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Abstract

The Shannon information content is a valuable numerical characteristic of
probability distributions. The problem of estimating information content
from an observed dataset is very important in the fields of statistics, informa-
tion theory, and machine learning. The contribution of the present paper is
in proposing information estimators, and showing some of their applications.
When the given data are associated with weights, each datum contributes
differently to the empirical average of statistics. The proposed estimators can
deal with this kind of weighted data. Similar to other conventional methods,
the proposed information estimator contains a parameter to be tuned, and
is computationally expensive. To overcome these problems, the proposed
estimator is further modified so that it is more computationally efficient and
has no tuning parameter. The proposed methods are also extended so as to
estimate the cross entropy, entropy and KL divergence. Simple numerical
experiments show that the information estimators work properly. Then, the
estimators are applied to two specific problems, distribution preserving data
compression, and weight optimization for ensemble regression.
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1. Introduction

In information theory (Shannon, 1948; Cover & Thomas, 1991), one of
the most important quantities is the Shannon information content (an infor-
mation metric)

If (x) = − log f(x), (1)
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where f(x) is a probability density function (pdf) of a random variable X,
and x ∈ Rd is its realization, which is called a datum in this paper. The
Shannon differential entropy is defined by averaging the information content
If (x) with its pdf f(x) as

H(f) = Ef [If (X)] = −
∫

f(x) log f(x)dx, (2)

where Ef [ · ] is a mean operator. When the information content Ig(x) =
− log g(x) of a datum x generated from a pdf g(x) is averaged with respect
to another pdf f(x), it is called the cross entropy:

H(f, g) = Ef [Ig(X)] = −
∫

f(x) log g(x)dx. (3)

The difference between the cross entropy and the entropy is called the Kullback-
Leibler (KL) divergence or the relative entropy (Kullback & Leibler, 1951).
These quantities are also calculated from the information content (1). The
information content, entropy, and KL divergence play important roles in var-
ious literatures. For example, in independent component analysis (see, e.g.,
Hyvärinen et al., 2001), entropy-based criteria are often used for recover-
ing independent signals from mixed signals (Comon, 1994; Learned-Miller
& Fisher, 2004). Also, for modeling neural networks, Linsker (1987, 2005)
proposed infomax as a neural information processing principle, and Bell &
Sejnowski (1995) utilized the principle for blind source separation under a
neural network model. A computationally efficient and stable entropy estima-
tor is indispensable for neural network studies. In discriminant problems, the
cross entropy and entropy are used as optimization objectives (Mannor et al.,
2005; Hino & Murata, 2010). Thus, many important quantities in statistics
and information theory are derived from the information content (1).

Many attempts have been made to estimate the Shannon information
content for a newly observed datum z, which we call an inspection point,
with an observed dataset D = {xi}n

i=1. Consider a weighted dataset defined
by

D = {D,W}, D = {xi}n
i=1,W = {wi}n

i=1,

xi ∈ Rd,
n∑

i=1

wi = 1, 0 < wi < 1,
(4)

where D is a collection of data and W is a collection of positive valued
weights, and each element wi ∈ W is assigned to each datum xi ∈ D. One
can consider a variety of generative mechanisms of this kind of weighted
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datasets. As a simple example, we can assume that xi and wi are sampled
from a certain joint distribution p̃(x,w). A special case of W is that all
weights have the same value, which we will denote by U = {1/n, . . . , 1/n}.
With an equally weighted dataset D = {D,U}, an empirical average of a
function G(x) is calculated as ED[G(X)] = 1

n

∑n
i=1 G(xi), which is the ordinal

sample mean of G(x) with D. With a general weighted dataset D = {D,W},
the empirical average of a function G(x) is defined by

ED[G(X)] =
n∑

i=1

wiG(xi). (5)

Hereafter, a set of weights in Eq. (4) defines the average operation Eq. (5),
and we identify the distribution of D = {D,W} as Eq. (5). More formally, fol-
lowing the definition of weights in Cook & Nachtsheim (1994), let Θn denote
the set of probability measures on the observed dataset D, and any θn ∈ Θn

defines a distribution function on D. The empirical distribution function cor-
responding to this distribution function places weights wi = θn(xi) on each
datum xi. The averaging operation with this empirical distribution is defined
by Eq. (5).

To illustrate the fact that the weights play important roles in engineering,
we consider the following two problems.

Problem 1 (Sample sets matching problem).
Consider two weighted datasets D = {D,W} = {(xi, wi)}n

i=1 and D′ =
{D′,W ′} = {(x′

j, w
′
j)}m

j=1, where D,W, and D′ are given. Then, the problem
is to find weights W ′ for D′ such that D and D′ are as close as possible in a
certain statistical sense.

This problem is inspired by the two sample test (Gretton et al., 2007), which is
a test that evaluates whether two distributions are different based on samples
drawn from each distribution. We consider the situation where the data
distribution is specified by some data producing mechanism for X and a
weight for each realization of X, which defines the averaging operation by
Eq. (5). Then, we will tailor distributions by modifying the weights assigned
to the data, and consider an optimization problem of the distribution with
respect to the weights.

When W = U and |D′| # |D|, the problem is considered as a specific
data compression problem in which the original dataset D is reduced to D′

while preserving the probability distribution. There are a lot of established
methods for data compression such as k-means clustering (Jain et al., 1999)
and Learning Vector Quantization (LVQ; Kohonen et al., 1996). Most data
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compression methods minimize approximation errors (or, energy, in the clus-
tering literature), but do not preserve the distribution of the original dataset
in the sense of statistical dispersion measure such as the KL divergence es-
timated by weighted data sets D and D′1. Thus, problem 1 is regarded as a
problem where one tries to achieve distribution-preserving data compression
by optimizing W ′ of D′.

Problem 2 (Weighted ensemble regression).
Let D = {(xi, yi)}n

i=1, xi ∈ Rd, yi ∈ R be a given set of explanatory and re-
sponse variables. To relate x and y, a set of regressors C = {cj|cj : Rd →
R}m

j=1 is also given. We assign a weight wj ∈ W to cj and construct a predic-
tive distribution of the response variable with weighted particle approximation
of regressors C(x) = {cj(x)}m

j=1. Then, the problem becomes one of optimiz-
ing W such that the distribution over y represented by C(xi) = {C(xi),W}
conditioned by xi is as close to the distribution of yi conditioned by the same
xi as possible.

In problem 2, we wish to approximate the distribution of yi by a set of
weighted predictions {cj(xi), wj}m

j=1 (see figure 1). For example, the mean
and the variance of yi are approximated by

∑m
j=1 wjcj(xi) and

∑m
j=1 wj(cj(xi)−∑m

l=1 wlcl(xi))2, respectively. If we had a sufficient number of response vari-
ables yi,k, k = 1, . . . corresponding to each xi, it would be possible to optimize
wj, j = 1, . . . ,m using, for example, the moment matching method (Ram-
berg & Schmeiser, 1974; Song et al., 2008). However, because there is only
one response yi for each explanatory variable xi, we cannot use standard
distribution adjustment techniques.

We will propose information estimators ID(x) based on a weighted dataset
D, which enables us to solve these problems within a unified framework. With
an information estimator ID(x), we can estimate the KL divergence between
two distributions from observed data as

DKL(D,D′) = ED[ID′(X)] − ED[ID(X)].

Then, we can solve problem 1 by estimating the KL divergence between
empirical distributions of D and D′, and minimizing the KL divergence with
respect to weights W ′. As for problem 2, the information estimator is used

1We note that clustering by Gaussian mixture modeling can be seen to preserve the
distribution of the original data, and the mixture ratio parameter and the weight in our
study have similarity. However, Gaussian mixture modeling assigns a Gaussian distribu-
tion for each cluster, while we do not assume any form of distribution functions for neither
individual clusters nor the whole observed data.
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Figure 1: An illustrative example of the weighted regressors’ distribution. Left: response
variables are plotted with ◦. The outputs of 17 regressors are shown as dotted lines.
Right top: The output value of each of the regressors is plotted at three input locations
with × and a vertical segment. The height of the symbol × represents the weight for
the regressor. Density functions estimated using the regressors’ outputs are also shown
(density functions are estimated by a Gaussian kernel density estimator). Right bottom:
Different weights are assigned to different regressors. The weights affect the densities of
the regressors’ outputs.

to estimate the information content of the actual observed value yi under the
distribution of the weighted predictions for xi, that is, C(xi) = {C(xi),W}.
Then, the sum of information estimates is minimized with respect to W , as
a small information content is equivalent to large likelihood, and it implies
that it is highly likely that yi is an outcome of C(xi).

The remainder of this paper is organized as follows. In section 2, we will
show a brief literature survey on estimators of information related quantities.
Section 3 describes the notion of the quantile, and derives an estimator for
the information content with weighted data. By considering stability and
computational cost, this basic estimator is extended to create more efficient
estimators. In section 4, the cross entropy and entropy estimators are derived
from the proposed information estimators. In section 5, the proposed infor-
mation estimator is validated by a simple experiment with artificial data.
Thereafter, applications of the information estimators for problems 1 and 2
are shown. The last section offers concluding remarks. A short and prelimi-
nary version of this paper appeared in ICANN 2011, with another application
example (Hino & Murata, 2011).
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2. Related Works on Estimators of Information Related Quantities

In this section, we will show a concise survey of related works on esti-
mators of information related quantities. In a parametric approach, a pdf is
often approximated by a mixture of Gaussian distributions (Leiva-Murillo &
Artes-Rodriguez, 2004; Peltonen et al., 2007). In non-parametric approaches,
there are two representative non-parametric density estimation methods, the
kernel density estimator (KDE) and the k-nearest neighbor (k-NN) based es-
timator, (see Wand & Jones (1994); Beirlant et al. (1997); Györfi & van der
Meulen (1987); Paninski (2003) for examples). Several attempts have been
made to estimate information theoretic quantities based on k-NN. An entropy
estimator using 1-NN is described in Kozachenko & Leonenko (1987), and its
mean-square consistency is proved for data of any dimension. This result is
extended to develop a k-NN based estimator (Goria et al., 2005). Divergence
estimators based on k-NN are investigated in, for example, Pérez-Cruz (2008)
and Wang et al. (2009). The former study proved almost sure convergence of
the divergence estimator using a waiting time analysis technique. The latter
proved asymptotic unbiasedness and mean-square consistency of the diver-
gence estimator. For estimating mutual information, estimators based on k-
NN have also been proposed (Kraskov et al., 2004). Some researchers treated
k as a non-decreasing function of n, and proposed density and entropy esti-
mators using a variable k (Loftsgaarden & Quesenberry, 1965; Mnatsakanov
et al., 2008). Specifically, in Wang et al. (2009), the authors generalized the
k-NN method and allowed k to vary for each datum. Furthermore, Wang
et al. (2009) and Kraskov et al. (2004) proposed that, instead of fixing a
constant value for k, the number of samples included in a ball of fixed radius
centered at an inspection point is used to estimate KL divergence and mu-
tual information. We note that density, entropy, and divergence estimators
with variable k depending on the data points are proposed in Loftsgaarden
& Quesenberry (1965); Mnatsakanov et al. (2008), and Wang et al. (2009).

The quantile-based formulation used in the present paper is essentially
the same as conventional k-NN based methods. However, in the case in which
the given data are weighted, it is not clear (at least, it is not a trivial problem)
how to find the k-th nearest point taking into account the weights, whereas
we can naturally define the α-quantile point for weighted data. We note
that kernel density estimators can be easily extended to deal with weighted
data. However, it is known that applying KDE to high dimensional data
is difficult because it involves the problem of bandwidth selection in high
dimensionality.

Finally we also note that the notion of quantile is effectively utilized in
the literature of regression (Koenker, 2005). Motivated by robust regression,
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quantile regression was advocated in Koenker & Bassett (1978), and various
extensions of quantile regression were then proposed. For example, quantile
regression for censored data was proposed in Portnoy (2003) and Wang &
Wang (2009). A nonparametric extension of quantile regression was proposed
in Takeuchi et al. (2006).

3. Information Estimator

In this section, three different estimators for the information content
− log f(z) where f(z) is a probability density function (pdf) are developed.
The first one is based on the notion of quantile, and the second one is ob-
tained by fixing the radius of the ball in data space centered at the inspection
point, which is eventually shown to be equivalent to the kernel density esti-
mator with a hard window kernel. The last estimator extends the first one
by averaging out the quantile to obtain a stable and computationally feasible
estimator. Information estimators developed in this section will be used to
derive entropy and cross-entropy estimators in section 4.

3.1. Information Estimator Based on Quantiles

Let ‖z−x‖ be the Euclidean distance between z and x in Rd, and b(z, ε) =
{x ∈ Rd; ‖z − x‖ < ε} be an ε-ball centered at z. The volume of this ε-
ball is |b(z, ε)| = cdεd, where cd = πd/2/Γ(1 + d/2) and Γ(x) is the gamma
function. Denote the probability mass contained within the ε-ball centered
at the inspection point z by Pz(ε), i.e.,

Pz(ε) =

∫

x∈b(z,ε)

f(x)dx. (6)

We consider a dataset D as given in Eq. (4). Sorting points xi ∈ D in
ascending order of ‖z − xi‖, we denote the index of the i-th nearest point
to z by (i). For the sake of simplicity, we assume that the distances of all
points in the observed data D from the inspection point are different. The
quantile of x(i) with respect to z is defined by

∑i
j=1 w(j). If the weight wi ∈ W

associated with xi ∈ D is identical for all i, i = 1, . . . , n, then the quantile
of x(i) is

∑i
j=1 w(j) = i/n, which is simply a proportion of the whole dataset

size. Conversely, when an inspection point z and a quantile α are specified,
the point xι(α)z ∈ D where ι(α)z = arg max

k

∑k
j=1 w(j) ≤ α, is called the

α-quantile point. See figure 2 for an illustrative example of the notion of α-
quantile points. From this example, we see that the α-quantile points differ
according to weights.
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(x(6), 0.02)

(x(7), 0.25)

(x(8), 0.2)

(x(9), 0.15)

(x(10), 0.2)

i∑

j=1

1/n = i/n = 4 × 0.1 = 0.4

i∑

j=1

w(j) =
6∑

j=1

w(j)

= 0.06 + 0.1 + 0.06 + 0.04 + 0.12 + 0.02

= 0.4

z z

Figure 2: An illustrative example of the notion of α-quantile points. Circles drawn by
solid and dashed lines denote d-dimensional hyperspheres centered at the inspection point
z. We let α = 0.4, and consider the 0.4-quantile point in a given dataset of size n = 10.
Left: All the weights are equal to 1/n = 0.1, and the 0.4-quantile point is x(4). Right:
Each datum has its own weight. As the sum of the weights up to the 6-th nearest point
amounts to 0.4, the 0.4-quantile point is x(6).

Let εα,z = ‖z−xι(α)z‖ be the distance between z and its α-quantile point.
When the inspection point z is clear from the context, we simply denote εα,z

and ι(α)z as εα and ι(α), respectively.
Figure 3 (left) is an illustrative example of the relationship between the

distance ε and the probability mass function Pz(ε) for n = 17. When the
number of data points is finite, the index ι(α) of the α-quantile point in
D does not satisfy the equation

∑ι(α)
j=1 w(j) = α in general. In this case,

there is a gap between εα and εα̂, where α̂ =
∑ι(α)

j=1 w(j). In the case of
large values of n, the staircase pattern in figure 3 (left) becomes a smooth
curve, as shown in figure 3 (right). As n → ∞, the gap between εα and εα̂

goes to zero consistently. That is, the probability density function (pdf) of
εα,z = ‖z − xι(α)‖ is written in terms of the probability mass Pz(ε), and the
variance of ε goes to zero in the large sample limit:

Theorem 1. Let pεα,z(ε) be the pdf of the distance ε between z and its α-
quantile point in a given dataset D of size n where α is fixed. Assume that
there exists L ∈ R+ which depends on α such that ι(α)

n

n→∞→ L < ∞. Then,
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α

α̂

εα

εα̂

|εα − εα̂|

ε

εα ! εα̂

Pz(ε)

Figure 3: An illustrative example of the probability mass function and the distance from
the inspection point x to its α-quantile point when α = 0.4. Left: A staircase function for
n = 17 (solid line segments) and a theoretical curve of Px(ε) (dashed line) are shown. In
this case, α̂ =

∑i
j=1 w(j) = 0.353 *= α and the gap |εα − εα̂| is relatively large. Right: The

size of data is large (n = 1500) and the gap |εα − εα̂| is negligible.

for large n,

pεα,z(ε) = φ(Pz(ε); β,σ2)
dPz(ε)

dε
(7)

holds, where φ(Pz(ε); β,σ2) is the pdf of the Gaussian distribution with mean

β = α + σ2
(

ι(α)
α − n−ι(α)

1−α

)
and variance σ2 =

(
ι(α)
α2 + n−ι(α)

(1−α)2

)−1

. Under this

distribution, the expectation value of ε is εβ = P−1
z (β)

n→∞→ P−1
z (α) and the

variance goes to zero as n → ∞.

The proof is given in Appendix A. Regarding the weight, we have the follow-
ing corollary:

Corollary 1. If all the weights are equal, that is, ι(α) = +αn,, where +y, for
y ∈ R is the largest integer not greater than y, then β = α and σ2 = α(1−α)

n .

Assuming that
εα # 1, (8)

we obtain the following approximation formula by Taylor’s expansion

α = Pz(εα) =

∫

b(z,εα)

f(x)dx =

∫

b(z,εα)

f(z + (x − z))dx
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= |b(z, εα)|(f(z) + O(ε2
α)) ∼ cdε

d
αf(z),

where O(ε2) denotes the terms higher than or equal to ε2. Taking the loga-
rithm of both sides of α ∼ cdεd

αf(z), we obtain an estimator for the informa-
tion content − log f(z) at an inspection point z ∈ Rd as

Iα(z; D) = log cd − log α + d log εα,z. (9)

We call this estimator a Quantile Information Estimator (QIE) for z with a
weighted dataset D = {D,W}.

When α is fixed, the bias of the QIE depends on assumption (8), and this
assumption is not always valid. When α goes to zero as n → ∞ and αn is
fixed as αn = M < ∞,M ∈ R+, then εα

n→∞→ 0. In this case, the estimation
bias caused by violation of assumption (8) vanishes as n → ∞, although the
bias caused by unequal weights does not vanish. Regarding this bias, the
following theorem holds. To show the dependency of D on the number of
data n, we write the data in Eq. (4) as Dn.

Theorem 2. When αn = M < ∞,M ∈ R+ is fixed for any value of n, the
bias of the QIE is given by

E[Iα(z; Dn)] − If (z)
n→∞→ −ψ(M) + ψ(ι(α)), (10)

where ψ(·) is the digamma function. That is,

Iunbiased
α (z; D) = log cd − log α + ψ(M) − ψ(ι(α)) + d log εα (11)

is an asymptotically unbiased information estimator.

The proof is given in Appendix B.
The assumption αn = M < ∞ means that we always focus on the limited

portion of data near the inspection point. For example, since αn < ∞
implies α = O(1/n), the assumption is satisfied when ι(α) = constant and
max{wi} ≤ O(1/n). If all of the weights are equal to 1/n, αn = M = ι(α)
holds because α = ι(α)

n . This is a simple example of the ideal case where the
bias vanishes as n → ∞.

3.2. Fixed Radius Quantile Information Estimator

To use the QIE appropriately, we must determine the value of α, depend-
ing on the given dataset D = {D,W}. Furthermore, to find the α-quantile
point in D, we must sort all the data with a computational cost on the order
of O(n log n).
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A simple solution of avoiding the sort operation is to consider the ratio of
data points within balls of fixed radius to estimate the information content.
Let αR(z; D) be the sum of weights associated with data within an R-ball
b(z,R) = {xi ∈ D|‖z − xi‖ < R}. Then, we obtain a fixed Radius Quantile
Information Estimator (RQIE) with a weighted dataset D as

IR(z; D) = log cd − log αR(z; D) + d log R, (12)

where

αR(z; D) =
∑

i:‖z−xi‖<R

wi.

The value of R for the RQIE should be determined based on the distribution
of the given dataset D. When an appropriate R value is chosen, we can avoid
violation of assumption (8) and reduce computational cost from O(n log n)
to O(n), because αR(z; D) can be calculated without sorting the data.

Finally, we mention the relationship between the proposed RQIE and ker-
nel density estimator with hard window (uniform) kernel (Wand & Jones,
1994). The information content IR(z; D) is an estimate of the quantity
− log f(z), and we denote fR

D (z) = e−IR(z;D). From Eq. (12), it is written
as

fR
D (z) =

αR(z; D)

cdRd
. (13)

When all the weights wi are equal to 1/n, the quantile αR(z; D) is reduced
to the number of points in a ball of radius R centered at z, and the above
equation becomes

fR
D (z) =

#{xi ∈ D | ‖(z − xi)/R‖ < 1}
cd

, (14)

which is nothing but the kernel density estimator with a hard window kernel,
and the radius R is considered to be the kernel bandwidth. This particular
case is the crossroad of the information estimator based on the notion of
quantile and the kernel density estimator. In other words, the RQIE gives a
natural extension of the KDE with a hard window to a weighted dataset.

3.3. Mean Quantile Information Estimator

Another approach for reducing computational cost is marginalization of
α in the QIE Iα(z; D) as

∫ 1

0

Iα(z; D)dα = log cd −
∫ 1

0

log αdα + d

∫ 1

0

log εαdα
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= log cd + 1 + d

∫ 1

0

log εαdα. (15)

We note that
∫ 1

0 log αdα is defined in the sense of improper integration as
∫ 1

u log αdα = [α log α − α]1u = −1−u log u+u
u→0+−→ −1. In actual calculation

of (15), the integration
∫

log εαdα is approximated by a summation of values
at the observed data points. When the weight for each datum is 1/n, this
approximated integration is calculated by summation of rectangles of equal
width, 1/n, as shown in figure 4 (left). On the other hand, when each datum
xi has its own weight wi, each datum contributes to the sum at the rate of its
weight wi, and the approximation is calculated by summation of rectangles
of different widths wi, as shown in figure 4 (right). As α increases from 0 to

Equally Divided Unequally Divided
log ε log ε

1/n

α0

log εα

α0
wi

11

log εα

Figure 4: Difference of quadrature. Left: Approximation of integral by sum of equal width
rectangles. Right: Approximation of integral by sum of unequal width rectangles.

1, each point in D becomes the α-quantile point once for each α. Then, we
obtain an information estimator by integrating Iα(z; D) with respect to α as

IMQ(z; D) = log cd + 1 + d
n∑

i=1

wi log ‖z − xi‖ (16)

= log cd + 1 + dED [log ‖z − X‖] .

We call this estimator a Mean Quantile Information Estimator (MQIE) with
a weighted dataset D. We note that if all of the weights are equal to 1/n, then
the MQIE is a quantile analogue of the MeanNN method (Faivishevsky &
Goldberger, 2009), which modifies the k-nearest neighbor entropy estimator
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to a parameter-free estimator by taking the sum of the estimators for all
values of k.

To satisfy the assumption (8), α must be sufficiently small. However, the
MQIE is the average of the QIE for α ∈ [0, 1], and the assumption can be
violated for a large value of α. Consequently, the estimate is biased. On the
other hand, the MQIE requires neither calculating the α-quantile point nor
sorting the data according to ‖z − xi‖, and, as a result, its computational
cost is on the order of O(n). We can introduce a weight function w(α) so that
Iα(z; D) with large α does not contribute to the integral

∫ 1

0 Iα(z; D)w(α)dα.
With careful choice of the weight function for α, we observed that the estima-
tion bias can be reduced; however, we will be faced with another problem of
optimizing the weight function. In the present paper, we only consider uni-
form weight for α in the integral. We note that using a smaller α or weighting
the α will effectively reduce the amount of data used for the estimation, and
there would be a trade off between the bias and the variance due to using
few data. This conjecture is numerically supported by the observation that
the variance of the MQIE is consistently small compared to that of the QIE,
but the MQIE may contain consistent bias as shown in section 5.

4. Cross Entropy and Entropy Estimator

The cross entropy and entropy are defined as averages of the informa-
tion content. Their estimators are derived from estimators proposed in the
previous section.

4.1. Entropy Estimation Based on the Mean Quantile Information Estimator
Given two sets of weighted data

D = {Dx,W} = {(xi, wi)}n
i=1, (17)

D′ = {Dy,V} = {(yj, vj)}m
j=1, (18)

we will derive cross entropy estimators. Let yι(α)xi
∈ Dy be the α-quantile

point in D′ from a point xi ∈ Dx. We note that the definition of the α-
quantile is the same as in section 3.1, and the only difference is that the
inspection point xi is taken from another dataset Dx. With a weighted
dataset D′, following (9), the QIE at the inspection point xi is given by

Iα(xi; D
′) = log cd − log α + d log ‖yι(α)xi

− xi‖ . − log fD′(xi), (19)

where we formally denote the pdf estimated using D by fD. Averaging this
estimate with respect to xi ∈ Dx, we obtain the Quantile Cross Entropy
Estimator:

Hα(D,D′)

13



= log cd − log α + d
n∑

i=1

wi log ‖yι(α)xi
− xi‖ . EfD

[− log fD′(X)]. (20)

Furthermore, integrating α out taking account of the weight for yι(α)xi
as in

(16), we obtain the Mean Quantile Cross Entropy Estimator as

HMQ(D,D′) = log cd + 1 + d
n∑

i=1

m∑

j=1

wivj log ‖yj − xi‖. (21)

We note that HMQ(D,D′) is regarded as an empirical average of IMQ(xi; D′) .
− log fD′(xi) with a weighted observed dataset D.

To estimate the entropy with the dataset D = {D,W} = {(xi, wi)}n
i=1, we

can use the leave-one-out estimation procedure (Hastie et al., 2001; Vapnik,
1998). Let D̄i = {D\xi,

1
1−wi

(W\wi)} be a renormalized weighted dataset

excluding {(xi, wi)}. With this weighted dataset D̄i, the α-quantile informa-
tion estimator is written as

Iα(xi; D̄i) = log cd − log α + d log ‖xi − xι(α)xi
‖, (22)

where xι(α)xi
∈ D\xi is the α-quantile point of the inspection point xi ∈ D.

By averaging Iα(xi; D̄i) with respect to xi by the leave-one-out estimation
procedure, the α-quantile entropy estimator is given by

Hα(D) = log cd − log α + d
n∑

i=1

wi log ‖xi − xι(α)xi
‖. (23)

By integrating Hα(D) with respect to α, we obtain the Mean Quantile En-
tropy Estimator

HMQ(D) = log cd + 1 + d
n∑

i=1

n∑

j=1,j (=i

wiwj

1 − wi
log ‖xi − xj‖. (24)

This estimator inherits properties of the MQIE, namely, there is no need to
specify an appropriate α at the cost of introducing a bias by violation of the
assumption (8).

4.2. Entropy Estimation Based on the Fixed Radius Quantile Information
Estimator

We can also extend the RQIE defined in (12) to estimate the cross entropy
and entropy. Suppose weighted datasets D and D′ defined by (17) and (18)

14



are given. Let the information estimate at the inspection point xi with the
weighted dataset D′ be

IR(xi; D
′) = log cd − log αR(xi; D

′) + d log R. (25)

Averaging the above information estimator with respect to xi ∈ Dx, we
obtain a cross entropy estimator

HR(D,D′) = log cd −
m∑

i=1

wi log αR(xi; D
′) + d log R, (26)

where
αR(xi; D

′) =
∑

j:‖yj−xi‖<R

vj. (27)

We next derive an entropy estimator with a fixed radius R. Taking care of
the renormalized weight w′

j = wj

1−wi
, the RQIE at the inspection point xi ∈ D

with the weighted dataset D̄i becomes

IR(xi; D̄i) = log cd − log αR(xi; D̄i) + d log R, (28)

where
αR(xi; D̄i) =

∑

j:‖xj−xi‖<R
j (=i

wj

1 − wi
. (29)

Then, averaging this information estimate with respect to xi yields an entropy
estimator

HR(D) = log cd −
n∑

i=1

wi log αR(xi; D̄i) + d log R. (30)

5. Numerical Experiments

In this section, we first verify that the proposed information estimators
work properly using artificial data. Then, in sections 5.2 and 5.3, instances
of problem 1 and problem 2 are presented with real-world data sets, and are
solved by weight optimization.

5.1. Information Estimation Experiments on Artificial Data

In this subsection, we show simple experimental results for artificial data.
We compare the proposed information estimators Iα(z; D) in Eq. (9), IR(z; D)
in Eq. (12), IMQ(z; D) in Eq. (16), and a classical non-parametric method
− log f̂G(z; D) with the pdf f̂G(z; D) estimated by the KDE with a Gaussian
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kernel. We calculated the average and standard deviation from ground truth
values and computational time as indices of comparison.

We sampled 300 points from 5 different one dimensional Gaussian dis-
tributions with mean 0 and variances σ2 ∈ {1, . . . , 5} to be used as the
datasets for the experiments. We created 200 independent datasets of size
300 sampled from a Gaussian distribution φ(x; 0,σ2), and we estimated the
information content at inspection points z = 0 and z = σ using four informa-
tion estimators. In figure 5, the ground truth information contents at z = 0
and z = σ are depicted with solid and dashed lines, respectively. For the
KDE, we performed tests with both a Gaussian kernel and an Epanechinikov
kernel; we adopted the Gaussian kernel as it showed more accurate results.
We note that the RQIE (12) is equivalent to the KDE with a hard window
kernel. We consider both unweighted datasets and weighted datasets. For
the weighted data experiment, the dataset D is first sampled from a uni-
form distribution on the interval [−2σ, 2σ]. Thereafter, for each xi ∈ D, a
weight is given by wi = φ(xi; 0,σ2)/

∑300
j=1 φ(xj; 0,σ2), where φ(x; 0,σ2) is

the pdf of the ground truth Gaussian distribution. With these weights, each
datum xi contributes to the information estimate as if it were distributed
as a (truncated) Gaussian distribution with mean 0 and variance σ2. Intu-
itively speaking, the weighted data generated by this procedure is the same
as the (truncated) Gaussian distribution in terms of the averaging operation
(5). A kernel density estimator with the Gaussian kernel function is written
as f̂G(z;D) = (2π)−d/2(nh)−1

∑
xi∈D exp(−‖(z − xi)/h‖2/2), where h is the

bandwidth parameter, and replacing 1/n by wi, its weighted version becomes

f̂G(z; D) = (2π)−d/2(h)−1
∑

(xi,wi)∈D

wi exp(−‖(z − xi)/h‖2/2). (31)

In the above estimators, the KDE, QIE, and RQIE have one tuning param-
eter (the bandwidth of the Gaussian kernel, quantile, and radius, respec-
tively). In this experiment, we searched the optimal parameters by 10-fold
cross validation. That is, the parameter value which maximizes the likeli-
hood (i.e., minus of the Shannon information content) of retained samples
is adopted for estimating the information of inspection points z. The ex-
perimental results are shown in table 1 and figure 5. We also performed
information estimation experiments using datasets from Poisson distribu-
tions. We created 200 independent one-dimensional integer-valued data sets
of size 300 sampled from the Poisson distribution π(x; p) = pxe−p/x!, x ∈ N,
and we estimated the information content at inspection points z = p and
z = +1.2 × p, + 1. We performed experiments using 5 different values
of the location parameter p ∈ {1, 5, 15, 20, 30}. The information contents
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are estimated by using four different information estimators. For weighted
data experiments, we first sampled 300 data points from a discrete uniform
distribution on {0, 1, 2, . . . , 2p}. Then, a weight wi for each xi was set to
wi = π(xi; p)/

∑300
j=1 π(xj; p). The averaged biases and standard deviations

of estimation are averaged for all parameters p and reported in table 2. For
discrete distributions such as Poisson, it would be better to use specially
designed kernels for discrete distributions (Hall & Titterington, 1989; Ra-
jagopalan & Lall, 1995). We simply used the Gaussian kernel for both con-
tinuous and discrete observations.

To investigate the influence of the dimension of the data to the accu-
racy of estimation, we also conducted the above-mentioned experiment us-
ing datasets generated from d-dimensional Gaussian distributions with mean
zero and spherical covariance matrices σ2Id, d = 1, 2, . . . , 20. There are some
methods to extend the KDE to deal with multidimensional data. We adopt a
single bandwidth kernel estimator f̂G(z; D) = (2π)−d/2(h)−d

∑
(xi,wi)∈D wi exp(−‖(z−

xi)/h‖2/2), because the QIE and RQIE also have only one parameter to be
selected. 300 samples are generated from a d-dimensional Gaussian distribu-
tion, and tuning parameters for the KDE, RQIE and QIE are optimized
by 10-fold cross validation. Then, the Shannon information contents at
z = 0 ∈ Rd and z = σ1d ∈ Rd are estimated, where 1d is a d dimensional vec-
tor with all ones. This procedure is repeated 200 times using independently
sampled datasets to calculate mean absolute errors of the estimates. Figure
6 (a) shows the relationship between mean absolute errors of estimates and
the dimensions of the data when z = 0 ∈ Rd. We also show averaged biases
and standard deviations for 20 dimensional data in table 1.

Finally, in figure 6 (b), we show the averages and one standard deviations
of computational time for each method to estimate the information contents
using 300 samples from a one dimensional standard Gaussian distribution.
The averages and standard deviations are calculated using 200 independent
trials.

From these results, we can deduce the following properties of the infor-
mation estimators:

1. As shown in figures 5 (a) and (c), and in table 1 for d = 1, biases
and standard deviations of the KDE with a Gaussian kernel and the
RQIE are similar when unweighted datasets are used. This similarity
is plausible because the RQIE is equivalent to the KDE with a hard
window kernel as mentioned in section 3.2.

2. As shown in figures 5 (b) and (f) versus figures 5 (c) and (g), and in
table 1, the variance of the QIE is relatively large compared to that of
the RQIE. This is accountable by observing that the optimized α’s are
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small, and only a small part of data are used to estimate the information
contents. Consequently, the variances became large due to using few
data.

3. The biases of the MQIE are relatively large; however, its standard
deviations are always the smallest among all estimators. This is because
the MQIE is derived by integrating the QIE with respect to α, which
is essentially the same as averaging many QIEs for different values of
α. This averaging results in variance reduction. However, as a side
effect, condition (8) is violated for large α and this may be the reason
for relatively large and consistent biases of the MQIE where the ground
truth values are not within a standard deviation of the estimates.

4. As shown in figures 5 (e) to (h) and in table 1 and table 2, all estimators
are able to evaluate the weighted data. The influences of weights are
different for each estimator. For example, for one dimensional data,
biases and standard deviations of the KDE and RQIE increase when
weights are considered, while biases of the QIE and MQIE decrease and
standard deviations stay about the same when weights are considered.
For 20 dimensional data, the effects of the weights seem to be different
from the case of one dimensional data. Further investigation to explain
the effects of weights to each estimator is remained as an important
future work.

5. Figure 6 reveals interesting tendencies of various estimators. When
we deal with one dimensional data, the KDE with a Gaussian kernel
and the RQIE (which is a KDE with a hard window kernel) offers
small bias. However, the accuracies of both the KDE and the RQIE
deteriorate quickly as the dimension increases, while the accuracy of
the QIE does not deteriorate so much. As stated in section 2, this can
be accounted by the difficulty of bandwidth and radius tuning for the
KDE and RQIE in high-dimensional situations. From this result, we
see that the QIE is suitable for high-dimensional data. The MQIE is
in between the KDE and the QIE.

6. As shown in figure 6 (b), the KDE method is the fastest method tested
in this experiment2. The QIE is relatively slow, as we must sort all the
data in D to calculate the α-quantile point. The MQIE can reduce the
computational cost and standard deviation of the estimate at the cost
of an additional bias. We note that the computational time reported

2All numerical experiments in this paper are implemented with R-language version
2.9.1 (R Development Core Team, 2010) and processed on an Intel machine with 2.93
GHz dual processors, 8 GB memory, and the operating system is Mac OS X version 10.6.5
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here exclude the parameter optimization phase by cross validation. The
MQIE does not require parameter optimization, while other methods
need parameter optimization to obtain acceptable estimation accuracy,
which may strongly increase the total computational time.

Table 1: Estimating the information with data from Gaussian distributions. Averaged
biases and standard deviations for σ2 = 1, . . . , 5 of various information estimators at the
inspection points z = 0 and z = σ. Each value is associated with its standard deviation
in parentheses. Results for one and 20 dimensions are shown.

dimension=1
Unweighted KDE RQIE QIE MQIE

Averaged Bias(z=0) 0.038(0.003) 0.034(0.003) 0.099(0.040) 0.139(0.004)
Averaged SD (z=0) 0.097(0.002) 0.106(0.002) 0.365(0.085) 0.066(0.003)
Averaged Bias(z=σ) 0.011(0.008) 0.010(0.004) 0.136(0.038) 0.064(0.006)
Averaged SD (z=σ) 0.165(0.047) 0.137(0.009) 0.411(0.073) 0.060(0.003)

Weighted KDE RQIE QIE MQIE
Averaged Bias(z=0) 0.115(0.018) 0.192(0.014) 0.035(0.034) 0.067(0.002)
Averaged SD (z=0) 0.238(0.091) 0.295(0.017) 0.407(0.071) 0.072(0.005)
Averaged Bias(z=σ) 0.129(0.016) 0.020(0.011) 0.192(0.072) 0.042(0.004)
Averaged SD (z=σ) 0.211(0.004) 0.272(0.022) 0.364(0.074) 0.059(0.001)

dimension=20
Unweighted KDE RQIE QIE MQIE

Averaged Bias(z=0) 12.974(1.563) 9.268(1.492) 2.803(1.110) 8.397(0.204)
Averaged SD (z=0) 0.416(0.072) 1.277(0.038) 1.206(0.044) 0.204(0.008)
Averaged Bias(z=σ) 8.020(2.612) 3.306(0.682) 1.302(0.762) 5.449(0.163)
Averaged SD (z=σ) 0.744(0.299) 0.686(0.029) 1.014(0.022) 0.163(0.006)

Weighted KDE RQIE QIE MQIE
Averaged Bias(z=0) 15.208(3.103) 11.284(1.277) 3.137(0.830) 2.713(0.528)
Averaged SD (z=0) 0.640(0.067) 1.492(0.042) 0.843(0.028) 0.534(0.047)
Averaged Bias(z=σ) 2.058(1.350) 2.030(0.651) 1.010(0.671) 3.036(0.333)
Averaged SD (z=σ) 1.115(0.522) 0.680(0.016) 1.112(0.071) 0.333(0.010)
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Table 2: Estimating the information with data from one dimensional Poisson distributions.
Averaged biases and standard deviations for p = 1, 5, 15, 20, 30 of various information
estimators at the inspection points z = p and z = +1.2 × p, + 1. Each value is associated
with its standard deviation in parentheses.

Unweighted KDE RQIE QIE MQIE
Averaged Bias(z=0) 0.320(0.054) 0.388(0.181) 0.246(0.160) 0.358(0.071)
Averaged SD (z=0) 0.039(0.032) 0.448(0.082) 0.281(0.163) 0.031(0.006)

Averaged Bias(z=+1.2 × p, + 1) 0.129(0.063) 0.282(0.167) 0.141(0.076) 0.242(0.092)
Averaged Bias(z=+1.2 × p, + 1) 0.040(0.016) 0.308(0.076) 0.114(0.020) 0.032(0.005)

Weighted KDE RQIE QIE MQIE
Averaged Bias(z=0) 0.769(0.202)) 1.23(0.439) 1.062(0.219) 0.351(0.070)
Averaged SD (z=0) 0.050(0.021) 0.310(0.169) 0.111(0.028) 0.040(0.016)

Averaged Bias(z=+1.2 × p, + 1) 0.483(0.100) 0.966(0.285) 0.670(0.144) 0.237(0.090)
Averaged SD (z=+1.2 × p, + 1) 0.090(0.003) 0.230(0.174) 0.119(0.050) 0.042(0.014)
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Figure 6: (a): Mean absolute errors of the estimates of the information contents as func-
tions of dimensionality of the data. (b): average and one standard deviation of computa-
tional time for each method.

The experimental results demonstrate that the proposed information es-
timators are shown to work correctly. In general, from table 1 and table 2,
it is seen that the QIE and MQIE perform better than the KDE and RQIE,
which are based on kernel density estimation. Particularly, the MQIE is
experimentally shown to work well in both weighted and unweighted set-
tings. Compared to the KDE, the QIE is computationally inefficient, but
by averaging QIEs with respect to α, the computational cost is reduced, and
moreover the variance of the estimate is reduced by a large margin. In practi-
cal problems, it is often more important to estimate the information content
or entropy in a stable manner. In particular, when we want to optimize
the information content or entropy by variable transformation or some other
methods, the derivative of the estimator is often used. In such situations, as
is argued in Faivishevsky & Goldberger (2009), the stability of estimates is
more important than obtaining exact values of the information contents.

5.2. Application to Distribution Preserving Data Compression

We consider problem 1 presented in the introduction, that is, the problem
of optimizing weights W ′ for the compressed dataset D′, which we call a set of
codebook vectors, to let the distributions of D′ and D be as close as possible.
As a measure of similarity of distributions, we consider the KL divergence
between D′ = {D′,W ′} = {(x′

j, w
′
j)}m

j=1 and D = {D,U} = {(xi, 1/n)}n
i=1,
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which is estimated by the difference between the mean quantile cross entropy
estimator (21) and the mean quantile entropy estimator (24):

DKL(D′,D) = H(D′,D) − H(D′) . HMQ(D′,D) − HMQ(D′)

=
d

n

m∑

j=1

n∑

i=1

w′
j log ‖x′

j − xi‖

−d
m∑

j=1

∑

k (=j

w′
jw

′
k

1 − w′
j

log ‖x′
j − x′

k‖. (32)

This estimate is the objective function of minimization with respect to W ′ =
{w′

j}m
j=1 with constraints

∑m
j=1 w′

j = 1, w′
j > 0. In the experiments shown

below, we minimized DKL(D′, D) by a quasi-Newton method (the BFGS
method; Nocedal & Wright, 2006) equipped with R’s constrOptim function.

We consider optimizing weights for codebook vectors. We compress the
original data D into the small sized codebook vectors D′ by LVQ, and only
store the codebook vectors so as to conserve the storage resources. We sup-
pose the original dataset consists of two classes. Compression by LVQ is
performed in each class. Then, in each class, weights for codebook vec-
tors are optimized so that the KL divergence between the codebook vec-
tors and original data is minimized. The obtained weights for class 1 are
denoted by W ′ = {w′

1, w
′
2, . . . } and the weights for class 2 are denoted by

V ′ = {v′
1, v

′
2, . . . }. Thereafter, using the stored data, we classify the incoming

data using the k-NN classifier (Duda et al., 2000). Let xe be the test point,
and C ′e = {C ′e

1 , C ′e
2 } be an index set of codebook vectors which consists of the

k-th nearest codebook vectors from the test point xe. C ′e
1 and C ′e

2 are subsets
of C ′e which correspond to codebook vectors with class labels C1 and C2,
respectively. The test point is classified as class C1 if

∑
i∈C′e

1
w′

i ≥
∑

j∈C′e
2

v′
j

and as class C2 if
∑

i∈C′e
1

w′
i <

∑
j∈C′e

2
v′

j. To see the effectiveness of the pro-
posed weight optimization for small sized codebook vectors, we employ the
IDA datasets, which are the standard binary classification datasets originally
used in Rätsch et al. (2001). The original data are compressed to one-tenth
by LVQ, and the weights for the codebook vectors are optimized. In this
experiment, we set k = 7. We compared two weighting schemes; one using
the weights obtained by counting the proportion of training samples that are
assigned to each codebook vector, and the other using the optimized weights
by the proposed method. In table 3, for many datasets, we see that the k-NN
classification accuracy has improved with the proposed method. In the k-NN
classification, there are some test instances which are misclassified when all
codebook vectors have the same weight. We infer that some such instances
are correctly classified when we assign appropriate weights for the codebook
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Table 3: In the left part, the dimensions of feature vectors, the numbers of training data
and test data, and the numbers of realizations (pairs of training and test datasets) of
the IDA are shown. In the right part, averages and standard deviations of misclassifica-
tion rates (in percent) by k-NN classification with full data, LVQ compressed data, LVQ
compressed data with weights obtained by counting the proportion of training samples
assigned to each codebook vector, and LVQ compressed data with optimized weights are
shown. The numbers in parentheses denote standard deviations. Comparing the LVQ,
LVQ+count and LVQ+opt, the best results are shown in boldface.

specifications Results
Data name dim # train # test # sets Original LVQ LVQ+count LVQ+opt
banana 2 400 4900 100 11.44(0.54) 24.43(5.08) 24.56(2.78) 23.93(4.53)
breast-cancer 9 200 77 100 27.53(4.21) 26.66(4.50) 30.03(6.92) 26.94(4.83)
diabetes 8 468 300 100 27.02(.200) 27.04(2.10) 30.14(2.90) 26.65(2.17)
flare-solar 9 666 400 100 35.46(2.01) 36.80(3.18) 39.97(3.69) 36.48(3.30)
german 20 700 300 100 25.62(2.45) 26.42(2.30) 27.57(2.68) 26.42(2.52)
heart 13 170 100 100 17.55(3.47) 18.47(3.51) 21.29(3.59) 18.27(3.42)
image 18 1300 1010 20 5.17(0.70) 13.93(2.18) 18.33(2.06) 13.65(2.12)
ringnorm 20 400 7000 100 45.03(1.18) 47.67(1.90) 41.36(6.06) 47.60(2.06)
splice 60 1000 2175 20 26.43(2.02) 21.36(2.20) 33.40(4.41) 21.00(2.06)
thyroid 5 140 75 100 8.71(2.72) 27.48(3.67) 22.72(4.49) 24.36(4.42)
titanic 3 150 2051 100 22.91(0.84) 22.67(0.62) 22.68(0.62) 22.65(0.50)
twonorm 20 400 7000 100 3.42(0.23) 3.30(0.35) 4.18(1.06) 3.28(0.37)
waveform 21 1000 1000 100 12.09(0.56) 11.13(0.96) 14.36(1.73) 11.11(0.98)

vectors. We also note that LVQ with weight assigned by counting performs
worse than LVQ without weight. This can be because the LVQ codebook is
optimized for classification rather than for density estimation. This result
suggests the importance of weight optimization.

5.3. Application to Weighted Ensemble Regression

We now consider problem 2 described in the introduction, that is, the
problem of optimizing weights W for an ensemble of regressors. In problem
2, the regressors are supposed to be given. In our experiments, base regressors
are generated by the Bagging method (Breiman, 1996). Let C = {C,W} be
a pair of a regressor set and a weight set. The regressors cj : Rd → R
are trained using a training dataset {(xi, yi)}n

i=1, xi ∈ Rd, yi ∈ R. Then,
the problem is to optimize weights W = {wj}m

j=1 for regressors such that
the average information content of the response variable is minimized under
the empirical distribution of C. In this study, we adopt rpart (recursive
partitioning and regression trees; E. J. Atkinson & Therneau 1997) as a base
regressor, and adopt the MQIE as an information estimator. We note that
in optimizing the KL divergence, the objective function (32) for {wj}m

j=1
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contains the term wj/(1−wi), which prevents wi from approaching 1. In the
case of minimization of the average information content, there is no natural
regularization; therefore, we add a log regularization term to the objective
function, and solve the following problem:

min
{wj}m

j=1

n∑

i=1

IMQ(yi; C) − λ
m∑

j=1

log wj, λ ≥ 0. (33)

The regularization term λ
∑m

j=1 log wj is regarded as the minus of log likeli-
hood of the Dirichlet distribution. That is, it is equivalent to place a Dirichlet
prior for the weights defined by Eq. (B.5) with γ = λ+1. This minimization
problem is solved by a constrained quasi-Newton method. In this exper-
iment, λ is determined by 10-fold cross validation using the training data
such that the mean squared error of the prediction is minimized.

We first show an experimental result based on artificial data. We consider
the base model y(x) = 50 sin(x) + x2. From this model, we generated 101
points {xi}101

i=1 within [−5, 5] at intervals of 0.1 and corresponding response
values y(xi). Then, we added Gaussian noise with mean 0 and standard devi-
ation 10 to {y(xi)}101

i=1 to construct the observed response values {yi}101
i=1 with

noise, and thereby obtained a training dataset {(xi, yi)}101
i=1. Using this data,

we trained 20 rpart regression trees and predicted the response variable from
their unweighted and weighted averages using optimized weights by minimiz-
ing the regularized average information content (33). The maximum depth
of rpart regression trees is arbitrary, and we set it to 5 in this paper. The
mean squared error of the predicted values and corresponding true values
were 6.907 in the unweighted case and 6.764 in the weighted average case.
The averaged standard deviations of the outputs of 20 regression trees were
7.919 in the unweighted case and 6.578 in the weighted average case. From
this simple experimental result, weight optimization is shown to contribute
to reducing the variance of the prediction. In figure 7, white circles denote
observed data. The dotted line represents the base model (without noise),
the blue dashed line represents the unweighted average of regressors, and
the red solid line represents the weighted average of regressors. The rectan-
gular region [0, 3] × [−15, 55] in figure 7 (a) is magnified and presented in
figure 7 (b) with error bars at one standard deviation. We note that the
standard deviation at each point xi is estimated by optimized weights as

sd(xi) =

√√√√
20∑

j=1

wj

(
cj(xi) −

20∑

l=1

wlcl(xi)

)2

. (34)
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Figure 7: Unweighted and weighted average of tree regressors. Left: The observed data
are plotted by white circles. The dotted line represents the base model (without noise),
the dashed blue line represents the unweighted average of regressors, and the solid red
line represents the weighted average of regressors. Right: The rectangle region in the left
figure is magnified to show the effect of variance reduction.

Then, we show experimental results using other datasets. The Boston,
imports85, airquality, Ozone, and abalone datasets are real world data from
the UCI machine learning repository (Murphy & Aha, 1994); Friedman1 to
Friedman3 are artificial data presented in Friedman (1991). Table 4 presents
data specifications and the results of regression experiments. To estimate
test errors, each experiment is repeated 100 times with random resampling
except for the abalone dataset. For the abalone dataset, the data size is
large; therefore, we repeated the regression experiment only 10 times. For
each dataset, response variable and all explanatory variables are scaled to
have zero mean and unit variance. We report mean squared errors (MSEs)
of regressions, and standard deviations of regressors. We calculate standard
deviations of output values of 20 trees, and averaged over all test points as:

sd =
1

#{test samples}
∑

i∈test samples

sd(xi). (35)

Intuitively speaking, this quantity sd corresponds to the averaged width of
confidence intervals, and a smaller sd implies a reliable prediction. Since we
have 100 repetitions of random data sampling, we have 100 different values
of sds. The average and standard deviation of sds over 100 repetitions are
shown in table 4 for each dataset. From this table, we see that for most
datasets, there are no significant differences in MSE between Bagging alone
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and Bagging with optimized weights, whereas the standard deviations of
regressors, that is, the variances of the empirical distributions of the response
variables based on regressors, are reduced by weight optimization. This leads
us to a more reliable prediction via the ensemble of regressors.

Table 4: Data specifications and results of regression using Bagging and Bagging with
optimized weights. MSEs of prediction are reported with one standard deviations, and
averaged standard deviations of regressors are reported with one standard deviation. The
better results with significance level of 5% in t-test are shown in boldface.

Specifications Results
dim # train # test Bagging Bagging+weight

Data name MSE SD of {cj(x)} MSE SD of {cj(x)}
Boston 13 506 51 0.422(0.105) 0.246(0.171) 0.421(0.105) 0.239(0.166)
imports85 25 193 20 0.327(0.073) 0.178(0.128) 0.327(0.073) 0.172(0.122)
airquality 5 111 11 0.585(0.289) 0.311(0.198) 0.585(0.289) 0.299(0.191)
Ozone 12 330 33 0.542(0.089) 0.333(0.175) 0.543(0.089) 0.325(0.170)
abalone 8 4177 1045 0.705(0.022) 0.229(0.142) 0.705(0.022) 0.222(0.139)
Friedman1 10 200 2000 0.546(0.022) 0.459(0.146) 0.547(0.022) 0.445(0.142)
Friedman2 4 200 2000 0.386(0.015) 0.278(0.133) 0.386(0.014) 0.269(0.128)
Friedman3 4 200 2000 0.567(0.032) 0.335(0.253) 0.567(0.033) 0.325(0.246)

6. Conclusion

In this paper, we proposed estimators of the Shannon information con-
tent with weighted observations, and extended those estimators to allow es-
timation of the cross entropy and entropy. In the kernel density estimation
framework, weight for each datum is easily taken into account. However, to
the authors’ knowledge, this is the first attempt to introduce the weight to
the quantile or nearest neighbor based estimators of the information content
or entropy. The proposed quantile-based estimators are similar to well known
k-NN methods. However, the proposed methods are based on the notion of
the quantile, and can naturally take weights into account.

There are many practical circumstances in which data are associated with
weights. For example, in the context of selection bias correction (see, e.g.,
Heckman, 1979), empirical likelihood method (Owen, 2001) is applied to cor-
rect the selection bias caused by unobserved response variables (Qin et al.,
2002). Let y and x be response and explanatory variables, respectively.
Consider we have complete observation {(yi, xi)}nc

i=1 of size nc and incom-
plete observation {xj}n

j=nc+1 of size n − nc. In this situation, the estimate
(1/nc)

∑nc

i=1 yi of the average of response variable EpY [Y ] is known to be in-
consistent when the event whether y is observed or not depends on both the
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value of y and x. We can introduce weights wi for yi, defined using both
{(yi, xi)}nc

i=1 and {xj}n
j=nc+1, to obtain a consistent estimator

∑nc

i=1 wiyi. The
analysis of incomplete data is an important problem not only in engineering
but in economics, politics, pedagogics, sociology, and medical science, for ex-
ample, and the proposed estimators in this paper would be useful to estimate
information theoretic quantities of weighted data in these fields of researches.
Weighted data may also arise in collaborative filtering systems (Adomavicius
& Tuzhilin, 2005). Collaborative filtering systems attempt to present items
that are likely of interest to a target user automatically. For this purpose,
the rating of items by the target user is estimated by ratings already done
by other users to the item. These ratings by other users could be weighted
by the influence or reliability of each user. For example, a rating given by
a user could be weighted proportional to the number of ratings by the user.
As another example, in time series analysis, it is natural to assign weights to
past sequences so as to reduce the influence of past events; smaller weights
are assigned to sequences that are farther away from the current time of in-
terest. Our ongoing study on change point detection in time series is based
on the proposed information estimators.

By optimizing weights in estimation of the KL divergence, we can com-
press data, preserving the original distribution. Furthermore, based on the
proposed information estimators, we proposed a method of constructing
weighted ensemble regressors and showed that the proposed method can
reduce the variance of the regression. The accuracy of a classification by
weighted LVQ is improved as a whole. The rate of improvement is limited
and further efforts to improve the accuracy by weight optimization will be
made. We will also consider and analyse the effect of weights for data com-
pression preserving the original distribution. To reduce the computational
load of query processing in database systems, it is important to compress the
original data without degradation of neighborhood search accuracy. Variance
of the ensemble regressor is reduced moderately. Further investigation into
the application of weighted ensemble regressors is an important objective of
future work. For example, we can apply the proposed method to the predic-
tion of stock prices. According to the predictive distributions composed of
weighted ensemble of regressors, we are developing strategies of buying and
selling stocks.

Although we discussed some of the theoretical properties of the proposed
quantile information estimator Iα(z; D), further exploration into the theoret-
ical aspects of other estimators such as IMQ(z; D) and IR(z; D) is needed.
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Appendix A. Proof of theorem 1

Let xi ∈ D be the α-quantile point of an inspection point z. Consider a
pdf pεα,z(ε) of the distance εα,z = ‖z − xι(α)‖ between the inspection point
z and its α-quantile in the data D of size n. That is, pεα,z(ε)dε represents
the probability that, regarding to the distance ε from z, one and only one
point xi ∈ D falls in an interval [ε, ε+dε], other ι(α)z −1 points fall in [0, ε),
and the remaining n − ι(α)z points fall in (ε + dε,∞). Then, following the
construction of the entropy estimator in Kozachenko & Leonenko (1987), the
probability pεα,z(ε)dε is expressed as a trinomial distribution:

pεα,z(ε)dε

=
n!

1!(ι(α) − 1)!(n − ι(α))!
(Pz(ε))

ι(α)−1(1 − Pz(ε))
n−ι(α)dPz(ε), (A.1)

where we again wrote ι(α)z as ι(α) for the sake of notational simplicity. We
note that ι(α) is defined by arg max

k

∑k
j=1 w(j) ≤ α, and Eq. (A.1) holds

whenever ι(α) ≥ 1 for a give weighted dataset D. We also note that under
the assumption ι(α)

n

n→∞→ L, ι(α) must increase in the same rate as n. In

Eq. (A.1), we consider the expression P ι(α)−1
z (1 − Pz)n−ι(α) where Pz(ε) is

replaced by Pz for the sake of notational simplicity. Using second-order
Taylor series expansion of log Pz and log(1 − Pz) around α and 1 − α, we
obtain

log Pz = log(Pz − α + α) = log α

(
Pz − α

α
+ 1

)

∼ log α +
1

α
(Pz − α) − 1

2α2
(Pz − α)2,

log(1 − Pz) = log(1 − Pz + α − α) = log(1 − α)

(
1 − Pz − α

1 − α

)

∼ log(1 − α) − 1

1 − α
(Pz − α) − 1

2(1 − α)2
(Pz − α)2.

Then, logarithm of P ι(α)−1
z (1 − Pz)n−ι(α) is approximated as

(ι(α) − 1)

(
1

α
(Pz − α) − 1

2α2
(Pz − α)2

)
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+ (n − ι(α))

(
−Pz − α

1 − α
− (Pz − α)2

2(1 − α)2

)

= − 1

2σ2
(Pz − α − σ2τ)2 +

σ2τ 2

2
= − 1

2σ2
(Pz − β)2 +

α2τ 2

2
,

where we ignored terms irrelevant to Pz and defined

β = α + σ2τ, σ2 =

(
ι(α) − 1

α2
+

n − ι(α)

(1 − α)2

)−1

, τ =
ι(α) − 1

α
− n − ι(α)

1 − α
.

It is easy to see that limn→∞ σ2 = 0 and

lim
n→∞

σ2τ = lim
n→∞

(ι(α) − 1)/α − (n − ι(α))/(1 − α)

(ι(α) − 1)/α2 + (n − ι(α))/(1 − α)2
=

α(1 − α)(L − α)

L − 2αL + α2
.

If L = α, for example, then β = α because σ2τ = 0 as n → ∞. Then, the
distribution (A.1) is approximated by

pεα,z(ε) = C(β)φ(Pz(ε); β,σ2)
dPz(ε)

dε
(A.2)

where C(β) is a normalizing factor. That is,

∫ ∞

0

pεα,z(ε)dε = C(β)

∫ ∞

0

φ(Pz; β,σ2)
dPz

dε
dε = C(β)

∫ 1

0

φ(Pz; β,σ2)dPz

= C(β)

∫ 1−β

−β

φ(Pz; 0,σ
2)dPz = C(β)

∫ (1−β)/σ

−β/σ

φ(Pz; 0, 1)dPz

= C(β) ×
(∫ ∞

−∞
φ(Pz; 0, 1)dPz

−
∫ −β/σ

−∞
φ(Pz; 0, 1)dPz −

∫ (β−1)/σ

−∞
φ(Pz; 0, 1)dPz

)

= C(β) (1 − Φ(−β/σ) − Φ((β − 1)/σ))

where Φ(x) is the cumulative distribution function of the standard Gaussian
distribution. In the above equations, we used the fact that

∫ ∞

−∞
φ(x; 0, 1)dx

=

∫ −β/σ

−∞
φ(x; 0, 1)dx +

∫ (1−β)/σ

−β/σ

φ(x; 0, 1)dx +

∫ ∞

(1−β)/σ

φ(x; 0, 1)dx

=

∫ −β/σ

−∞
φ(x; 0, 1)dx +

∫ (1−β)/σ

−β/σ

φ(x; 0, 1)dx +

∫ (β−1)/σ

−∞
φ(x; 0, 1)dx.
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Then, we obtain

C(β) =
1

1 − Φ(−β/σ) − Φ((β − 1)/σ)
.

For example, when β = 0.5, C(β) . 1.002 for n = 10, and C(β) . 1 + 1 ×
10−23 for n = 100. Hence, in this paper, we always treat C(β) as unity.

Noting that φ(Pz; β,σ2)
n→∞−→ δ(Pz − α) where δ(·) is the Dirac’s delta

function, the expectation of ε under the pdf pεα,z(ε) is calculated as

∫
εφ(Pz(ε); β,σ2)

dPz(ε)

dε
dε =

∫
εφ(Pz(ε); β,σ2)dPz(ε)

n→∞−→
∫

εδ(Pz(ε) − α)dPz(ε) = P−1
z (α) = εα,

where P−1
z (·) is the inverse function of the probability mass (6). From

Eq. (A.2), where the right hand side of Eq. (A.2) includes the pdf of the
Gaussian distribution with σ2 n→∞→ 0, we see that the variance of pεα,z(ε)
goes to zero as n → ∞ and this proves the theorem 1 !.

Intuitively speaking, the result implies that the empirical cumulative den-
sity function tends to the true one when the sample size tends to infinity
from Glivenko-Cantelli theorem: (Vapnik, 1998). Theorem 1 states this fact
in terms of pdf with explicit dependency on weights for the given data.

To grasp the characteristics of Eq. (A.2), we show two simple experimental
results on variance convergence property of pεα,z(ε).

Firstly, we check the normality of pεα,z(ε). We generate 200 datasets
D = {xi}n

i=1 from the ground truth distribution φ(x; 0, 1). The size of
datasets n are set to n = 20, 50, 100, and 1000. The weight wi for each
datum xi is determined as follows. From a set {1, 2, . . . , +n/3,}, we sam-
pled {ŵi}n

i=1 at random with replacement, and defined the weight for xi by
wi = ŵi/

∑n
i=1 ŵi. This weighting scheme may result in relatively large wi,

but in our experiment, the order of the largest weight is 1/n. Then, we cal-
culate εα̂, where α = 0.4 and the inspection point is set to zero. In table A.5,
we show p-values of the Kolmogorov-Smirnov test and the Shapiro-Wilk test
on sample distributions of εα̂ for each n. We also show Q-Q plots on sample
distributions for each n in figure A.8. From the table and figures, we see
that the sample distribution of εα̂ get closer to a Gaussian distribution as
the data size n increases.

Secondly, from the ground truth distribution φ(x; 0, 1), we generate datasets
1000 times for n = 20, 40, . . . , 1000 (increasing by 20). Then, we calculate
εα̂, with the quantile α = 0.4 and the inspection point x = 0. Because
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Table A.5: The p-values of the Kolmogorov-Smirnov test and Shapiro-Wilk test on the
sample distributions of distance εα̂ between α̂-quantile point to the inspection point x = 0,
when n = 20, 50, 100, 1000. For each setting of n, 200 datasets are generated.

n=20 n=50 n=100 n=1000
Kolmogorov-Smirnov 1.349e-08 0.007355 0.08062 0.1541

Shapiro-Wilk 0.01254 0.3122 0.2478 0.9997

−3 −2 −1 0 1 2 3

0.
2

0.
4

0.
6

0.
8

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
3

0.
4

0.
5

0.
6

0.
7

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
4

0.
5

0.
6

0.
7

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
45

0.
50

0.
55

0.
60

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

(a) n = 20 (b) n = 50 (c)n = 100 (d) n = 1000

Figure A.8: Q-Q plots of sample distributions of εα̂ with 200 trials. (a): n = 20. (b):
n = 50. (c): n = 100. (d): n = 1000.

f(x) = φ(x; 0, 1) is known, we can write the probability mass function ex-
plicitly as

Pz=0(ε) =

∫

b(0,ε)

φ(x; 0, 1)dx = 2

∫ ε

0

φ(x; 0, 1)dx

= 2 (Φ(ε) − Φ(0)) = 2Φ(ε) − 1,

and the expectation value of ε is calculated using the inverse function of
2Φ(ε)− 1. In figure A.9 (left), we show the mean absolute values of |εα − εα̂|
and their one standard deviations with 1000 trials for various n. From this
figure, we see that the average of εα̂ converges to the theoretical value εα. In
figure A.9 (right), we show the number of samples and empirical standard
deviations of εα̂ in a log-log plot. From this figure, we can see that the
standard deviation decays in

√
n order.

Appendix B. proof of theorem 2

The proof of theorem 2 is based on the technique used in Kozachenko &
Leonenko (1987) and Goria et al. (2005) to derive the bias of the k-NN based
entropy estimator. We introduce a lemma regarding the limit of probability
mass in shrinking open balls.
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Figure A.9: Left: Average and one standard deviation of εα̂ with various data size
(n = 20, 40, 60, . . . , 1000). The theoretical value of εα is shown by a dashed line. Right:
Standard deviation of εα̂ and the number of samples in a log-log plot. A fitted line with
tangent −0.5 is depicted in dashed line.

Lemma 1 (Lebesgue’s Differentiation Theorem). If g(x) is an abso-
lutely integrable function on R, then for any sequences of open balls b(x, rk)

of radius rk
k→∞−→ 0 and for almost all x ∈ Rd,

lim
k→∞

1

|b(x, rk)|

∫

b(x,rk)

g(y)dy = g(x). (B.1)

Proof 1. See (Stein & Shakarchi, 2005), for example.

Let αn be fixed arbitrarily, say, M ∈ R+. Let rn(u) = (uαeψ(M)/(Mcd))1/d,
u ∈ R be an element of decreasing series of open ball’s radii. Then, the vol-
ume of the ball is |b(x, rn(u))| = cd(uαeψ(M)/(Mcd)) = u(eψ(M)/M)α

n→∞−→ 0
because α goes to zero when n goes to infinity. Now, we consider a random
variable ξn,α,z = eIα(z;Dn). The distribution function of ξn,α,z is

Fn,α,z(u) = Pr(eIα(z;Dn) < u) = 1 −
ι(α)−1∑

m=0

qm(n, u), (B.2)

where

qm(n, u) =

(
n
m

)
(Pz(rn(u)))m(1 − Pz(rn(u)))n−m (B.3)
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is a probability that m out of n points lay within a ball of radius rn(u)
centered at z. We note that if wi = 1/n, then M . ι(α). However, the
equality does not hold in general because of the weights. For notational
simplicity, we write b(z, rn(u)) as b. By lemma 1 and noting that b(z, rn(u)) =
ueψ(M)/n, we get

lim
n→∞

qm(n, u) = lim
n→∞

n!

m!(n − m)!
|b(z, rn(u))|m

(
1

|b(z, rn(u))|

∫

b(z,rn(u))

f(x)dx

)m

×
(

1 − |b(z, rn(u))| 1

|b(z, rn(u))|

∫

b(z,rn(u))

f(x)d

)n−m

= lim
n→∞

1

m!
n · (n − 1) · · · (n − m + 1)|b|m

×
(

1

|b|

∫

b

f(x)dx

)m (
1 − u

eψ(M)

n

(
1

|b|

∫

b

f(x)dx

))n−m

= lim
n→∞

1

m!
(un

eψ(M)

n
)(un

eψ(M)

n
− u

eψ(M)

n
)

· · · (un
eψ(M)

n
− um

eψ(M)

n
+ u

eψ(M)

n
)

×
(

1

|b|

∫

b

f(x)dx

)m (
1 − u

eψ(M)

n

(
1

|b|

∫

b

f(x)dx

))n−m

=
(f(z)eψ(M)u)m

m!
e−f(z)eψ(M)u, (B.4)

and

lim
n→∞

Fn,α,z(u) =Fz(u) = 1 −
ι(α)−1∑

m=1

(f(z)eψ(M)u)m

m!
e−f(z)eψ(M)u.

To derive Eq. (B.4), we used

(ueψ(M))(ueψ(M)−u
1

n
eψ(M)) · · · (ueψ(M)−um

1

n
eψ(M)+u

1

n
eψ(M))

n→∞−→ (ueψ(M))m,

and
(1 − ζ/n)−m(1 − ζ/n)n n→∞−→ 1 · e−ζ , ζ = f(z)eψ(M)u

combined with the lemma 1, which gives 1
|b|

∫
b f(x)dx

n→∞−→ f(z).

We next consider a random variable ξz with distribution function Fz(u).
The pdf of ξz is given by the derivative of Fz(u) as

fz(u) =
d

du



1 −
ι(α)−1∑

m=1

(f(z)eψ(M)u)m

m!
e−f(z)eψ(M)u
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= f(z)eψ(M)e−f(z)eψ(M)u

ι(α)−1∑

m=0

(f(z)eψ(M))m

m!
um

−f(z)eψ(M)e−f(z)eψ(M)u

ι(α)−1∑

m=1

(f(z)eψ(M))m−1

(m − 1)!
um−1

= f(z)eψ(M)e−f(z)eψ(M)u (f(z)eψ(M))ι(α)−1

(ι(α) − 1)!
uι(α)−1

=
f(z)eψ(M)

(ι(α) − 1)!
e−f(z)eψ(M)u(f(z)eψ(M)u)ι(α)−1.

Finally, we get

lim
n→∞

E[Iα(z; Dn)]

= Efz [log ξz] =

∫ ∞

0

fz(u) log udu

=
f(z)eψ(M)

(ι(α) − 1)!

∫ ∞

0

(log u)e−f(z)eψ(M)u(f(z)eψ(M)u)ι(α)−1du

=
1

(ι(α) − 1)!

∫ ∞

0

log

(
t

f(z)eψ(M)

)
e−ttι(α)−1dt

=
1

(ι(α) − 1)!

{∫ ∞

0

tι(α)−1e−t log tdt − (log f(z)eψ(M))

∫ ∞

0

tι(α)−1e−tdt
}

=
1

(ι(α) − 1)!

{
Γ′(ι(α)) − (log f(z)eψ(M))Γ(ι(α))

}

= − log f(z) − log eψ(M) +
Γ′(ι(α))

(ι(α) − 1)!
= − log f(z) + ψ(ι(α)) − ψ(M),

which proves theorem 2 !.
As mentioned in section 1, one of the simplest generative mechanisms

of weighted dataset (4) is that D is a set of realization from a certain
joint distribution p̃(x,w). In this case, Eq. (10) evaluates the gap between
If (z) and expectation of Iα(z; Dn) with respect to p̃(x,w). If we assume
p̃(x,w) = f(x)h(w), where f is an unknown data distribution and h is a
weight distribution, further analysis regarding the dispersion of the term
ψ(ι(α)) is possible. We show a simple example bellow:

Example 1 (Dirichlet Sampling). When the set of weights is a realiza-
tion of a Dirichlet distribution

h(w; γ) =
1

Z(γ)

n∏

j=1

wγ−1
j , (B.5)
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where wj ≥ 0,
∑n

j=1 wj = 1, γ > 0 and the normalization factor Z(γ) is

defined by Z(γ) =
Qn

j=1 Γ(γ)

Γ(nγ) . Then, mean and variance of ι(α) are αn and

α(1 − α)/γ, respectively.

In statistics, it is important to investigate how the bias behaves. Although it
is difficult in general, theoretical estimation of the bias of the QIE is possible
under a rather unrealistic assumption p̃(x, w) = f(x)h(w). In this case, we
can estimate the fluctuation of the bias of the QIE under the assumption
that weights are realizations from a Dirichlet distribution.

We show a rough sketch of the proof of the assertion in Example 1. As-
suming that n is large, we identify α̂ and α, and identify +nγ, and nγ. For
simplicity, we denote ι(α) by ι, and define w(0) = 0. It is known that a
partial sum of components of a Dirichlet distribution is a beta random vari-
able (Haas & Formery, 2002). That is, let ξ = ιγ ∈ {0, γ, . . . , nγ} = Λ be
fixed, the distribution of α =

∑ι
i=0 w(i) is

f(α|ξ) = Beta(ξ + 1, nγ − ξ + 1)−1αξ(1 − α)nγ−ξ. (B.6)

For notational simplicity, we consider ξ instead of ι henceforth. We assume
uniform prior for α ∈ [0, 1]. Accordingly, it is natural to define the prior
distribution of ξ as a uniform distribution in Λ. Then, from the Bayes’
theorem, we obtain

f(ξ|α) = f(α|ξ)f(ξ)/f(α) = f(α|ξ) 1

n + 1

= Beta(ξ + 1, nγ − ξ + 1)−1αξ(1 − α)nγ−ξ 1

n + 1
.

Considering the generalized binomial distribution

1 = {α + (1 − α)}nγ .
∑

k∈Λ

γΓ(nγ + 1)

Γ(k + 1)Γ(nγ − k + 1)
αk(1 − α)nγ−k,

we see that the summation of

f(ξ|α) =
1

nγ + 1

αξ(1 − α)nγ−ξ

Beta(ξ + 1, nγ − ξ + 1)
. γΓ(nγ + 1)αξ(1 − α)nγ−ξ

Γ(ξ + 1)Γ(nγ − ξ + 1)

for all ξ becomes 1. As is the case with the binomial distribution, the mean
and variance of ξ are αnγ and α(1 − α)nγ, respectively. Since ξ = ιγ, the
mean and variance of ι are shown to be αn, α(1 − α)n/γ.

The weights {wi}n
i=1 are supposed to be realizations of a Dirichlet distri-

bution (B.5), where the variance of wi is given by (n− 1)/(n2(1+nγ)). This
shows that when γ is large, the variance of each weight wi is small. So, it is
natural that the variance of ι is proportional to the reciprocal of γ.
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