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Abstract. In this paper we study absence of embedded eigenvalues for Schrödinger
operators on non-compact connected Riemannian manifolds. A principal example
is given by a manifold with an end (possibly more than one) in which geodesic
coordinates are naturally defined. In this case one of our geometric conditions is a
positive lower bound of the second fundamental form of angular submanifolds at
infinity inside the end. Another condition is an upper bound of the trace of this
quantity, while a third one is a bound of the derivatives of part of the trace (some
oscillatory behaviour of the trace is allowed). In addition to geometric bounds
we need conditions on the potential, a regularity property of the domain of the
Schrödinger operator and the unique continuation property. Examples include
ends endowed with asymptotic Euclidean or hyperbolic metrics.
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1. Introduction and results

Let (M, g) be a non-compact connected Riemannian manifold of dimension d ≥ 1
(possibly incomplete), and H the Schrödinger operator on the Hilbert space H =
L2(M):

H = H0 + V ; H0 = −1
2
△ = 1

2
p∗i g

ijpj , pi = −i∂i.

We introduce four conditions under which we prove that a self-adjoint realization of
H does not have eigenvalues greater than some computable constant. Our conditions
appear rather weak and allow for application to manifolds with boundary (possibly
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caused by metric or potential singularities). In particular, to our knowledge, they
are weaker than conditions used so far in the literature on the subject, cf. e.g.
[Me, MZ, Do, Ku1, Ku2]. The present work is applied in a companion paper [IS] in
which scattering theory is studied for a general class of metrics. Our conditions are
also weaker than the conditions of [IS].

For the Euclidean case (and a particular subclass of potentials) the theory amounts
to absence of positive eigenvalues which is a very well studied subject, see e.g.
[RS, FHH2O, JK, KT]. More precisely we recover then [RS, Theorem XIII.58].
On the other hand it does not cover absence of positive eigenvalues for N -body
Schrödinger operators, cf. [FH]. The aim of this paper is rather to study absence
of embedded (possibly only high energy) eigenvalues of Schrödinger operators in a
general geometric framework.

The first condition we impose guarantees intuitively that (M, g) has at least one
“expanding end”. Recall the definition of the geometric Hessian ∇2, i.e. for f ∈
C2(M) in local coordinates

(∇2f)ij = ∂i∂jf − Γkij∂kf ; Γkij = 1
2
gkl(∂iglj + ∂jgli − ∂lgij).

We denote the gradient vector field for r ∈ C1(M) by ∂r, i.e. ∂rf = (∂ir)g
ij(∂jf)

for f ∈ C1(M). For functions f, r : M → R we introduce the limits:

lim inf
r→∞

f = lim
ν→∞

(

inf{f(x) | r(x) ≥ ν}
)

,

lim sup
r→∞

f = lim
ν→∞

(

sup{f(x) | r(x) ≥ ν}
)

.

Condition 1.1. There exist an unbounded real-valued function r ∈ C4(M), r(x) ≥
1, constants c1 > c2 > 0, and a decomposition as a sum of C2-functions, △r2 =
ρ1 + ρ2 + ρ3, such that:

(1) There exists a constant r0 ≥ 1 such that, as quadratic forms on TM ,

∇2r2 ≥ (c1 + 1
2
ρ1)g and ρ1 ≥ 0 for all x ∈M with r(x) ≥ r0. (1.1a)

Moreover

lim inf
r→∞

(r∂r|dr|2 + (c2 + 1
2
ρ1)|dr|2) > 0, lim sup

r→∞
|dr| <∞. (1.1b)

(2) The following bounds hold

lim sup
r→∞

|r−1△r2| <∞, (1.2a)

lim sup
r→∞

ρ1 <∞, lim sup
r→∞

|dρ2| <∞, lim sup
r→∞

△ρ3 <∞. (1.2b)

Most of the above quantities along with the potential in Condition 1.2 below will
be used quantitatively, in particular to define a certain energy E0 (see (1.4a)) above
which we will show absence of eigenvalues. The regularity assumption on the metric
is implicitly included in Condition 1.1, and we require, at most, C3. The (highest)
third derivatives of g could show up in △ρ3 of (1.2b), because △ = tr∇2 and the
Christoffel symbols Γkij contain the first derivatives of g. If we choose ρ3 ≡ 0, then the
metric may be C2, but this might give a worse critical energy in (1.4a). Note that the
subsets {x ∈M | r(x) ≤ r̃}, r̃ ≥ 1, may not be compact (this is similar to [Ku1, Ku2],
see Subsection 2.2). The function r could model a distance function within a fixed
single end of M extended to be bounded outside, in particular bounded in other
ends of M . Note that for an exact distance function (1.1b) is trivially fulfilled (for
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any c2 > 0), and in that case the above operator ∂r is identified as the geodesic
radial derivative ∂r, see Subsection 2.2. Also note that (1.1a) implies the convexity
∇2r2 ≥ c1g > 0 for r ≥ r0, and that (1.1b) imposes further lower boundedness for
the dr ⊗ dr component since

(∇2r2)ij(∂ir)(∂jr) = 2|dr|4 + 2r(∇2r)ij(∂ir)(∂jr) = 2|dr|4 + r∂r|dr|2.

In particular the geodesics in this region are non-trapped, more precisely r2 ≥ ct2

for t → ∞. Another immediate consequence is the lower bound △r2 ≥ c1d for
r ≥ r0. Finally it is worth noting that one could think about ρ1 as a small oscillatory
function. This is motivated by examples, see the discussion before Corollary 2.4.

Condition 1.2. There exists a decomposition V = V1 + V2, V1 ∈ L2
loc(M), V2 ∈

C1(M) and V1, V2 real-valued, such that uniformly in x ∈M :

lim sup
r→∞

|V | <∞, lim sup
r→∞

r|V1| <∞, lim sup
r→∞

r∂rV2 <∞. (1.3)

The decomposition of △r2 in Condition 1.1 as well as that of V in Condition 1.2
represent a trade-off relation between regularity and decaying properties for pertur-
bations. Note that under Condition 1.2 the subspace C∞

c (M) ⊆ D(V ) and hence H
is defined at least on C∞

c (M). However under Conditions 1.1 and 1.2 this operator is
not necessarily essentially self-adjoint. Note that (M, g) is allowed to be incomplete
and that V is allowed to be unbounded. For instance (M, g) could be the interior of
a Riemannian manifold with boundary and for essential self-adjointness we would
then need a symmetric boundary condition. Lack of essential self-adjointness could
also originate from unboundedness of V in some end. To fix a self-adjoint extension
we first choose a non-negative χ ∈ C∞(R) with

χ(r) =

{

0 for r ≤ 1,
1 for r ≥ 2,

and then set

χν(r) = χ(r/ν), ν ≥ 1.

We shall henceforth consider the function χν as being composed with the function
r from Condition 1.1. In this sense particularly χν ∈ C4(M).

Condition 1.3. The operator H defined on C∞
c (M) (by Condition 1.2) has a self-

adjoint extension, denoted by H again, such that for any ψ ∈ D(H) there exists a
sequence ψn ∈ C∞

c (M) such that for all large ν ≥ 1

‖χν(ψ − ψn)‖ + ‖χν(Hψ −Hψn)‖ → 0 as n→ ∞.

Note that Condition 1.3 is fulfilled if (M, g) is complete and V is bounded. In
that case indeed H is essentially self-adjoint on C∞

c (M), see Proposition 2.1 for a
more general result.

As a global condition we impose for this self-adjoint extension the unique contin-
uation property.

Condition 1.4. If φ ∈ D(H) satisfies Hφ = Eφ for some E ∈ R, and φ(x) = 0 in
some open subset, then φ(x) = 0 in M .
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In Section 2 we shall discuss various models satisfying Conditions 1.1–1.4. We
define a “critical” energy,

E0 = inf
c∈(0,c1−c2]

lim sup
r→∞

(

V + |β|2−cγ
2cαc

)

; (1.4a)

αc = c1 − c+ 1
2
ρ1, (1.4b)

β = 1
4
dρ2 + V1dr

2, (1.4c)

γ = −1
4
△ρ3 + (△r2)V1 − 2r∂rV2. (1.4d)

For some examples in Subsection 2.2 (where for simplicity V = 0) we compute that
the essential spectrum σess(H0) = [E0,∞), see Examples 2.2 and Remark 2.3 1).
Whence for these examples indeed E0 is critical regarding absence of eigenvalues as
stated more generally in the following theorem.

Theorem 1.5. Suppose Conditions 1.1–1.4. Then the eigenvalues of H are absent
above E0, i.e. σpp(H) ∩ (E0,∞) = ∅.

Under the above conditions embedded eigenvalues can occur. It is well known
in Schrödinger operator theory that the von Neumann Wigner potential, see for
example [FH] or [RS, Section XIII.3], provides an example of a positive eigenvalue
for a decaying potential O(r−1), r = |x|. Whence the conclusion of Theorem 1.5
is in general false above the bottom of the essential spectrum. An example of a
Laplace-Beltrami operator having an embedded eigenvalue is constructed in [Ku1].
This is for a hyperbolic metric, and the example shows similarly that the conclusion
of Theorem 1.5 in general is false above the bottom of the essential spectrum, see
also Remark 2.5 1). (Actually Kumura uses the von Neumann Wigner potential in
his construction.)

The proof of Theorem 1.5 follows the scheme of [FHH2O, FH, DeGé, MS] employ-
ing in particular a Mourre-type commutator estimate and super-exponential decay
estimates of a priori eigenstates. In our geometric setting the “Mourre commutator”
can be very singular (in particular not bounded relatively to H in any usual sense).
Consequently we only have a weak (however sufficient) version of the commutator
estimate, see Lemmas 3.3, 4.1, 5.4 and 5.5.

Aside from Theorem 1.5 itself we also generalize [VW] showing absence of super-
exponentially decaying eigenstates under somewhat weaker conditions than those of
Theorem 1.5 as well as those of [VW], see Section 5. Our proof is in the spirit of
the well known Carleman estimate, cf. [JK], [KT], [RS] and [VW].

We use throughout the paper the standard notation 〈σ〉 = (1 + |σ|2)1/2 and (as
above) d for exterior differentiation (acting on functions on M). Note that in local
coordinates p := −id takes the form p = (p1, . . . , pd). We shall slightly abuse
notation writing for example pψ ∈ H = L2(M) for ψ ∈ C∞

c (M) even though
the correct meaning here is a section of the (complexified) cotangent bundle, i.e.
pψ ∈ Γ(T ∗M). Note at this point that ‖pψ‖ := ‖pψ‖Γ(T ∗M ) = ‖ |pψ| ‖H. If A
is an operator on H and ψ ∈ D(A) we denote the expectation 〈ψ,Aψ〉 by 〈A〉ψ.
Unimportant positive constants are denoted by C , in particular C may vary from
occurrence to occurrence. The dependence on other variables is sometimes indicated
by subscripts such as Cν .
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2. Discussion and examples

In this section we investigate how general our conditions are by looking at several
examples.

2.1. Global conditions. We recall some general criteria for self-adjointness and
the unique continuation property.

Proposition 2.1. Let (M, g) be a complete Riemannian manifold of dimension
d ≥ 1. Then the free Schrödinger operator H0 is essentially self-adjoint on C∞

c (M).
Suppose V is real-valued, measurable, bounded outside a compact set and in addition:

V ∈ L2
loc(M) for d = 1, 2, 3, V ∈ Lploc(M) for some p > 2 if d = 4 while V ∈ L

d/2
loc (M)

for d ≥ 5. Then V is infinitesimally relatively small. In particular H is essentially
self-adjoint on C∞

c (M).

We refer to [Ch] and [RS, Theorems X.20 and X.21]. We can generalize the class
of potentials to the Stummel class, see e.g. [DoGa].

As for the unique continuation property, Condition 1.4, there is an extensive lit-
erature although mostly for Schrödinger operator theory, see e.g. [JK]. For general
connected manifolds we refer to [Wo] and references therein, quoting here the follow-
ing sufficient conditions supplementing connectivity and the conditions in Proposi-
tion 2.1: 1) d = 2, 3, 4 and V is globally bounded, or 2) d ≥ 5. One could (of course)
add 3) d = 1.

2.2. Conditions inside an end. In the sequel we consider a connected and com-
plete (M, g) of dimension d ≥ 2 and take (for simplicity) V = 0. We shall examine
the meaning of Condition 1.1 in the case where, in addition, (M, g) has the following
explicit end structure: There exists an open subset E ⊂ M such that isometrically
the closure Ē ∼= [0,∞)×S for some (d−1)-dimensional manifold S where the metric
on [0,∞) × S has the form

g = grrdr ⊗ dr + gαβ dσα ⊗ dσβ; grr = 1, grα = gαr = 0, gαβ = gαβ(r, σ). (2.1)

Here (r, σ) ∈ [0,∞) × S denotes local coordinates and the Greek indices run over
2, . . . , d. Whence actually r is globally defined in E and it is a smooth distance
function (here given as the distance to {0}×S). In particular we have |dr| = 1 which
obviously implies (1.1b) for any c2 > 0. Notice here that Condition 1.1 involves only
the part of the function r at large values, so in agreement with Condition 1.1 we
can cut and extend it to a smooth function on M obeying r ≥ 1. This is tacitly
understood below. To examine the remaining statements (1.1a), (1.2a) and (1.2b)
of Condition 1.1 we compute

∇2r2 = 2dr ⊗ dr + r(∂rgαβ) dσα ⊗ dσβ, (2.2a)

△r2 = gij(∇2r2)ij = 2 + rgαβ(∂rgαβ). (2.2b)

2.2.1. End of warped product type. If we consider the warped product case where
gαβ(r, σ) = f(r)hαβ(σ) we obtain, using (2.2a) and (2.2b), the following examples
fulfilling also (1.1a), (1.2a) and (1.2b) of Condition 1.1.

Examples 2.2. (1) Let f = r2a with a > 0. Then (1.1a), (1.2a) and (1.2b) hold
with c1 = min{2, 2a} and ρ1 = 0, ρ2 = 2 +2a(d− 1), ρ3 = 0, and the critical
energy E0 = 0.
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(2) Let f = exp(2κrq) with κ > 0 and q ∈ (0, 1). Then (1.1a), (1.2a) and (1.2b)
hold with c1 = 2 and ρ1 = 0, ρ2 = 2 + 2κq(d− 1)rq, ρ3 = 0, and E0 = 0.

(3) Let f = exp(2κr) with κ > 0. Then (1.1a), (1.2a) and (1.2b) hold with
c1 = 2 and ρ1 = 0, ρ2 = 2 + 2κ(d− 1)r, ρ3 = 0, and E0 = κ2(d− 1)2/8.

Remarks 2.3. 1) For all of these examples it is easy to compute that the es-
sential spectrum σess(H0) ⊇ [E0,∞). If in addition M \E and S are compact
then we have σess(H0) = [E0,∞). Whence indeed the absence of eigenvalues
in (E0,∞) as stated in Theorem 1.5 is optimal under these additional con-
ditions for the above examples (except possibly that the threshold energy
E = E0 in a concrete situation might not be an eigenvalue either).

2) It is not required in Condition 1.1 that r is an exact distance function so we
may still have this condition fulfilled in perturbed situations (letting r be the
unperturbed distance function). This is also the spirit of [Do, Me, MZ] where
(roughly) perturbations of the Euclidean metric (corresponding to a = 1 in
(1)) are studied. The authors show absence of positive eigenvalues for these
models. More generally, but roughly still in the framework of perturbations
of (1), absence of embedded eigenvalues was obtained in [Ku2], and for hyper-
bolic models (roughly for perturbations of (3)) it was done in [Ku1]. However
Kumura’s results are stated in terms of an exact distance function and all
results involve conditions on a radial curvature (possibly including here the
radial Ricci curvature). Whence his framework is seemingly somewhat dif-
ferent. It turns out, however, that some of Kumura’s conditions appear too
strong, in particular curvature conditions are not needed. In Corollary 2.4
below we state a simplified and extended result, see Remark 2.5 2) for further
discussion and Corollary 2.6 for an application recovering a main result of
[Ku1].

3) Under the condition of warped product metrics growth rates between f = r2a

with a > 1/2 and f = exp(2κrq) with κ > 0 and q ∈ (0, 1/2) define a
class of metrics for which the scattering theory [IS] applies. More generally
Conditions 1.1–1.4 are weaker than the conditions used in [IS].

2.2.2. Volume growth and curvature. Here we describe the meaning of Condition 1.1
in terms of geometric quantities, and then relate the critical energy E0 to them. We
continue to assume (2.1) in the end E although without warped product structure.

Suppose Condition 1.1 (note that c1 ≤ 2 is necessary). Then, by (1.1a)

∇2r2 ≥ c1g for r ≥ r0. (2.3)

In the coordinates (r, σ) ∈ [0,∞) × S used in (2.1) we have (2.2a), so that the
inequality (2.3) is equivalent to

(r∂rgαβ − c1gαβ)α,β ≥ 0 for r ≥ r0. (2.4)

Hence, (1.1a) implies that the induced metric on the angular manifold Sr̃ = {x ∈
Ē| r = r̃} grows as a function of r̃, and c1 ∈ (0, 2] gives a lower growth rate of the
metric depending on directions. On the other hand, since we have

△r2 = 2 + 2r△r, △r = ∂r ln
√

det g,

and we can measure the volume growth in the radial direction in terms of ∂r ln
√

det g,
the bounds (1.2a) and (1.2b) yield an upper bound for the volume growth. We note
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that, by taking the trace of (2.4),

2r△r ≥ c1(d − 1) for r ≥ r0,

and this implies that the volume has to grow, at least.
Next we assume the “lower metric growth rate” (2.3) with c1 there replaced by

some c̃1 ∈ (0, 2]. Assume also the existence of “asymptotic volume growth rate”:
There exist constants ρ0, ω± such that for large r ≥ 1

△r = ρ0 + ω(r)
r

; ρ0 ≥ 0, ω− ≤ ω ≤ ω+, ω+ − ω− < c̃1.

Then we can verify Condition 1.1: By setting

ρ1 = 2ω − 2ω−, ρ2 = 0, ρ3 = 2 + 2ω− + 2rρ0,

and choosing c1 = c̃1 − (ω+ −ω−) and sufficiently small c2 > 0 indeed Condition 1.1
is fulfilled. Hence we can estimate inf{E0 |△r2 = ρ1 +ρ2 +ρ3} in terms of the lower
metric growth rate and the volume growth rate:

inf{E0 |△r2 = ρ1 + ρ2 + ρ3} ≤ ρ2
0/(4c1) = ρ2

0

/

(4(c̃1 − ω+ + ω−)). (2.5)

Note that above c̃1 is taken as a bound of the amplitude of oscillation allowed in
△r2 (i.e. a bound of the term ρ1 = 2ω − 2ω− with allowed “bad” derivatives).
However, also note that in general c̃1 is just a rough bound because there can be
some cancellation in ∇2r2− 1

2
ρ1g (an example of this occurs in Corollary 2.4 below).

Now we recover and extend various results of [Ku1, Ku2].

Corollary 2.4. Suppose (M, g) is connected and complete having an end E with
metric of the form (2.1). Suppose there exist κ ≥ 0 and real numbers a ≤ b, a > 0
if κ = 0, such that for large r ≥ 1

(κ + a
r
)(g − dr ⊗ dr) ≤ ∇2r|Sr

≤ (κ+ b
r
)(g − dr ⊗ dr), (2.6)

and that

A := (d− 1)(b− a) < B, B :=

{

min{2, a + b} if κ = 0,

2 if κ > 0.

Then

σpp(H0) ∩ (κ
2

4
(d− 1)2/(2 − A),∞) = ∅. (2.7)

Proof. Taking the trace of (2.6), we define ω by

△r = κ(d− 1) + ω(r)
r
,

and set

ρ1 = 2ω − 2a(d− 1), ρ2 = 0, ρ3 = 2 + 2a(d− 1) + 2rκ(d− 1).

Then, noting for κ = 0 that there is cancellation of the smallest eigenvalue of ∇2r|Sr ,
we obtain with c1 := B − (d − 1)(b − a)

∇2r2 − 1
2
ρ1g ≥ c1g, ρ1 ≥ 0.

Thus the result follows by applying Theorem 1.5. �
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Remarks 2.5. 1) In [Ku1] Kumura constructed an example, fulfilling the con-

ditions of Corollary 2.4 with κ > 0, for which σess(H0) = [κ
2

8
(d− 1)2,∞) and

σpp(H0)∩ (κ
2

8
(d − 1)2,∞) 6= ∅. Whence in such case (2.7) is an upper bound

of the set of embedded eigenvalues. Clearly, as a general feature, the bound is
better the smaller A ≥ 0 can be chosen. In the extreme case, imagining here
the quantities a and b being depending on r, where lim inf a = lim sup b ∈ R

we get an even better bound. We give below an application of Corollary
2.4 to this situation stated in terms of the radial curvature, cf. [Ku1, The-
orems 1.4 and 1.7]. Note that the radial curvature can control the second
fundamental form ∇2r|Sr

by a standard comparison argument, see e.g. [IS,
Remark 1.13] for a reference.

2) The bound (1.1a) and parts of the bounds (1.2a) and (1.2b) may be viewed as
bounds on the minimal and the mean curvatures of Sr, respectively, whereas
(2.6) certainly is a uniform asymptotic result for all the principal curvatures.

Corollary 2.6. Suppose (M, g) is connected and complete having an end E with
metric of the form (2.1). Suppose there exists κ > 0 such that the radial curvature
Rrad, defined in local coordinates by (Rrad)ij = (∂kr)(∂lr)R

k
i
l
j, satisfies

Rrad = −
(

κ2 + o(1
r
)
)

g on Sr (uniformly in x ∈ E),

and there exists r1 ≥ 0 such that

Rrad ≤ 0 on Sr̃ for all r̃ ≥ r1 and ∇2r ≥ 0 on Sr1.

Then

σpp(H0) ∩ (κ2(d− 1)2/8,∞) = ∅.

We note that although the radial curvatures Rrad and Krad of [IS] and [Ku1, Ku2],
respectively, are different objects they contain equivalent information. Whence in
fact the results Corollary 2.6 and [Ku1, Theorem 1.4] (almost) coincide.

3. Preliminaries

The proof of Theorem 1.5 begins from this section. Obviously, Theorem 1.5 is
a consequence of the following two propositions, a priori super-exponential decay
estimates for eigenfunctions and the absence of super-exponentially decaying eigen-
functions.

Proposition 3.1. Suppose Conditions 1.1–1.3. If φ ∈ D(H) satisfies Hφ = Eφ for
some E > E0, then eσrφ ∈ H for any σ ≥ 0.

Proposition 3.2. Suppose Conditions 1.1–1.4. If φ ∈ D(H) satisfies Hφ = Eφ for
some E ∈ R and eσrφ ∈ H for any σ ≥ 0, then φ(x) = 0 in M .

We shall prove Propositions 3.1 and 3.2 in Sections 4 and 5, respectively. In fact we
prove a little generalized version of Proposition 3.2. This generalized version recovers
the result of [VW], see a short discussion in Section 5. The rest of the present section
is devoted to preliminary steps for the proofs: We derive a commutator formula
which will be our substitute for the so-called Mourre commutator, and we rewrite
Condition 1.3 in a more practical form.
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3.1. Mourre-type commutator. We shall use the Mourre-type commutator with
respect to the “conjugate operator”

A = i[H0, r
2] = 1

2
{(∂ir2)gijpj + p∗i g

ij(∂jr
2)} = rpr + (pr)∗r; pr = −i∂r.

While not necessarily being self-adjoint this operator is certainly symmetric as de-
fined on C∞

c (M), and that suffices for our applications.

Lemma 3.3. As a quadratic form on C∞
c (M),

i[H,A] = p∗i (∇2r2 − αcg)
ijpj + 2Re(αcH0) − 2 Im(β ipi) + γ,

where αc, β, γ are defined by (1.4b), (1.4c), (1.4d), respectively.

Proof. We note the commutator formulas, valid for any φ ∈ C∞(M),

−[H0, [H0, φ]] = p∗i (∇2φ)ijpj − 1
4
(△2φ), (3.1a)

p∗iφg
ijpj = φH0 +H0φ+ 1

2
(△φ), (3.1b)

0 = i{(∂iφ)gijpj − p∗i g
ij(∂jφ)} + (△φ). (3.1c)

As for (3.1a) we refer to [Do, Lemma 2.5] or [IS, Corollary 4.2]. The lemma follows
by first using (3.1a) with φ = r2 and then using (3.1b) and (3.1c) with φ = αc and
φ = 1

4
ρ2, respectively. �

3.2. Approximate sequences. To implement Condition 1.3 efficiently we need to
strengthen the stated approximation property in H = L2(M) under some additional
conditions.

Lemma 3.4. Suppose the second bound of (1.1b), (1.2a), the first bound of (1.3)
and Condition 1.3. Let ψ ∈ D(H). There exists ν0 ≥ 1 such that for ν ≥ ν0 and
for any σ ≥ 0 such that eσrψ, eσrHψ ∈ H the following properties hold: The states
χνe

σrpψ, eσrpχνψ ∈ H and there exists a sequence ψn ∈ C∞
c (M) (possibly depending

on σ) such that as n→ ∞
‖χνeσr(ψ − ψn)‖ + ‖χνeσr(pψ − pψn)‖ + ‖χνeσr(Hψ −Hψn)‖ → 0. (3.2)

Proof. Step I Note the distributional identity

χνe
σrpψ = eσrpχνψ + ieσrψχ′

νdr.

Applied to the given ψ we see that χνe
σrpψ ∈ H if and only if eσrpχνψ ∈ H.

Step II We claim that there exists C > 0 such that, if ν ≥ 1 is large, then for any
ψ ∈ C∞

c (M) and σ ≥ 0

‖χνeσr|pψ|‖2 ≤ ‖χνeσrHψ‖2 + C〈σ〉2‖χν/2eσrψ‖2. (3.3)

In fact by (3.1b)

‖χνeσr|pψ|‖2 = 2Re 〈χνeσrψ, χνeσrHψ〉 + 1
2
〈ψ, (△χ2

νe
2σr)ψ〉 − 2〈χνeσrψ, V χνeσrψ〉

≤ ‖χνeσrHψ‖2 + C〈σ〉2‖χν/2eσrψ‖2.

Here we used the second bound of (1.1b), (1.2a) and the following consequence

|△r| = 1
2r
|△r2 − 2|dr|2| ≤ C for r = r(x) large. (3.4)

Step III We consider the case σ = 0, and hence suppose only ψ ∈ D(H). Let
ψn ∈ C∞

c (M) and large ν ≥ 1 be as in Condition 1.3. Then, regarding (3.2), it
suffices to consider the middle term. By (3.3) we have

‖χν(pψn − pψn′)‖2 ≤ C
(

‖χν(Hψn −Hψn′)‖2 + ‖χν/2(ψn − ψn′)‖2
)

.
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This implies χνpψn converges strongly. Since also χνpψn converges in distributional
sense to χνpψ, we obtain that the limit χνpψ ∈ H and then in turn, by letting
n′ → ∞ above, (3.2) for σ = 0.
Step IV We let σ > 0 and suppose eσrψ, eσrHψ ∈ H. Choose ψn ∈ C∞

c (M) and
large ν ≥ 1 as in Condition 1.3, again. As for the first and the third terms of (3.2),
we compute as follows: Put ψn,ν′ = χ̄ν′ψn for ν ′ ≥ 2ν with χ̄ν′ := 1 − χν′. Then we
decompose

χνe
σr(ψ − ψn,ν′) = χ̄ν′e

σrχν(ψ − ψn) + χν′e
σrψ. (3.5)

We put

Rν′ = i[H, χν′] = 1
2
(χ′

ν′p
r + (pr)∗χ′

ν′) = χ′
ν′p

r − i
2

(

χ′′
ν′ |dr|2 + χ′

ν′△r
)

, (3.6)

and decompose similarly

χνe
σr(Hψ −Hψn,ν′)

= χ̄ν′e
σrχν(Hψ −Hψn) + χν′e

σrHψ + ieσrRν′(ψ − ψn) − ieσrRν′ψ.
(3.7)

The norm of the right-hand side of (3.5) can be arbitrarily small by first letting ν ′

be large and then n large accordingly (using that χ̄ν′e
σr is bounded). Similarly the

norm of first three terms on the right-hand side of (3.7) can be arbitrarily small by
first letting ν ′ be large and then n large accordingly (for the third term we use Step
III, i.e. (3.2) with σ = 0). It remains to consider the last term on the right-hand
side of (3.7). We claim that

‖eσrRν′ψ‖ ≤ C/ν′. (3.8)

To show this we use again Step III to write

‖χ′
ν′e

σrpψ‖2 = lim
m→∞

‖χ′
ν′e

σrpψm‖2.

On the other hand by the derivation of (3.3)

‖χ′
ν′e

σrpψm‖2 ≤ C
(

‖χ′
ν′e

σrHψm‖2 +
( 〈σ〉
ν′

)2‖χν/2χ̄2ν′e
σrψm‖2

)

,

and hence we conclude by taking the limit that

‖χ′
ν′e

σrpψ‖2 ≤
(

Cσ

ν′

)2(‖χν χ̄2ν′e
σrHψ‖2 + ‖χν/2χ̄2ν′e

σrψ‖2
)

≤
(

Cσ

ν′

)2(‖eσrHψ‖2 + ‖eσrψ‖2
)

.
(3.9)

A consequence of (3.9) is indeed (3.8), and whence in turn also the last term on the
right-hand side of (3.7) is small for ν ′ sufficiently large.

We conclude that there exists a sequence of indices (ν ′(m), n(m)) so that with
ψm := ψn(m),ν′(m) (here and henceforth slightly abusing notation)

‖χνeσr(ψ − ψm)‖ + ‖χνeσr(Hψ −Hψm)‖ → 0.

In particular, using here (3.3), the right-hand side of

‖χ2νe
σrp(ψn − ψn′)‖2 ≤ C

(

‖χ2νe
σrH(ψn − ψn′)‖2 + ‖χνeσr(ψn − ψn′)‖2

)

is small for n, n′ → ∞. We can from this point mimic the last part of Step III. �
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4. A priori super-exponential decay estimates of eigenstates

Now we prove Proposition 3.1. Suppose Conditions 1.1–1.3 from this point. We
introduce the regularized weights

Θ(r) = Θσ,δ
m (r) = σr + δr(1 + r

m
)−1

for σ, δ ≥ 0 and m ≥ 1, and denote the first and the second derivatives in r by

Θ′ = σ + δ(1 + r
m

)−2, Θ′′ = −2δ
m

(1 + r
m

)−3. (4.1)

Set

HΘ = eΘHe−Θ = H − 1
2
|dΘ|2 + i Re pΘ; pΘ = (∂iΘ)gijpj = Θ′pr . (4.2)

We shall consider HΘ as an operator defined on C∞
c (M) only.

Lemma 4.1. Let E > E0 and σ0 ≥ 0. Then there exist c ∈ (0, c1 − c2], ǫ > 0 and
δ0 > 0 such that for large ν ≥ 1 and for all σ ∈ [0, σ0], δ ∈ (0, δ0] and m ≥ 1, as
quadratic forms on C∞

c (M),

χν{2 Im(A(HΘ − E))}χν ≥ χν{ǫ + 2Re(αc(HΘ −E))}χν. (4.3)

Proof. By (4.2) and Lemma 3.3 we obtain

2 Im(A(HΘ − E))

= 2Re(αc(HΘ − E)) + 2αc(E − V ) + p∗i (∇2r2 − αcg)
ijpj − 2 Im(β ipi) + γ

+ αc|dΘ|2 + 2 Im(αc Re pΘ) + r(∂r|dΘ|2) + 2Re(ARe pΘ).

(4.4)

By (1.4a) we can find c ∈ (0, c1 − c2], ǫ > 0 and ν ≥ 1 such that for r ≥ ν

2αc
{

E −
(

V + |β|2−cγ
2cαc

)}

≥ 4ǫ.

Hence, if we consider large r ≥ ν only, omitting the cutoff χν for the moment, this
implies by (1.1a) and the Cauchy Schwarz inequality

2αc(E − V ) + p∗i (∇2r2 − αcg)
ijpj − 2 Im(β ipi) + γ

≥ 2αc(E − V ) − |β|2

c
+ γ ≥ 4ǫ.

(4.5)

To complete the proof it suffices to demonstrate the lower bound −3ǫ for sum of
the last four terms on the right-hand side of (4.4). By (1.1b) and (4.1)

αc|dΘ|2 + r(∂r|dΘ|2) = (Θ′)2(r∂r|dr|2 + αc|dr|2) + 2rΘ′′Θ′|dr|4

≥ −4δ0(σ0 + δ0)|dr|4.
This implies for sufficiently small δ0 > 0

αc|dΘ|2 + r(∂r|dΘ|2) ≥ −ǫ. (4.6)

Next, noting the expressions

A = rpr + (pr)∗r = 2(Re pr)r − 1
i
|dr|2, (4.7)

Re pΘ = 1
2
(pΘ + (pΘ)∗) = Θ′ Re pr + 1

2i
|dr|2Θ′′,

we compute with η := |dr|2Θ′ + r|dr|2Θ′′ − αcΘ
′

2Re(ARe pΘ) + 2 Im(αcRe pΘ)

= 4(Re pr)rΘ′ Re pr − 2 Im
(

ηRe pr
)

+ (|dr|4 − αc|dr|2)Θ′′

≥ 4(Re pr){rΘ′ − 1
4ǫ
η2}Re pr − ǫ+ (|dr|4 − αc|dr|2)Θ′′.
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By using (4.1) we see that in the regime r → ∞ the first term on the right-hand
side is non-negative and the third term is arbitrarily small. Hence,

2Re(ARe pΘ) + 2 Im(αc Re pΘ) ≥ −2ǫ. (4.8)

Thus by (4.4)–(4.8) the asserted inequality (4.3) follows. �

Proof of Proposition 3.1. We let E and φ be as in the proposition. Set

σ0 = sup {σ ≥ 0| eσrφ ∈ H},
and assume σ0 < ∞. We fix c ∈ (0, c1 − c2], ǫ > 0, δ0 > 0 and ν ≥ 1 in agreement
with Lemma 4.1. If σ0 > 0, we choose σ ∈ [0, σ0) and δ ∈ (0, δ0] such that σ+δ > σ0.
If σ0 = 0, we set σ = 0 and choose any δ ∈ (0, δ0]. In any case we have eσrφ ∈ H.

With these values of σ and δ we set for any ψ ∈ C∞
c (M), m ≥ 1, ν ′ ≥ 2ν

ψΘ = χν,ν′e
Θψ = χν,ν′e

Θ
σ,δ
m ψ,

where χν,ν′ = χνχ̄ν′, χ̄ν′ = 1 − χν′. We note, putting Rν = i[H, χν] as in (3.6),

i(HΘ − E)ψΘ = iχν,ν′e
Θ(H −E)ψ + eΘ(Rν − Rν′)ψ. (4.9)

Due to Lemma 4.1,

ǫ‖ψΘ‖2 ≤ 2 Im〈A(HΘ − E)〉ψΘ
− 2Re〈αc(HΘ −E)〉ψΘ

, (4.10)

where, recalling from Section 1, in general 〈A〉ψ = 〈ψ,Aψ〉 denotes expectation. Let
us compute the right-hand side. We indicate below the dependence of constants
using subscripts. For the first term of (4.10) we use (4.9) and

2 Im〈A(HΘ − E)〉ψΘ
= −〈AψΘ, iχν,ν′e

Θ(H − E)ψ〉 − 〈AψΘ, e
Θ(Rν − Rν′)ψ〉 + h.c.

≤ 2‖AψΘ‖‖χν,ν′eΘ(H − E)ψ‖ + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√

r/ν′χν,2ν′e
σrψ‖2 + ‖

√

r/ν′χν,2ν′e
σrpψ‖2)

≤ (ν ′)2‖χν,ν′eΘ(H − E)ψ‖2 + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√

r/ν′χν,2ν′e
σrψ‖2 + ‖

√

r/ν′χν,2ν′e
σrpψ‖2),

where we used that r/ν′ ≤ 2
√

r/ν′ on suppχν,2ν′ to estimate (ν ′)−2‖AψΘ‖2. Simi-
larly we can estimate the second term of (4.10), and

−2Re〈αc(HΘ − E)〉ψΘ
≤ (ν ′)2‖χν,ν′eΘ(H − E)ψ‖2 + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√

r/ν′χν,2ν′e
σrψ‖2 + ‖

√

r/ν′χν,2ν′e
σrpψ‖2).

Hence
ǫ
2
‖ψΘ‖2 ≤ (ν ′)2‖χν,ν′eΘm(H − E)ψ‖2 + Cν(‖χν/2ψ‖2 + ‖χν/2pψ‖2)

+ Cm(‖
√

r/ν′χν,2ν′e
σrψ‖2 + ‖

√

r/ν′χν,2ν′e
σrpψ‖2).

(4.11)

By Lemma 3.4 we can replace ψ of (4.11) by φ. This makes the first term on
the right-hand side disappear. Next let ν ′ → ∞ invoking Lebesgue’s dominated
convergence theorem. This makes the third term disappear, and consequently we
are left with the bound

‖χνeΘσ,δ
m φ‖2 ≤ 2Cν

ǫ
(‖χν/2φ‖2 + ‖χν/2pφ‖2). (4.12)

By letting m→ ∞ in (4.12) invoking Lebesgue’s monotone convergence theorem we
conclude that χνe

(σ+δ)rφ ∈ H. This is a contradiction since σ + δ > σ0. �
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5. Absence of super-exponentially decaying eigenstates

We complete the proof of Theorem 1.5 by proving Proposition 3.2 in this section.
The proof relies on similar techniques as the one of Proposition 3.1. We will consider
a little generalized setting replacing Conditions 1.1 and 1.2 by the following ones
stated in terms of a parameter τ ≤ 1:

Condition 5.1. There exist an unbounded real-valued function r ∈ C4(M), r(x) ≥
1, constants c1 > c2 > 0 and a decomposition △r2 = ρ1+ρ2+ρ3 such that uniformly
in x ∈M :

(1) There exist constants r0 ≥ 1 and C > 0 such that

∇2r2 ≥ (c1r
τ + 1

2
ρ1)g − Crτdr ⊗ dr and ρ1 ≥ 0 for r ≥ r0. (5.1a)

Moreover

lim inf
r→∞

r−τ (r∂r|dr|2 + (c2r
τ + 1

2
ρ1)|dr|2) > 0, lim sup

r→∞
|dr| <∞. (5.1b)

(2) The following bounds hold

lim sup
r→∞

|r−1△r2| <∞, (5.2a)

lim sup
r→∞

r−τρ1 <∞, lim sup
r→∞

r−τ |dρ2| <∞, lim sup
r→∞

r−τ△ρ3 <∞. (5.2b)

Condition 5.2. There exists a decomposition V = V1 + V2, V1 ∈ L2
loc(M), V2 ∈

C1(M) and V1, V2 real-valued, such that uniformly in x ∈M :

lim sup
r→∞

|V | <∞, lim sup
r→∞

r1−τ |V1| <∞, lim sup
r→∞

r1−τ∂rV2 <∞. (5.3)

The case τ = 0 corresponds to Conditions 1.1 and 1.2 although even in this
case (5.1a) is somewhat weaker than (1.1a) since now possibly some negativity of
∇2r2 along the dr ⊗ dr component occurs. The weakening of these conditions will
be compensated by the assumption of super-exponential decay for the considered
eigenfunction. Another remark here is that the negative case, τ < 0, is also allowed.
With Examples 2.2 in mind, this means that an end of very slow expansion, which
is so slow that the end might be asymptotic to a straight cylinder, could be treated.
In fact the stronger decay properties (5.2b) and (5.3) appear somewhat harmless in
this case. In the other extreme case τ = 1 the bounds (5.2b) and (5.3) are relaxing
(1.2b) and (1.3), respectively.

Under these conditions we prove

Proposition 5.3. Suppose Conditions 5.1 and 5.2 for some τ ≤ 1. Suppose 1.3
and 1.4. If φ ∈ D(H) satisfies Hφ = Eφ for some E ∈ R and eσrφ ∈ H for any
σ ≥ 0, then φ(x) = 0 in M .

Proposition 5.3 obviously generalizes Proposition 3.2. We note that Proposi-
tion 5.3 generalizes [VW] when τ = 1 while Proposition 3.2 does not. For a mani-
fold of bounded geometry and pinched negative curvature is always endowed with
a metric of the form (2.1) with uniformly and strictly positive ∇2r|Sr

and with
bounded derivatives of △r (for r large). Then the verification of Condition 5.1 is
straightforward. For these geometric terminologies we refer to [VW] and references
therein.

For the proof of Proposition 5.3 we first rewrite Lemma 3.3 as follows.
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Lemma 5.4. As a quadratic form on C∞
c (M),

i[H,A] = p∗i (∇2r2 − αg)ijpj + 2Re(αH0) − 2 Im(β ipi) + γ;

α = c2r
τ + 1

2
ρ1,

β = −1
2
c2dr

τ + 1
4
dρ2 + V1dr

2,

γ = −1
4
△ρ3 + (△r2)V1 − 2r∂rV2.

We omit the proof which goes along the same pattern as the one of Lemma 3.3.
Note that by Conditions 5.1 and 5.2 for large r ≥ 1 the coefficients α, β and γ satisfy

c2r
τ ≤ α < Crτ , |β| < Crτ and γ > −Crτ . (5.4)

As in (4.2) we introduce for σ ≥ 0 the conjugated operator

Hσ = HΘσ,0
m

= eσrHe−σr = H − σ2

2
|dr|2 + iσRe pr . (5.5)

Again, we consider Hσ as an operator defined on C∞
c (M) only.

Lemma 5.5. There exists ǫ > 0 such that, if ν ≥ 1 and σ ≥ 0 are large, then, as
quadratic forms on C∞

c (M),

χν(2 Im(AHσ))χν ≥ χν(ǫσ
2rτ + 2Re(αHσ))χν. (5.6)

Proof. Similarly to (4.4), by (5.5) and Lemma 5.4 we obtain

2 Im(AHσ) = 2Re(αHσ) − 2αV + p∗i (∇2r2 − αg)ijpj − 2 Im(β ipi) + γ

+ σ2α|dr|2 + 2σ Im(αRe pr) + σ2r(∂r|dr|2) + 2σRe(ARe pr).
(5.7)

Let us estimate the right-hand side. We consider large r ≥ 1, and omit the cutoff
χν for the moment. By (5.1a), the Cauchy Schwarz inequality, Condition 5.2 and
(5.4)

− 2αV + p∗i (∇2r2 − αg)ijpj − 2 Im(β ipi) + γ

≥ −2αV −C(pr)∗rτpr − 1
c1−c2

r−τ |β|2 + γ

≥ −C(pr)∗rτpr −Crτ .

(5.8)

On the other hand by using (4.7) and the Cauchy Schwarz inequality we obtain

2σRe(ARe pr) + 2σ Im(αRe pr)

= 4σ(Re pr)rRe pr + 2σ Im(αRe pr) − 2σ Im(|dr|2 Re pr)

≥ 2σ(Re pr)rτ Re pr − σCrτ − σ∂r|dr|2.
Whence, by using

Re pr = 1
2
(pr + (pr)∗) = pr + 1

2i
(△r),

the Cauchy Schwarz inequality and (3.4), we conclude that

2σRe(ARe pr) + 2σ Im(αRe pr)

≥ σ(pr)∗rτpr − Cσrτ − σrτ−1(r1−τ∂r|dr|2 + αr−τ |dr|2). (5.9)

Now we put (5.8) and (5.9) into (5.7) and then obtain that for all large ν ≥ 1 and
σ ≥ 0

χν(2 Im(AHσ))χν

≥ χν
{

σ2rτ(1 − σ−1r−1)(r1−τ∂r|dr|2 + αr−τ |dr|2) − Cσrτ + 2Re(αHσ)
}

χν.
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Clearly (5.6) follows from this estimate and (5.1b). �

Proof of Proposition 5.3. Let φ ∈ D(H) be a super-exponentially decaying eigen-
function as in Proposition 5.3. Then, by assumption, for any ν ≥ 1 and σ ≥ 0

φσ = φσ,ν := χνe
σ(r−4ν)φ ∈ H. (5.10)

We will choose ν ≥ 1 large in agreement with Lemma 3.4 with ψ = φ. In the
following computations we actually have to first choose an approximate sequence
for φ from C∞

c (M) and then take the limits in the last step as in the proof of
Proposition 3.1. This can be done by using Lemma 3.4 and the closedness of H, but
since the verification is rather straightforward we shall not elaborate on this point.

Put Hσ = eσrHe−σr as in (4.2). Then by Lemma 5.5 for large ν ≥ 1 and σ ≥ 0

ǫσ2〈rτ 〉φσ ≤ 2 Im〈AHσ〉φσ − 2Re 〈αHσ〉φσ . (5.11)

We note, putting Rν = i[H0, χν] = Re
(

χ′
νp
r
)

as in (3.6),

Hσφσ = Eφσ − ieσ(r−4ν)Rνφ. (5.12)

Hence we can write the right-hand side of (5.11) as

2 Im〈AHσ〉φσ − 2Re〈αHσ〉φσ

= −2Re〈eσ(r−4ν)χνAeσ(r−4ν)Rν〉φ − 2E〈α〉φσ − 2 Im〈αχνe2σ(r−4ν)Rν〉φ.
(5.13)

As for the first term of (5.13) we estimate (recall the notation χ̄ν = 1 − χν)

− 2Re〈eσ(r−4ν)χνAeσ(r−4ν)Rν〉φ
≤ ‖χ̄2νAχνe

σ(r−4ν)φ‖2 + ‖eσ(r−4ν)Rνφ‖2

≤
{

‖2rχ̄2νχνe
σ(r−4ν)prφ‖ + ‖χ̄2ν(2r|dr|2χ′

ν + 2σrχν|dr|2 + 1
2
(△r2)χν)e

σ(r−4ν)φ‖
}2

+
{

‖χ′
νe
σ(r−4ν)prφ‖ + 1

2
‖(χ′′

ν|dr|2 + χ′
ν(△r))eσ(r−4ν)φ‖

}2

≤ Cν2‖χν/2|pφ|‖2 + Cν2〈σ〉2‖φ‖2,

where we have used (3.4). Note that C > 0 does not depend on ν or σ because
r ≤ 2ν on suppχ′

ν. By using (3.2) and (3.3) (both with σ = 0) we then conclude

−2Re〈eσ(r−4ν)χνAeσ(r−4ν)Rν〉φ ≤ Cν2〈σ〉2‖φ‖2.

Next, we examine the third term of (5.13). This term is estimated similarly, and we
obtain the rough bound

−2 Im 〈αχνe2σ(r−4ν)Rν〉φ ≤ Cν2〈σ〉2‖φ‖2.

We summarize

(ǫσ2 − C)〈rτ 〉φσ ≤ Cν2〈σ〉2‖φ‖2. (5.14)

Now assume χ5νφ 6≡ 0. After division by 〈σ〉2 on both sides of (5.14) the left-hand
side grows exponentially as σ → ∞ whereas the right-hand side is bounded, and
hence we obtain a contradiction. Thus χ5νφ ≡ 0, and then by Condition 1.4 we
conclude that φ(x) = 0 in M . �
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