T
21e2n2 + op(1). Now, let us consider the largest singular

value of SD(1). Noting that ||n−1/2
i zij|| = 1 + op(1), i = 1, 2, as n → ∞, we

have as d → ∞ and n → ∞ that

λ̃1

λ1

= max
e1n1 ,e2n2

{
(n1n2)

−1/2eT
1n1

z11z
T
21e2n2 + op(1)

}
= 1 + op(1).

Hence, the singular value, λ̃1, is consistent with λ1 as d → ∞ and n → ∞
under (B-i), but without (C-i)-(C-ii).

In general, we have the following results for the CDM methodology.

Theorem 5.1. For j (≤ m) satisfying (B-i), it holds as d → ∞ and n → ∞
that

λ̃j

λj

= 1 + op(1). (12)

Theorem 5.2. Assume lim infd→∞ Mj > 0. Then, for j (≤ m) satisfying
(B-i), it holds as d → ∞ and n → ∞ that√

n

Mj

( λ̃j

λj

− 1
)
⇒ N(0, 1) (13)

under (C-iii).

As for j (≤ m) satisfying (B-ii), we can claim the following results.

Theorem 5.3. For j (≤ m) satisfying (B-ii), (12) holds as d → ∞ and
n → ∞ under (C-v) and (C-vi), and (13) holds as d → ∞ and n → ∞
under (C-iii), (C-v), (C-vi) and lim infd→∞ Mj > 0.

Remark 9. Assume (A-i). Then, for j (≤ m) satisfying (B-ii), (12) holds
as d → ∞ and n → ∞ under (C-vi), and (13) holds as d → ∞ and n → ∞
under (C-iii), (C-vi) and lim infd→∞ Mj > 0.

Corollary 5.1. When the population mean may not be zero, let SoD(1) =
{(n1 − 1)(n2 − 1)}−1/2(X1 −X1)

T (X2 −X2) having d× ni matrices, X i =
[x̄in, ..., x̄in], with x̄in =

∑ni

k=1 xik/ni, i = 1, 2. Let λ̃o1 ≥ · · · ≥ λ̃on2−1(≥ 0)

be the singular values of SoD(1). Then, after replacing λ̃js with λ̃ojs, all the
results in this section are still justified.
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5.2. Applications of the cross-data-matrix methodology

In this section, we provide some applications of the CDM methodology.
It is crucial to estimate tr(Σ2) in high-dimensional inference. For example,
one may refer to Bai and Saranadasa [5], Chen and Qin [10], and Aoshima
and Yata [3]. Aoshima and Yata [3] gave an unbiased estimator of tr(Σ2)
such as tr(SD(1)S

T
D(1)) =

∑n2

i=1 λ̃
2
i by using the CDM methodology. Note that

E{tr(SD(1)S
T
D(1))} = tr(Σ2). Also, note that Var{tr(SD(1)S

T
D(1))/tr(Σ

2)} →
0 as d → ∞ and n → ∞ under (A-i).

As another application, one can check whether limd→∞ tr(Σ2
(2))/λ

2
j = 0

holds or not by using the CDM methodology. We have the following propo-
sition.

Proposition 5.1. Assume (A-i). When it holds as d → ∞ and n → ∞ that

tr(SD(1)S
T
D(1))−

∑j∗
i=1 λ̃

2
i

λ̃2
j

= op(1)

for some fixed integers j and j∗ (≥ j > 0), one can claim limd→∞ tr(Σ2
(2))/λ

2
j =

0 with some fixed m (≥ j), i.e., λis hold the power spiked model given by (5).

Remark 10. When the population mean may not be zero, replace SD(1)

and λ̃js with SoD(1) and λ̃ojs given in Corollary 5.1. Then, the result in
Proposition 5.1 is still justified.

As for the three microarray data sets in Table 1, we checked whether
limd→∞ tr(Σ2

(2))/λ
2
j = 0 holds or not by using Proposition 5.1 in view of

Remark 10. We set j∗ = 5. In Table 2, we calculated βj = {tr(SoD(1)S
T
oD(1))−∑5

i=1 λ̃
2
oi}/λ̃2

oj, j = 1, 2, 3. We observed that all β1s and several β2s are
sufficiently small. Hence, from Proposition 5.1, it is probable that the three
data sets have the power spiked model. Also, from Theorem 5.1, for j having
sufficiently small βj, one may claim that the CDM estimator, λ̃j, is probably
consistent in the sense of (12). As for the NR estimator, from Theorem 4.1,
λ́j is probably consistent in the sense of (10) under (C-i).

6. Numerical comparisons of eigenvalue estimators

From Theorem 3.1, one needs to choose the sample size, n, depending on
the noise, Σ(2), so that the sample eigenvalue becomes a consistent estimate.
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Table 2: Values of βj = {tr(SoD(1)S
T
oD(1))−

∑5
i=1 λ̃

2
oi}/λ̃2

oj , j = 1, 2, 3, for the microarray
data sets in Table 1.

n β1 β2 β3

Colon cancer data ([2]) with d = 2000

Colon 40 0.00288 0.0614 0.239
Normal 22 0.00247 0.0906 0.204

Two types of leukemia data ([11]) with d = 7129

ALL 47 0.0496 0.0935 1.018
AML 25 0.021 0.109 0.313

Prostate cancer data ([19]) with d = 12600

Normal 50 0.00156 0.576 0.766
Prostate 52 0.00201 0.223 0.524

On the other hand, the NR methodology allows an experimenter to choose n
free from the noise under (A-i) when limd→∞ tr(Σ2

(2))/λ
2
j = 0. See Theorem

4.1 or Remark 8. Moreover, the CDM methodology can claim the same
argument without (A-i) (or (C-i)). See Theorem 5.1. It seems that the CDM
methodology is promising to give robust estimation for HDLSS data. In
this section, we examine their performances with the help of Monte Carlo
simulations.

Independent pseudo-random normal observations were generated from
Nd(0,Σ). Then, (A-i) holds. We considered that

Σ(1) = diag(λ1, λ2, λ3, 0, ..., 0) and Σ(2) =

(
O3,3 O3,d−3

Od−3,3 Σ∗

)
, (14)

where λ1 = d4/5, λ2 = d3/5, λ3 = d2/5, Σ∗ = (σij) with σij = (|i − j| +
1)−1 and Ok,l is the k × l zero matrix. Note that tr(Σ2

(2)) = O(d) and
λj = O(log d) for some j (≥ 4). Then, this setting satisfies (5) with m =
3. We considered the cases of d = 400(200)1200. We set n = 40 and
defined a data matrix as X : d × n = [X1,X2] for the calculation of SD

and SD(1). The findings were obtained by averaging the outcomes from
1000 (= R, say) replications. Under a fixed scenario, suppose that the r-
th replication ends with estimates, λ̂jr, λ́jr and λ̃jr (r = 1, ..., R). Let us

16



simply write λ̂j = R−1
∑R

r=1 λ̂jr, λ́j = R−1
∑R

r=1 λ́jr and λ̃j = R−1
∑R

r=1 λ̃jr.

We also considered the Monte Carlo variability. Let var(λ̂j/λj) = (R −
1)−1

∑R
r=1(λ̂jr − λ̂j)

2/λ2
j , var(λ́j/λj) = (R − 1)−1

∑R
r=1(λ́jr − λ́j)

2/λ2
j and

var(λ̃j/λj) = (R − 1)−1
∑R

r=1(λ̃jr − λ̃j)
2/λ2

j . We considered six quantities,

(λ̂j/λj,var(λ̂j/λj)), (λ́j/λj,var(λ́j/λj)) and (λ̃j/λj,var(λ̃j/λj)). Fig. 3 shows
the behavior of the six quantities for the first three eigenvalues. By observing
the behavior of λ̂j/λj, the sample eigenvalue seems not to give a feasible
estimation especially when d is very large. The sample size, n = 40, was not
large enough to use the eigenvalues of SD for such a high-dimensional data.
On the other hand, in view of the behaviors of λ́j/λj and λ̃j/λj, the NR and
CDM methods give reasonable estimates surprisingly for such HDLSS data
sets. The NR and CDM methods seem to perform excellently as expected for
λj, j = 1, 2, that satisfy (B-i). It seems that the NR method performs a little
better than the CDM method. However, for λ3 satisfying (B-ii), those two
methods do not always give such excellent performances because n = 40 is
not large enough to claim the consistency for such a target. As for the sample
variances, it seems not to make much difference among the three estimates.

Next, we considered non-Gaussian cases that do not satisfy (A-i). In-
dependent pseudo-random observations were generated from a d-variate t-
distribution, td(0,Σ, ν) with mean zero, covariance matrix Σ and degree of
freedom ν. We considered Σ given by (14). We fixed d = 1000. We set the
sample sizes as n = 20(20)100. We set ν = 10 and 30. Similarly to Fig. 3,
the findings were obtained by averaging the outcomes from 1000 replications.
Fig. 4 shows the behaviors of three quantities, λ̂j/λj, λ́j/λj and λ̃j/λj, for
the first three eigenvalues. Note that td(0,Σ, ν) ⇒ Nd(0,Σ) as ν → ∞.
When ν = 10, the NR method seems not to give a feasible estimation com-
pared to the case of ν = 30. This is probably due to the size of ν = 10 is not
large enough for X to satisfy (C-i). On the other hand, the CDM method
does not require (A-i) (or (C-i)) in case of (B-i). As observed in Fig. 4, the
CDM method seems to perform excellently even when ν = 10.

7. Consistency of PC direction vectors

In this section, we consider PC direction vectors under the power spiked
model. Jung and Marron [15] and Yata and Aoshima [20] investigated PC
direction vectors in the context of conventional PCA. Let Ĥ = [ĥ1, · · · , ĥd],
where Ĥ is a d × d orthogonal matrix of the sample eigenvectors such
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(a) For the first eigenvalue.

(b) For the second eigenvalue.

(c) For the third eigenvalue.

Figure 3: The behaviors of three estimates, λ̂j/λj , λ́j/λj and λ̃j/λj , in the left panels

and their sample variances, var(λ̂j/λj), var(λ́j/λj) and var(λ̃j/λj), in the right panels.
The eigenvalue estimates were calculated based on samples of size n = 40 from Nd(0,Σ)
having (14) with λ1 = d4/5, λ2 = d3/5 and λ3 = d2/5 for d = 400(200)1200.
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(a) For the first eigenvalue when ν = 10 (left) and ν = 30 (right).

(b) For the second eigenvalue when ν = 10 (left) and ν = 30 (right).

(c) For the third eigenvalue when ν = 10 (left) and ν = 30 (right).

Figure 4: The behaviors of three estimates, λ̂j/λj , λ́j/λj and λ̃j/λj , when ν = 10 (left
panels) and ν = 30 (right panels). The eigenvalue estimates were calculated based on
samples of sizes n = 20(20)100 from td(0,Σ, ν) having (14) with λ1 = d4/5, λ2 = d3/5 and
λ3 = d2/5 for d = 1000.
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that Ĥ
T
SĤ = Λ̂ having Λ̂ = diag(λ̂1, · · · , λ̂d). We assume hT

j ĥj ≥ 0

for all j without loss of generality. Note that ĥj can be calculated by

ĥj = (nλ̂j)
−1/2Xûj, where ûj is a unit eigenvector of SD corresponding

to λ̂j. Yata and Aoshima [20] showed that the sample eigenvectors are con-
sistent with their population counterparts under (3) as follows: Assume that
λj (j ≤ m) has multiplicity one such as λj ̸= λj′ for all j

′(̸= j). Then, ĥj is
consistent with hj in the sense that

Angle(ĥj,hj) = op(1) (15)

under (3) and (YA-i)-(YA-ii) in Section 1. Note that (15) is equivalent to
the consistency in the sense that ||ĥj − hj||2 = op(1).

For the power spiked model, we have the following results.

Theorem 7.1. For j (≤ m) satisfying (C-i) to (C-iii), (15) holds as d → ∞
and n → ∞ without extra conditions in case of (B-i) or under (C-v) and
(C-vi) in case of (B-ii).

Remark 11. For j (≤ m) satisfying (C-ii) and (C-iii), (15) holds as d → ∞
and n → ∞ under (A-i) in case of (B-i) or under (A-i) and (C-vi) in case of
(B-ii).

If one cannot assume (C-ii), we have the following result.

Corollary 7.1. For j (≤ m) satisfying (C-i) and (C-iii), it holds as d → ∞
and n → ∞ that

Angle(ĥj,hj) = Arccos
(
1/{1 + tr(Σ(2))/(nλj)}1/2

)
+ op(1) (16)

without extra conditions in case of (B-i) or under (C-v) and (C-vi) in case
of (B-ii).

Remark 12. For j (≤ m) satisfying (C-iii), (16) holds as d → ∞ and n → ∞
under (A-i) in case of (B-i) or under (A-i) and (C-vi) in case of (B-ii).

Remark 13. When the population mean may not be zero, let ĥoj = {(n−
1)λ̂oj}−1/2(X−X)ûoj, where ûoj is a unit eigenvector of SoD corresponding

to λ̂oj. Here, SoD is defined in Corollary 3.3. Then, after replacing ĥjs with

ĥojs, the above results are still justified.

20



Next, we consider PC direction vectors by using the CDM methodology.
Let h̃j(i) = (niλ̃j)

−1/2X iũj(i), i = 1, 2. We assume hT
j h̃j(1) ≥ 0 for all j

without loss of generality. We consider h̃j = (h̃j(1) + h̃j(2))/2 as an estimate

of the PC direction vector, hj. Let h̃j⋆ = h̃j/||h̃j||. Then, we have the
following result.

Theorem 7.2. For j (≤ m) satisfying (C-ii) and (C-iii), it holds as d → ∞
and n → ∞ that

Angle(h̃j⋆,hj) = op(1) (17)

without extra conditions in case of (B-i) or under (C-v) and (C-vi) in case
of (B-ii).

Note that (17) is equivalent to ||h̃j⋆ − hj||2 = op(1).

Remark 14. Note that one can claim (17) without (C-i). For j (≤ m)
satisfying (B-ii), (17) holds as d → ∞ and n → ∞ under (A-i), (C-ii), (C-iii)
and (C-vi).

Remark 15. When the population mean may not be zero, let h̃oj(i) = {(ni−
1)λ̃oj}−1/2(X i − X i)ũoj(i), where ũoj(1) (or ũoj(2)) is a unit left- (or right-

) singular vector of SoD(1) corresponding to λ̃oj. Here, SoD(1) is defined in

Corollary 5.1. Then, after replacing h̃j(i)s with h̃oj(i)s, the results in Theorem
7.2 and Remark 14 are still justified.

8. Consistency of PC scores

The j-th PC score of xk is given by hT
j xk = zjkλ

1/2
j (= sjk, say). Note

that Var(sjk) = λj. Since hj is unknown, one may use ĥj = (nλ̂j)
−1/2Xûj

instead. The j-th PC score of xk is estimated by ĥ
T

j xk = ûjk(nλ̂j)
1/2 (= ŝjk,

say), where ûT
j = (ûj1, ..., ûjn). Then, Yata and Aoshima [20] evaluated

conventional PC scores, ŝjks, under (3) as follows: Assume that λj (j ≤ m)
has multiplicity one. Define a sample mean square error of the j-th PC scores
by MSE(ŝj) = n−1

∑n
k=1(ŝjk − sjk)

2. Then, it holds that

MSE(ŝj)

λj

= op(1) (18)

under (YA-i)-(YA-ii) in Section 1. In this section, we consider PC scores
under the power spiked model.
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8.1. Conventional PC scores

As for ŝjks, we have the following results.

Theorem 8.1. For j (≤ m) satisfying (C-i) to (C-iii), (18) holds as d → ∞
and n → ∞ without extra conditions in case of (B-i) or under (C-v) and
(C-vi) in case of (B-ii).

Corollary 8.1. For j (≤ m) satisfying (C-iii) and (C-iv), it holds as d → ∞
and n → ∞ that

MSE(ŝj)

λj

= op(n
−1/2).

Remark 16. For j (≤ m) satisfying (C-ii) and (C-iii), (18) holds as d → ∞
and n → ∞ under (A-i) in case of (B-i) or under (A-i) and (C-vi) in case of
(B-ii).

Remark 17. When the population mean may not be zero, let ŝojk = ûojk{(n−
1)λ̂oj}1/2, where λ̂oj and ûT

oj = (ûoj1, ..., ûojn) are given in Corollary 3.3 and
Remark 13, respectively. Then, after replacing ŝjks with ŝojks, the above
results are still justified.

8.2. PC scores by the noise-reduction methodology

When we use the NR methodology, ŝjk can be modified by ûjk(nλ́j)
1/2 (=

śjk, say). A sample mean square error of the j-th PC scores is given by
MSE(śj) = n−1

∑n
k=1(śjk − sjk)

2. Then, we have the following results.

Theorem 8.2. For j (≤ m) satisfying (C-i) and (C-iii), it holds as d → ∞
and n → ∞ that

MSE(śj)

λj

= op(n
−1/2) (19)

without extra conditions in case of (B-i) or under (C-v) and (C-vi) in case
of (B-ii).

Remark 18. Note that one can claim (19) without (C-ii). For j (≤ m)
satisfying (C-iii), (19) holds as d → ∞ and n → ∞ under (A-i) in case of
(B-i) or under (A-i) and (C-vi) in case of (B-ii).

Remark 19. When the population mean may not be zero, let śojk = ûojk{(n−
1)λ́oj}1/2, where λ́oj and ûojk are given in Corollary 4.1 and Remark 17, re-
spectively. Then, after replacing śjks with śojks, the above results are still
justified.
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8.3. PC scores by the cross-data-matrix methodology

When we use the CDM methodology, recall that ũj(1) (or ũj(2)) is a unit

left- (or right-) singular vector corresponding to the singular value, λ̃j (j =
1, ..., n2), of SD(1) = (n1n2)

−1/2XT
1X2. Let ũ

T
j(i) = (ũj1(i), ..., ũjni(i)), i = 1, 2.

Then, the j-th PC score of xik can be estimated by ũjk(i)(niλ̃j)
1/2 (= s̃jk(i),

say). We denote s̃jk = s̃jk′(i′) with some k′, i′ for k = 1, ..., n, according to the
relation that xk = xi′k′ . A sample mean square error of the j-th PC scores
is given by MSE(s̃j) = n−1

∑n
k=1(s̃jk − sjk)

2. Then, we have the following
results.

Theorem 8.3. For j (≤ m) satisfying (C-iii), it holds as d → ∞ and n → ∞
that

MSE(s̃j)

λj

= op(n
−1/2) (20)

without extra conditions in case of (B-i) or under (C-v) and (C-vi) in case
of (B-ii).

Remark 20. Note that one can claim (20) without (C-i) and (C-ii). For
j (≤ m) satisfying (B-ii), (20) holds as d → ∞ and n → ∞ under (A-i),
(C-iii) and (C-vi).

Remark 21. When the population mean may not be zero, let s̃ojk(i) =

ũojk(i){(ni − 1)λ̃oj}1/2, where λ̃oj and ũT
oj(i) = (ũoj1(i), ..., ũojni(i)) are given in

Corollary 5.1 and Remark 15, respectively. Then, after replacing s̃jk(i)s with
s̃ojk(i)s, the above results are still justified.

Appendix A.

Throughout, let ejn = (ej1, ..., ejn)
T , j = 1, 2, be arbitrary unit random

vectors, where
∑n

k=1 e
2
jk = 1. Let M be a uniform bound for the fourth

moment of zijs such that E(z4ij) < M for all i, j. Let us write that

U 1 = n−1

m∑
s=1

λszsz
T
s , U 2 = n−1

d∑
s=m+1

λszsz
T
s ,

V 1 = (n1n2)
−1/2

m∑
s=1

λsz1sz
T
2s and V 2 = (n1n2)

−1/2

d∑
s=m+1

λsz1sz
T
2s.
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Note that SD = U 1 + U 2 and SD(1) = V 1 + V 2. Let us write ui =

n−1
∑d

s=m+1 λsz
2
si as a diagonal element of U 2. Let κ = n−1

∑d
s=m+1 λs and

U 22 = U 2 − κIn. Let U 2(t) = (uij(t)), t = 1, 2, ..., be n × n matrices such
that

uij(t) =

{
n−1

∑d
s=m+1 λ

2t−1

s zsizsj (i ̸= j),

0 (i = j).

Let us write that K1 =
∑d

r,s=m+1 λrλsE{(z2rk − 1)(z2sk − 1)} and K2 =∑d
p ̸=q,r ̸=s≥m+1 λpλqλrλs{E(zpkzqkzrkzsk)}2. Let z̃j = (||n−1/2zj||)−1n−1/2zj,

j = 1, ...,m. In Appendix, we consider the following conditions:

(D-i) (C-i) in case of (B-i) or (C-i), (C-v) and (C-vi) in case of (B-ii);

(D-ii) No extra conditions in case of (B-i) or (C-v) and (C-vi) in case of
(B-ii).

Lemma 1. It holds that K1 = O{tr(Σ2
(2))} and K2 = O{tr(Σ2

(2))
2} under

(A-i).

Proof of Lemma 1. Let P = Id −
∑m

i=1 hih
T
i . Note that P 2 = P , Pxk =∑d

s=m+1 λ
1/2
s hszsk and xT

kPxk =
∑d

s=m+1 λsz
2
sk. Under (A-i), we write that

xT
kPxk =

∑t
r,s=1 γ

T
r Pγswrkwsk. Note that E(xT

kPxk) =
∑t

s=1 γ
T
s Pγs =

tr(ΣP ) = tr(Σ(2)). Then, it holds under (A-i) that

K1 = Var(xT
kPxk) = O

( t∑
r,s=1

(γT
r Pγs)

2
)
= O[tr{(ΣP )2}] = O{tr(Σ2

(2))}.

On the other hand, we write (xT
kPxk′)

2 =
∑d

r,s=m+1 λrλszrkzrk′zskzsk′ =∑t
p,q,r,s=1 γ

T
pPγqγ

T
r Pγswpkwqk′wrkwsk′ under (A-i). Then, for k ̸= k′, it

holds under (A-i) that

E{(xT
kPxk′)

4} =
d∑

p,q,r,s=m+1

λpλqλrλs{E(zpkzqkzrkzsk)}2 (≤ K2)

= O[tr{(ΣP )2}2] +O[tr{(ΣP )4}] = O{tr(Σ2
(2))

2}+O{tr(Σ4
(2))}.

Thus from the fact that tr(Σ4
(2)) ≤ tr(Σ2

(2))
2, it concludes the results.
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Lemma 2. It holds as d → ∞ and n → ∞ that

||λ−2t−1

j eT
1nU 2(t)||2 = λ−2t

j eT
1nU 2(t+1)e1n + op(1), t = 1, 2, ...

for j (≤ m) under (D-ii).

Proof of Lemma 2. For every t (= 1, 2, ...), we write that

||eT
1nU 2(t)||2 =

n∑
i′=1

e21i′

n∑
k=1(\i′)

u2
i′k(t) +

n∑
i′ ̸=j′

e1i′e1j′
n∑

k=1(\i′,j′)

ui′k(t)uj′k(t), (A.1)

where (\i) excludes number i and (\i, j) excludes numbers i, j. For the second
term in (A.1), in a way similar to the proof of Lemma A.1 given in Yata and
Aoshima [20], we can obtain under (D-ii) that

λ−2t

j

n∑
i′ ̸=j′

e1i′e1j′
n∑

k=1(\i′,j′)

ui′k(t)uj′k(t) = λ−2t

j eT
1nU 2(t+1)e1n + op(1). (A.2)

Next, we consider the first term in (A.1). In case of (B-i), by using
Markov’s inequality for any τ (> 0), one has as d → ∞ that

n∑
i′=1

P
(
λ−2t

j

n∑
k=1(\i′)

u2
i′k(t) > τ

)
≤ n

n∑
k=1(\i′)

E(u2
i′k(t))

τλ2t
j

= O
(tr(Σ2

(2))

λ2
j

)
→ 0.

In case of (B-ii), by using Chebyshev’s inequality for any τ (> 0), one has
that

n∑
i′=1

P
(
λ−2t

j

n∑
k=1(\i′)

u2
i′k(t) > τ

)
≤

n∑
i′=1

P
( n∑

k=1(\i′)

d∑
s=m+1

λ2t

s z
2
si′z

2
sk

n2λ2t
j

> τ/2
)

+
n∑

i′=1

P
(∣∣∣ n∑

k=1(\i′)

d∑
p̸=q≥m+1

λ2t−1

p λ2t−1

q zpi′zqi′zpkzqk

n2λ2t
j

∣∣∣ > τ/2
)

= O
{ d∑

p̸=q,r ̸=s≥m+1

λ2t−1

p λ2t−1

q λ2t−1

r λ2t−1

s {E(zpkzqkzrkzsk)}2

n2λ2t+1

j

}
+O

(tr(Σ2t

(2))
2

nλ2t+1

j

)
= O

( K2

n2λ4
j

+
tr(Σ2

(2))
2

nλ4
j

)
→ 0
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under (C-v) and (C-vi). Thus we obtain that

λ−2t

j

n∑
i′=1

e21i′

n∑
k=1(\i′)

u2
i′k(t) = op(1). (A.3)

By combining (A.2) and (A.3) with (A.1), we conclude the result.

Lemma 3. It holds as d → ∞ and n → ∞ that ||λ−1
j eT

1nU 2(1)||2 = op(1) for
j (≤ m) under (D-ii).

Proof of Lemma 3. From (5), there is at least one positive integer tj (≥
2) satisfying limd→∞ λ−2tj

j tr(Σ2tj

(2)) = 0. Then, by using Markov’s inequal-

ity, we have for i′ ̸= j′ under (D-ii) that P (λ−2tj

j

∑n
i′ ̸=j′ |ui′j′(tj)|2 > τ) ≤

τ−1λ−2tj

j tr(Σ2tj

(2))→ 0 for any τ > 0. Then, from the fact that
∑n

i′ ̸=j′ e
2
1i′e

2
1j′ ≤

1 w.p.1, we obtain that

eT
1nU 2(tj)e1n

λ2tj−1

j

=

∑n
i′ ̸=j′ e1i′e1j′ui′j′(tj)

λ2tj−1

j

≤
(∑n

i′ ̸=j′ |ui′j′(tj)|2

λ2tj
j

)1/2

= op(1).

Thus from Lemma 2, we have under (D-ii) that

||λ−2tj−2

j eT
1nU 2(tj−1)||2 = λ−2tj−1

j eT
1nU 2(tj)e1n + op(1) = op(1),

so that λ−2tj−2

j eT
1nU 2(tj−1)e1n = op(1). Similarly, we have under (D-ii) that

||λ−1
j eT

1nU 2(1) ||2 = λ−2
j eT

1nU 2(2)e1n + op(1) = op(1), which concludes the
result.

Lemma 4. It holds as d → ∞ and n → ∞ that ||λ−1
j eT

1n1
V 2||2 = op(1) for

j (≤ m) under (D-ii).

Proof of Lemma 4. Let V 2(t) = (vij(t)), t = 1, 2, ..., where vij(t) = (n1n2)
−1/2∑d

s=m+1 λ
2t−1

s z1siz2sj. For every t, we write that ||eT
1n1

V 2(t)||2 =
∑n1

i′=1 e
2
1i′∑n2

k=1 v
2
i′k(t) +

∑n1

i′ ̸=j′ e1i′e1j′
∑n2

k=1 vi′k(t)vj′k(t). Thus in a way similar to the
proofs of Lemmas 2 and 3, we can claim the result.

Lemma 5. It holds as d → ∞ and n → ∞ that λ−1
j eT

1nU 22e2n = op(1) for
j (≤ m) under (D-i).
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Proof of Lemma 5. By using Markov’s inequality, for any τ > 0, one has
under (C-i) that P{

∑n
k=1 λ

−2
j (uk − κ)2 > τ} ≤ τ−1K1/(nλ

2
j) → 0. Thus it

holds that |
∑n

k=1 e1ke2kλ
−1
j (uk − κ)| ≤ {

∑n
k=1 λ

−2
j (uk − κ)2}1/2 = op(1) from

the fact that
∑n

k=1 e
2
1ke

2
2k ≤ 1 w.p.1. From Lemma 3, we have under (D-i)

that λ−1
j eT

1nU 22e2n = λ−1
j eT

1nU 2(1)e2n +
∑n

k=1 e1ke2kλ
−1
j (uk − κ) = op(1) for

j (≤ m). It concludes the result.

Lemma 6. It holds as d → ∞ and n → ∞ that

(nλj)
−1zT

i′U 2(1)zj′ = op(n
−1/2) (i′ = 1, ...,m; j′ = 1, ...,m);

(n1n2)
−1/2λ−1

j zT
1i′V 2z2j′ = op(n

−1/2) (i′ = 1, ...,m; j′ = 1, ...,m)

for j (≤ m) under (D-ii).

Proof of Lemma 6. We consider the first result. One can write that zT
i′U 2(1)zj′

=
∑n

k1 ̸=k2
zi′k1zj′k2uk1k2(1).Note E{(

∑n
k2=1(\k1) zj′k2uk1k2(1))

2} = O{tr(Σ2
(2))/n}

in case of (B-i). Then, for any τ > 0, by using Schwarz’s inequality, one has
as d → ∞ and n → ∞ that

P
(∣∣(nλj)

−1

n∑
k1 ̸=k2

zi′k1zj′k2uk1k2(1)

∣∣ > n−1/2τ
)

≤ P
(
(nλj)

−1

n∑
k1=1

|zi′k1 |
∣∣ n∑
k2=1(\k1)

zj′k2uk1k2(1)

∣∣ > n−1/2τ
)

≤
n1/2E(z2i′k1)

1/2E{(
∑n

k2=1(\k1) zj′k2uk1k2(1))
2}1/2

τλj

= O
(tr(Σ2

(2))
1/2

λj

)
→ 0.

In case of (B-ii), note that n2E(z2i′k1z
2
j′k2

u2
k1k2(1)

) ≤ M2tr(Σ2
(2)) + E(z2i′k1z

2
j′k2∑d

p ̸=q≥m+1 λpλqzpk1zpk2zqk1zqk2) ≤ M2tr(Σ2
(2)) + E(z4i′k1z

4
j′k2

)1/2K
1/2
2 = O{

tr(Σ2
(2)) + K

1/2
2 } and n2E(zi′k1zj′k1zi′k2zj′k2u

2
k1k2(1)

) = O{tr(Σ2
(2)) + K

1/2
2 }

(k1 ̸= k2) from Schwarz’s inequality. Then, for any τ > 0, one has under
(C-v) and (C-vi) that

P
(∣∣(nλj)

−1

n∑
k1 ̸=k2

zi′k1zj′k2uk1k2(1)

∣∣ > n−1/2τ
)

≤
nE{(z2i′k1z

2
i′k2

+ zi′k1zj′k1zi′k2zj′k2)u
2
k1k2(1)

}
τ 2λ2

j

= O
(tr(Σ2

(2)) +K
1/2
2

nλ2
j

)
→ 0.
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Therefore, it concludes the first result.
Next, we consider the second result. One can write that zT

1i′V 2z2j′ =∑n2

k=1 z1i′kz2j′kvkk(1) +
∑n1

k1=1

∑n2

k2=1(\k1) z1i′k1z2j′k2vk1k2(1). For the first term,
by using Schwarz’s inequality, we have that

P
(∣∣(n1n2)

−1/2λ−1
j

n2∑
k=1

z1i′kz2j′kvkk(1)
∣∣ > n−1/2τ

)
≤ (nn2/n1)

1/2E(|z1i′kz2j′k||vkk(1)|)/(τλj) = O{tr(Σ2
(2))

1/2/(n1/2λj)} → 0

under (D-ii) for any τ > 0. Similarly to the first result, we can claim
for the second term that (n1n2)

−1/2λ−1
j

∑n1

k1=1

∑n2

k2=1(\k1) z1i′k1z2j′k2vk1k2(1) =

op(n
−1/2). It concludes the second result.

Lemma 7. For i′ (≤ m), it holds as d → ∞ and n → ∞ that

||n−1/2λ−1
j zT

i′U 2(1)||2 = op(n
−1/2) and ||n−1/2

1 λ−1
j zT

1i′V 2||2 = op(n
−1/2)

for j (≤ m) under (D-ii).

Proof of Lemma 7. We consider the first result. One can write that

||n−1/2λ−1
j zT

i′U 2(1)||2 = n−1λ−2
j

n∑
k1,k2

zi′k1zi′k2

n∑
k3=1(\k1,k2)

uk1k3(1)uk2k3(1).

First, we consider the case of k1 = k2. Note that E(z2i′k1
∑n

k3=1(\k1) u
2
k1k3(1)

) =

O{tr(Σ2
(2))/n}. For any τ > 0, one has under (D-ii) that

P
( n∑

k1=1

z2i′k1

n∑
k3=1(\k1)

u2
k1k3(1)

nλ2
j

> τn−1/2
)
= O

(tr(Σ2
(2))

n1/2λ2
j

)
→ 0. (A.4)

Next, we consider the case of k1 ̸= k2. Let u(k1k2k3) =
∑d

p̸=q≥m+1 λpλqzpk1zqk2
zpk3zqk3/n

2. Note that E{(
∑n

k3=1(\k1,k2) u(k1k2k3))
2} = O{n−3tr(Σ2

(2))
2} and

E{z2i′k1z
2
i′k2

(
∑n

k3=1(\k1,k2)
∑d

s=m+1 λ
2
szsk1zsk2z

2
sk3

/n2)2} = O{n−2tr(Σ2
(2))

2}. In
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case of (B-i), for any τ > 0, one has as d → ∞ and n → ∞ that

P
(
(n1/2λj)

−2

n∑
k1 ̸=k2

zi′k1zi′k2

n∑
k3=1(\k1,k2)

u(k1k2k3) > τn−1/2
)

≤ P
( n∑

k1 ̸=k2

∣∣zi′k1zi′k2
n2

∣∣∣∣n3/2

λ2
j

n∑
k3=1(\k1,k2)

u(k1k2k3)

∣∣ > τ
)
= O

(tr(Σ2
(2))

λ2
j

)
→ 0;

P
(
(n1/2λj)

−2

n∑
k1 ̸=k2

zi′k1zi′k2

n∑
k3=1(\k1,k2)

d∑
s=m+1

λ2
szsk1zsk2z

2
sk3

/n2 > τn−1/2
)

= O{tr(Σ2
(2))/(nλ

2
j)} → 0.

In case of (B-ii), one has under (C-v) and (C-vi) that

P
(
(n1/2λj)

−2

n∑
k1 ̸=k2

zi′k1zi′k2

n∑
k3=1(\k1,k2)

uk1k3(1)uk2k3(1) > τn−1/2
)

≤ τ−2n2λ−4
j {E(z2i′k1z

2
i′k2u

2
k1k(1)

u2
k2k(1)

) +M2tr(Σ2
(2))

2/n3}
= τ−2n2λ−4

j {E(z4i′k1u
4
k2k(1)

)E(z4i′k2u
4
k1k(1)

)}1/2 + o(1)

= O{n2λ−4
j E(u4

k1k(1)
)}+ o(1) → 0 (A.5)

from the fact that n2E(u4
k1k(1)

) = O{K2/n
2 + tr(Σ2

(2))
2/n2} for k ̸= k1, k2.

From (A.4) and (A.5), it concludes the first result.

Next, we consider the second result. One can write that ||n−1/2
1 λ−1

j zT
1i′V 2||2

= n−1
1 λ−2

j

∑n1

k1,k2
z1i′k1z1i′k2

∑n2

k3=1 vk1k3vk2k3(1). Then, similarly to the first re-
sult, it concludes the second result.

Lemma 8. It holds as d → ∞ and n → ∞ that

||n−1/2λ−1
j zT

i′U 22||2 = op(n
−1/2) (i′ = 1, ...,m);

(nλj)
−1zT

i′U 22zj′ = op(n
−1/2) (i′ = 1, ...,m; j′ = 1, ...,m)

for j (≤ m) under (D-i).

Proof of Lemma 8. We consider the first result. One can write that

||n−1/2λ−1
j zT

i′diag(u1 − κ, ..., un − κ)||2 = (nλ2
j)

−1

n∑
k=1

z2i′k(uk − κ)2.
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Let η = K
1/2
1 /(nλ2

j)
1/2. When η = 0, the result is obvious. We assume

η > 0. Note that η → 0 under (C-i). Here, it holds that
∑n

k=1 P (z2i′k/n
1/2 >

1/η) ≤ Mη2 → 0. Thus it holds that z2i′k/n
1/2 ≤ 1/η for all k = 1, ..., n

with probability going to 1 as η → 0. Then, by noting that E{(uk −
κ)2} = K1/n

2, it holds for any τ > 0 that P{(nλ2
j)

−1
∑n

k=1 z
2
i′k(uk − κ)2 >

τn−1/2} ≤ P{λ−2
j

∑n
k=1 η

−1(uk − κ)2 > τ} + o(1) = O(η) + o(1) → 0 un-

der (C-i). Hence, we obtain from Lemma 7 that ||(n1/2λj)
−1zT

i′U 22||2 =
||(n1/2λj)

−1zT
i′{diag(u1 − κ, ..., un − κ) + U 2(1)}||2 = op(n

−1/2) under (D-i),
which concludes the first result.

Next, we consider the second result. One can write that zT
i′diag(u1 −

κ, ..., un − κ)zj′ =
∑n

k=1 zi′kzj′k(uk − κ). Then, it holds under (C-i) that

P
(
(nλj)

−1
∣∣ n∑
k=1

zi′kzj′k(uk − κ)
∣∣ > n−1/2τ

)
≤ P (n−1/2λ−1

j

n∑
k=1

|zi′kzj′k||uk − κ| > τ) ≤ n1/2E(|zi′kzj′k||uk − κ|)/(τλj)

≤ n1/2{E(z2i′kz
2
j′k)E(|uk − κ|2)}1/2/(τλj) = O{K1/2

1 /(n1/2λj)} = o(1).

Hence, we obtain from Lemma 6 that (nλj)
−1zT

i′U 22zj′ = (nλj)
−1

∑n
k=1

zi′kzj′k(uk − κ) + op(n
−1/2) = op(n

−1/2). It concludes the second result.

Lemma 9. Assume that the first m population eigenvalues are distinct in
the sense that lim infd→∞ |λj′/λj − 1| > 0 for all j ̸= j′ = 1, ...,m. Then, it
holds as d → ∞ and n → ∞ that

(λ̂j − κ)/λj = ||n−1/2zj||2 + op(n
−1/2) and ûT

j z̃j = 1 + op(n
−1/2)

for j (≤ m) under (D-i).

Proof of Lemma 9. Let us note that SD −κIn = U 1+U 22. Similarly to the
proof of Lemma 5 given in Yata and Aoshima [22], by using Lemmas 5 and
8, we can claim under (D-i) with j = 1 that

(λ̂1 − κ)/λ1 = ûT
1 (U 1 +U 22)û1/λ1 = ||n−1/2z1||2 + op(n

−1/2)

and ûT
1 z̃1 = 1 + op(n

−1/2). For λ2, under (D-i) with j = 2, it holds from
Lemma 8 that ûT

1U 22û2/λ2 = z̃T
1U 22û2/λ2 + op(n

−1/4) = op(n
−1/4). Then,

from the fact that n−1zT
j zj′ = op(n

−1/4) (j ̸= j′), it holds that

0 = ûT
1 (U 1 +U 22)û2/λ1 = {1 + op(1)}z̃T

1 û2 + op(n
−1/4λ2/λ1), (A.6)
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so that z̃T
1 û2 = op(n

−1/4λ2/λ1). Thus we have under (D-i) with j = 2 that

ûT
2 (U 1 +U 22)û2/λ2 = ûT

2

( m∑
s=2

λs||n−1/2zs||2z̃sz̃
T
s +U 22

)
û2/λ2 + op(n

1/2).

Thus similar to the case of λ1, we obtain that (λ̂2 − κ)/λ2 = ||n−1/2z2||2
+op(n

−1/2) and ûT
2 z̃2 = 1 + op(n

−1/2). Similarly to (A.6), we can claim
under (D-i) with j = 3 that

0 = ûT
1 (U 1 +U 22)û3/λ1 = {1 + op(1)}z̃T

1 û3 + z̃T
2 û3op(n

−1/4λ2/λ1)

+ op(n
−1/4λ3/λ1);

0 = ûT
2 (U 1 +U 22)û3/λ2 = {1 + op(1)}z̃T

2 û3 + z̃T
1 û3op(1) + op(n

−1/4λ3/λ2),

so that z̃T
s û3 = op(n

−1/4λ3/λs), s = 1, 2. Thus it holds that ûT
3 (U 1 +

U 22)û3/λ3 = ûT
3 (
∑m

s=3 λs||n−1/2zs||2z̃sz̃
T
s +U 22)û3/λ3 + op(n

−1/2). For j ≥
3, in a way similar to the case of λ2, we have that (λ̂j−κ)/λj = ||n−1/2zj||2+
op(n

−1/2) and ûT
j z̃j = 1+op(n

−1/2) under (D-i). It concludes the results.

Lemma 10. Under (D-i), it holds as d → ∞ and n → ∞ that

(λ̂j − κ)/λj = 1 + op(1) for j = 1, ...,m;

(λ̂j − κ)/λj = ||n−1/2zj||2 + op(n
−1/2) and ûT

j z̃j = 1 + op(n
−1/2)

for j (≤ m) satisfying (C-iii).

Proof of Lemma 10. We consider an example that lim infd→∞ |λ2/λ1 −1| = 0
and lim infd→∞ |λj/λ3 − 1| > 0 for j(̸= 3) = 1, ...,m (≥ 3).

We first consider the case that limd→∞ λ2/λ1 = 1. Note that ||n−1/2zj||2 =
1+ op(1) as n → ∞. We have from Lemma 5 that λ−1

j eT
1nU 22e2n = op(1) un-

der (D-i). Then, it holds for j = 1, 2, and j′ = 3, ...,m, that λj||n−1/2zj||2 >
λj′||n−1/2zj′||2 and λj||n−1/2zj||2 > eT

1nU 22e1n with probability going to 1.
Then, we have under (D-i) that

λ̂j − κ

λj

=
ûT

j (U 1 +U 22)ûj

λj

=
2∑

s=1

λs||n−1/2zs||2(ûT
j z̃s)

2

λj

+ op(1) = 1 + op(1)

for j = 1, 2. Then, there exist random variables ε1j, ε2j, ε3j ∈ [−1, 1] and a
random unit vector yj such that ûj = ε1jz̃1 + ε2jz̃2(1) + ε3jyj and z̃T

1 yj =
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z̃T
2(1)yj = 0 for j = 1, 2, where z̃2(1) = {z̃2 − (z̃T

1 z̃2)z̃1}/||z̃2 − (z̃T
1 z̃2)z̃1||.

Note that ε21j + ε22j = 1 + op(1), ε3j = op(1) and ε23j = 1 − ε21j − ε22j. Hence,
from Lemma 8, it holds for j = 1, 2, that

λ̂j − κ

λj

=
2∑

s=1

{1 + op(1)}ε2sj + ε23j

m∑
s=3

λs

λj

||n−1/2zj||2(yT
j z̃s)

2

+ ε23jop(1) + ε3jop(n
−1/4) + op(n

−1/2). (A.7)

Note that λ−1
j

∑m
s=3 λs||n−1/2zj||2(yT

j z̃s)
2 < 1 with probability going to 1

for j = 1, 2. Then, we obtain ε3j = op(n
−1/4), j = 1, 2, from the fact that

λ̂j = max(eT
1nSDe1n) with respect to any e1n, provided that eT

1nûi = 0, i =
1, ..., j − 1. Thus similarly to (A.6), it holds for j = 1, 2, that

0 = ûT
j (U 1 +U 22)û3/λj =

2∑
i=1

{εij + op(1)}z̃T
i û3 + op(n

−1/4λ3/λj).

Similarly to the proof of Lemma 9, we can claim that (λ̂3−κ)/λ3 = ||n−1/2z3||2
+op(n

−1/2) and ûT
3 z̃3 = 1 + op(n

−1/2).
Next, we consider the case that lim infd→∞ |λ2/λ1−1| > 0. From Lemma

9, it holds that (λ̂j −κ)/λj = ||n−1/2zj||2+ op(n
−1/2) = 1+ op(1), j = 1, 2, 3,

and ûT
3 z̃3 = 1 + op(n

−1/2). Hence, we obtain the results by considering the
convergent subsequence of |λ2/λ1 − 1|. In general cases, in a way similar to
the above and the proof of Lemma 9, we can claim the results.

Lemma 11. Let δj = {(n− j)λj}−1{tr(SD)−
∑j

i=1 λ̂i}−λ−1
j κ, j = 1, ...,m.

Then, it holds as d → ∞ and n → ∞ that δj = Op(n
−1) for j (≤ m) under

(D-i).

Proof of Lemma 11. Note that tr(SD) =
∑d

s=1 λs

∑n
k=1 z

2
sk/n and tr(U 2) =∑d

s=m+1 λs

∑n
k=1 z

2
sk/n. By using Chebyshev’s inequality, for any τ > 0, one

has under (C-i) that P (λ−1
j |n−1tr(U 2) − κ| > τn−1) = O{K1/(nλ

2
j)} → 0.

Note that λ−1
j n−1

∑m
s=j+1 λs

∑n
k=1 z

2
sk/n = Op(n

−1) for j = 1, ...,m − 1. Let

ωj =
∑j

s=1 λs

∑n
k=1 z

2
sk/n, j = 1, ...,m. Then, it holds that

λ−1
j {n−1tr(SD)− n−1ωj − κ} = Op(n

−1). (A.8)

Here, from Lemma 5, it holds that λ−1
j eT

1n(SD − κIn)e1n = λ−1
j eT

1nU 1e1n +

op(1) under (D-i). Note that tr(
∑j

s=1 λszsz
T
s /n) = ωj. Then, we can claim
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that ωj/λj + op(1) ≤
∑j

i=1(λ̂i −κ)/λj ≤ tr(U 1)/λj + op(1). Thus it holds

that λ−1
j {ωj −

∑j
i=1(λ̂i − κ)} = Op(1). Then, from (A.8), we have that

δj =
tr(SD)− ωj + ωj −

∑j
i=1(λ̂i − κ)

(n− j)λj

− nκ

(n− j)λj

=
( n

n− j

)n−1tr(SD)− n−1ωj − κ

λj

+Op(n
−1) = Op(n

−1) for j (≤ m).

It concludes the result.

Lemma 12. Under (D-ii), it holds as d → ∞ and n → ∞ that

λ̃j/λj = 1 + op(1) for j = 1, ...,m;

ũT
j(i)z̃ij′ = op(n

−1/4λj/λj′) (i = 1, 2) for j′ < j (≤ m) satisfying (C-iii);

λ̃j/λj = ||n−1/2
1 z1j|| · ||n−1/2

2 z2j||+ op(n
−1/2) and ũT

j(i)z̃ij = 1 + op(n
−1/2)

(i = 1, 2) for j (≤ m) satisfying (C-iii),

where z̃ij = ||n−1/2
i zij||−1n

−1/2
i zij, i = 1, 2; j = 1, ...,m.

Proof of Lemma 12. By using Lemma 4, under (D-ii) with j = 1, we have
that

λ̃1/λ1 = ũT
1(1)SD(1)ũ1(2)/λ1 = ũT

1(1)V 1ũ1(2)/λ1 + op(1)

= ||n−1/2
1 z1j|| · ||n−1/2

2 z2j||+ op(1) = 1 + op(1)

in case of lim infd→∞ |λj/λ1 − 1| > 0 for j = 2, ...,m. Then, there exist a
random variable εi ∈ [0, 1] and a random unit vector yi such that ũ1(i) =
z̃i1(1 − ε2i )

1/2 + εiyi and z̃T
i1yi = 0 for i = 1, 2. Note that (1 − ε2i )

1/2 =
1− ε2i /2 + op(ε

2
i ), i = 1, 2. Then, by using Lemmas 4, 6 and 7, we have that

λ̃1

λ1

=||n−1/2
1 z11|| · ||n−1/2

2 z21||+max
ε1,ε2

{
− ε21 + ε22

2
||n−1/2

1 z11|| · ||n−1/2
2 z21||

+ (ε1 + ε2)op(n
−1/4) + (ε21 + ε22)op(1)

+ ε1ε2

m∑
s=2

λs

λ1

||n−1/2
1 z1s|| · ||n−1/2

2 z2s||(yT
1 z̃1s)(y

T
2 z̃2s)

}
+ op(n

−1/2)

in case of lim infd→∞ |λj/λ1 − 1| > 0 for j = 2, ...,m. Then, by noting that

(ε21 + ε22)/2 ≥ ε1ε2, similarly to (A.7), we have that λ̃1/λ1 = ||n−1/2
1 z11|| ·
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||n−1/2
2 z21|| + op(n

−1/2) together with that εi = op(n
−1/4) and ũT

1(i)z̃i1 =

1+ op(n
−1/2), i = 1, 2. Thus, under (D-ii) with j = 2, it holds for i′ ̸= i that

0 = λ−1
1 ũT

1(i)SD(i)ũ2(i′) = {1 + op(1)}z̃T
i′1ũ2(i′) + op(n

−1/4λ2/λ1),

so that z̃T
i1ũ2(i) = op(n

−1/4λ2/λ1), i = 1, 2, and ũT
2(1)SD(1)ũ2(2)/λ2 =

∑m
s=2

λs||n−1/2
1 z1s||·||n−1/2

2 z2s||(ũT
2(1)z̃1s)(ũ

T
2(2)z̃2s)/λ2+op(1) = 1+op(1). In general

cases, in a way similar to the proofs of Lemmas 9 and 10, we can claim the
results.

Proof of Proposition 2.1. For k > 1/α, we have as d → ∞ that λ−k
j

∑d
i=j+1 λ

k
i

≤ dλk
j+1/λ

k
j = O(d1−αk) → 0. Thus there exist m and km satisfying (5). It

concludes the result.

Proofs of Theorems 3.1 to 3.4. Note that κ/λj → 0 under (C-ii). Thus from
Lemma 10, we can claim (4) under (C-ii) and (D-i). On the other hand, we
can claim (7) from Lemma 10. Thus it concludes the results of Theorems 3.1
and 3.3.

Next, we consider Theorems 3.2 and 3.4. Note that κ/λj = o(n−1/2)
under (C-iv). Also, note that (C-iv) implies (D-i) from the facts that K1 =
O{tr(Σ(2))

2} andK2 = O{tr(Σ(2))
4}. Here, we recall that Var(z2jk) = Mj. By

using the central limiting theorem, one has that (n/Mj)
1/2(||n−1/2zj||2−1) =

(nMj)
−1/2

∑n
k=1(z

2
jk − 1) ⇒ N(0, 1) under lim infMj > 0. Hence, under (C-

iii) and (C-iv), we have from Lemma 10 that

(n/Mj)
1/2(λ̂j/λj − 1) = (n/Mj)

1/2(||n−1/2zj||2 − 1) + op(1) ⇒ N(0, 1).

It concludes the results.

Proofs of Corollaries 3.1 and 3.2. From Lemma 1, (C-vi) implies (C-i) and
(C-v) under (A-i). Thus the results are obtained straightforwardly.

Proofs of Corollaries 3.3 and 4.1. In a way similar to the proof of Corollary
1 given in Yata and Aoshima [22], we can obtain the results.

Proofs of Theorems 4.1 to 4.3. We write that λ́j/λj = (λ̂j−κ)/λj−δj, where
δj is given in Lemma 11. Then, by combining Lemma 11 with Lemma 10,
the results are obtained straightforwardly.
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Proofs of Theorems 5.1 to 5.3. From the facts that n/ni = 2+o(1), i = 1, 2,
we have that

||n−1/2
1 z1j|| · ||n−1/2

2 z2j|| − 1 =
2∑

i=1

(||n−1/2
i zij||2 − 1)/2 + op(n

−1/2)

=
2∑

i=1

ni∑
k=1

(z2ijk − 1)/(2ni) + op(n
−1/2) =

n∑
k=1

(z2jk − 1)/n+ op(n
−1/2). (A.9)

Then, it holds that (n/Mj)
1/2(||n−1/2

1 z1j|| · ||n−1/2
2 z2j||−1) ⇒ N(0, 1). Then,

by using Lemma 12, the results are obtained straightforwardly.

Proof of Corollary 5.1. In a way similar to the proof of Corollary 2 given in
Yata and Aoshima [21], we can obtain the results.

Proof of Proposition 5.1. We first consider the case that there exists a fixed
integer j′ such that lim supd→∞

∑d
s=j′+1 λ

2
s/λ

2
j′ < ∞ and limd→∞ λj′+1/λj′ =

0. Here, we set m = j′. Note that tr(Σ4
(2))/λ

4
m ≤ λ2

m+1tr(Σ
2
(2))/λ

4
m = o(1).

Then, from Lemma 4, we can claim that eT
1n1

V 2e2n2/λm = op(1) as d → ∞
and n → ∞ under (A-i), so that eT

1n1
SD(1)e2n2/λm = eT

1n1
V 1e2n2/λm+op(1).

Let Ṽ 1 = V 1 −
∑m

s=1 λ̃sũs(1)ũ
T
s(2). Then, it holds that eT

1n1
Ṽ 1e2n2/λm =

op(1), so that all the singular values of Ṽ 1/λm are of the order op(1). Then,

from the fact that rank(Ṽ 1) ≤ 2m, it holds that tr(Ṽ 1Ṽ
T

1 )/λ
2
m = op(1).

Note that E{tr(V 2V
T
2 )} = tr(Σ2

(2)). Here, we can claim that Var{tr(V 2V
T
2 )

/tr(Σ2
(2))} → 0 under (A-i), so that tr(V 2V

T
2 ) = tr(Σ2

(2)){1+op(1)}. Then, it
holds that |tr(Ṽ 1V

T
2 )|/λ2

m ≤ tr(Ṽ 1Ṽ
T

1 )
1/2tr(V 2V

T
2 )

1/2/λ2
m = op(1). Hence,

we obtain for j (≤ m) that

n2∑
s=m+1

λ̃2
s

λ2
j

=
tr{(Ṽ 1 + V 2)(Ṽ 1 + V 2)

T}
λ2
j

=
tr(Σ2

(2))

λ2
j

+ op(1). (A.10)

Here, from Lemma 12, it holds that λ̃2
j/λ

2
j = 1 + op(1) for j ≤ m. On the

other hand, we have for j > m that λ̃j/λm = ũT
j(1)V 1ũj(2)/λm+op(1) = op(1)

from the fact that rank(V 1) ≤ m. Note that tr(SD(1)S
T
D(1)) −

∑m
s=1 λ̃

2
s =∑n2

s=m+1 λ̃
2
s. Thus we have for j ≤ m and any fixed j∗ (≥ m) that

tr(SD(1)S
T
D(1))−

∑j∗
s=1 λ̃

2
s

λ̃2
j

=

n2∑
s=m+1

λ̃2
s

λ̃2
j

+ op(1) =
tr(Σ2

(2))

λ2
j

+ op(1). (A.11)
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Next, we consider the case that there exists a fixed integer j′ such that
limd→∞ λ2

j′/
∑d

s=j′+1 λ
2
s = 0. We set m = j′. Note that tr(Σ4

(2))/tr(Σ
2
(2))

2 ≤
λ2
m+1/tr(Σ

2
(2)) = o(1). Then, from Lemma 4, we can obtain under (A-i) that

uT
j(1)

SD(1)

tr(Σ2
(2))

1/2
uj(2) = uT

j(1)

∑m−1
s=1 λsz1sz

T
2s

(n1n2)1/2tr(Σ
2
(2))

1/2
uj(2) + op(1),

so that λ̃j/tr(Σ
2
(2))

1/2 = op(1) for j ≥ m. Hence, in a way similar to (A.10),
we have for any fixed j ≥ m and j∗ (≥ j) that

tr(SD(1)S
T
D(1))−

∑j∗
s=1 λ̃

2
s

λ̃2
j

≥ tr{(Ṽ 1 + V 2)(Ṽ 1 + V 2)
T}

tr(Σ2
(2))

+op(1) = 1+ op(1).

(A.12)
When it holds that {tr(SD(1)S

T
D(1)) −

∑j∗
s=1 λ̃

2
s}/λ̃2

j = op(1) for fixed j and

j∗ ≥ j, we can claim that limd→∞ tr(Σ2
(2))/λ

2
j = 0 with some m (≥ j) by

combining (A.11) with (A.12). Thus it concludes the result.

Proofs of Theorem 7.1 and Corollary 7.1. From Lemma 10, we have that hT
j

ĥj = (nλ̂j)
−1/2λ

1/2
j zT

j ûj = (λj/λ̂j)
1/2n−1/2zT

j ûj = (1 + κ/λj)
−1/2 + op(1)

under (C-iii) and (D-i). It concludes the result of Corollary 7.1. On the
other hand, from κ/λj → 0 under (C-ii), it concludes the result of Theorem
7.1.

Proof of Theorem 7.2. By using Lemma 12, we have that

hT
j h̃j(i) = (λj/λ̃j)

1/2n
−1/2
i zT

ijũj(i) = 1 + op(1) (i = 1, 2).

Let U 22(i) = n−1
i

∑d
s=m+1 λszisz

T
is − κIni

, i = 1, 2. Note that ||h̃j(i)||2 =

(niλ̃j)
−1ũT

j(i)X
T
i X iũj(i). From Lemma 12, we have that

||h̃j(i)||2 =
m∑
s=j

λs(ũ
T
j(i)zis/n

1/2
i )2/λ̃j + ũT

j(i)U 22(i)ũj(i)/λ̃j + κ/λ̃j + op(1)

= 1 + op(1) + ũT
j(i)U 22(i)ũj(i)/λ̃j (i = 1, 2)

under (C-ii), (C-iii) and (D-ii). Note that K1/(nλj)
2 = O{tr(Σ(2))

2/(nλj)
2}

→ 0 under (C-ii). In a way similar to the proof of Lemma 8, we can claim
that

||(niλj)
−1zT

ijU 22(i)||2 = op(1) and (niλj)
−1zT

ijU 22(i)zij = op(1) (A.13)
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under (C-ii) and (D-ii). From the fact that ũT
j(i)z̃ij = 1+op(n

−1/2) in Lemma

12, there exists a random unit vector yi such that ũj(i) = z̃ij{1+ op(n
1/2)}+

yiop(n
1/2) and z̃T

ijyi = 0. From Lemma 5, it holds that λ−1
j n−1eT

ini
U 22(i)eini

=

op(1) under (C-ii) and (D-ii). Thus from (A.13), it holds that ũT
j(i)U 22(i)ũj(i)

/λ̃j = op(1), so that ||h̃j(i)||2 = 1 + op(1) (i = 1, 2). Then, we have that

hT
j h̃j = 1 + op(1) and ||h̃j||2 = 1 + op(1). Thus it concludes the result.

Proofs of Theorems 8.1 to 8.3 and Corollary 8.1. For j (≤ m), we write that

MSE(ŝj)/λj = n−1

n∑
k=1

{zjk − (nλ̂j/λj)
1/2ûjk}2

= ||n−1/2zj||2 + λ̂j/λj − 2(λ̂j/λj)
1/2||n−1/2zj||z̃T

j ûj. (A.14)

With the help of Lemma 10, we have that MSE(ŝj)/λj = op(1) under (C-
ii), (C-iii) and (D-i). It concludes the result of Theorem 8.1. On the other
hand, under (C-iii) and (C-iv), it holds that λ̂j/λj = ||n−1/2zj||2 + op(n

−1/2)
and z̃T

j ûj = 1 + op(n
−1/2). Then, from (A.14), it holds that MSE(ŝj)/λj =

op(n
−1/2). It concludes the result of Corollary 8.1. Similarly, we can obtain

the results of Theorems 8.2 and 8.3 by using (A.9).
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