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Abstract. We reduce the problem of classifying all maximal an-
tipodal sets in the oriented real Grassmann manifold G̃k(R

n) to
that of classifying all maximal subsets satisfying certain conditions
in the set consisting of subsets of cardinality k in {1, . . . , n}. Using
this reduction we classify all maximal antipodal sets in G̃k(R

n) for
k ≤ 4. We construct some maximal antipodal subsets for higher k.

1. Introduction

Chen and Nagano [1] introduced the notion of antipodal sets in Rie-
mannian symmetric spaces and showed some fundamental properties
of antipodal sets. They also explicitly described antipodal sets in many
compact Riemannian symmetric spaces, but they did not mention an-
tipodal sets in oriented real Grassmann manifolds. In this paper we
describe antipodal sets in oriented real Grassmann manifolds.
Let M be a Riemannian symmetric space and denote by sx the geo-

desic symmetry of M at x ∈ M . A subset S in M is called an antipodal

set if sx(y) = y for any x, y ∈ S. We define the 2-number #2M of M
as the supremum of #S for all antipodal sets S in M . It is known that
#2M is finite. See Proposition 2.1 in Tanaka-Tasaki [4]. We call an
antipodal set S in M great if #2M = #S. A great antipodal set is
maximal in all antipodal sets with respect to inclusion relation. In [4]
we showed that any antipodal set in a symmetric R-space is included in
a great antipodal set and any two great antipodal sets are congruent,
however, antipodal sets in the oriented real Grassmann manifolds do
not have such a nice property.
We denote by G̃k(R

n) the oriented real Grassmann manifold consist-
ing of oriented real vector subspaces of dimension k in Rn equipped
with the standard inner product. We reduce the problem of classifying
all maximal antipodal sets in G̃k(R

n) to that of classifying maximal
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subsets satisfying certain conditions in the set consisting of subsets of
cardinality k in {1, . . . , n}. In the case where k = 1, 2 antipodal sets in

G̃k(R
n) are simple. In comparison with these we can see that antipodal

sets in G̃k(R
n) are not simple in the cases where k ≥ 3 by using the

reduction. In Sections 4, 5, and 6 we classify all of maximal antipodal
sets of G̃k(R

n) in the case where k ≤ 4. In Section 7 we construct some
maximal antipodal subsets for higher k.

2. Real Grassmann manifolds

The orthogonal group O(n) acts transitively on Gk(R
n). We define

an inner product on the Lie algebra o(n) of O(n) by

〈X, Y 〉 = 1

2
tr(tXY ) (X, Y ∈ o(n)),

which induces a biinvariant Riemannian metric on O(n) and an O(n)-
invariant Riemannian metric on Gk(R

n). With respect to this Rie-
mannian metric Gk(R

n) is a Riemannian symmetric space. It is known
that Gk(R

n) is a symmetric R-space. For V ∈ Gk(R
n) the reflection

rV with respect to V is equal to 1V − 1V ⊥, which induces the geodesic
symmetry sV of Gk(R

n) at V . We denote by 〈v1, . . . , vm〉 the vector
subspace of Rn spanned by v1, . . . , vm ∈ R

n. We denote by Inck(n) the
set of all strictly increasing maps from {1, . . . , k} to {1, . . . , n}. For
a connected Riemannian manifold M , two subsets X and Y in M are
said to be congruent, if X is transformed to Y by an element of the
identity component of the group of all isometries of M .

Lemma 2.1. Let e1, . . . , en be an orthonormal basis of Rn. The subset

A = {〈eα(1), . . . , eα(k)〉 | α ∈ Inck(n)}
in Gk(R

n) is a maximal antipodal set and any maximal antipodal set

in Gk(R
n) is congruent with A. Thus A is a great antipodal set and we

have

#2Gk(R
n) = #Inck(n) =

(

n

k

)

.

This is showed in [1] and [4].

3. Oriented real Grassmann manifolds

We denote by G̃k(R
n) the oriented real Grassmann manifold consist-

ing of oriented vector subspaces of dimension k in Rn. In this case O(n)

also acts transitively on G̃k(R
n). The biinvariant Riemannian metric

on O(n) defined in the previous section induces an O(n)-invariant Rie-

mannian metric on G̃k(R
n). With respect to this Riemannian metric
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G̃k(R
n) is a Riemannian symmetric space, but it is not true in general

that G̃k(R
n) is a symmetric R-space.

We denote by
∧k

Rn the exterior algebra of Rn of degree k. The

inner product on Rn naturally induces an inner product on
∧k

Rn.
With respect to this inner product

{eα(1) ∧ · · · ∧ eα(k) | α ∈ Inck(n)}

is an orthonormal basis of
∧k

Rn, if e1, . . . , en is an orthonormal basis

of Rn. We can regard G̃k(R
n) as a Riemannian submanifold of

∧k
Rn

by identifying Ṽ ∈ G̃k(R
n) with v1 ∧ · · · ∧ vk, where v1, . . . , vk is a

positively oriented orthonormal basis of Ṽ .
For Ṽ ∈ G̃k(R

n) we denote by V the vector subspace determined by

Ṽ . The reflection rV = 1V − 1V ⊥ induces the geodesic symmetry sṼ of

G̃k(R
n) at Ṽ defined by

sṼ (v1 ∧ · · · ∧ vk) = rV (v1) ∧ · · · ∧ rV (vk).

This is equal to (∧krV )(v1∧· · ·∧vk). Hence the geodesic symmetry sṼ
is the restriction of the linear transformation ∧krV of

∧k
Rn to G̃k(R

n).

We define a double covering map p : G̃k(R
n) → Gk(R

n) by p(Ṽ ) = V .
We have sp(x) ◦ p = p ◦ sx for x ∈ G̃k(R

n), because p is an isometric
covering map.

Lemma 3.1. For any antipodal set S in G̃k(R
n) there exists an or-

thonormal basis v1, . . . , vn of Rn which satisfies

S ⊂ {±vα(1) ∧ · · · ∧ vα(k) | α ∈ Inck(n)},

where we regard G̃k(R
n) as a submanifold of

∧k
Rn.

Proof. For any x, y ∈ S we have

sp(x)(p(y)) = p(sx(y)) = p(y),

thus p(S) is an antipodal set in Gk(R
n). According to Lemma 2.1 there

exists an orthonormal basis v1, . . . , vn of Rn which satisfies

p(S) ⊂ {〈vα(1), . . . , vα(k)〉 | α ∈ Inck(n)}.

Hence we get

S ⊂ {±vα(1) ∧ · · · ∧ vα(k) | α ∈ Inck(n)}.

�
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For a set X we denote by Pk(X) the set of all subsets α in X
whose cardinalities #α are equal to k. We simply denote Pk(n) =
Pk({1, . . . , n}). The map

Inck(n) → Pk(n) ; α 7→ {α(1), . . . , α(k)}
is bijective and we identify Inck(n) with Pk(n) by this bijective map.

Lemma 3.2. For any maximal antipodal set S in G̃k(R
n) there exist

an orthonormal basis v1, . . . , vn of Rn and a subset A of Pk(n) which

satisfy

S = {±vα(1) ∧ · · · ∧ vα(k) | α ∈ A}.
Proof. By Lemma 3.1, there exists an orthonormal basis v1, . . . , vn of
Rn which satisfies

S ⊂ {±vα(1) ∧ · · · ∧ vα(k) | α ∈ Inck(n)}.
We set ~vα = vα(1) ∧ · · · ∧ vα(k) and

A = {α ∈ Pk(n) | ~vα ∈ S or− ~vα ∈ S}.
This definition of A implies S ⊂ {±~vα | α ∈ A}.
If x, y ∈ S then sx(y) = y. In this case we have sx(−y) = −sx(y) =

−y, because sx is the restriction of a linear transformation of
∧k

R
n. By

the definition we have s−y = sy and S ∪ {−y} is also an antipodal set.
Since S is a maximal antipodal set, we have S = {±~vα | α ∈ A}. �

For an orthonormal basis v = {v1, . . . , vn} of Rn and a subset A of
Pk(n) we define

Av(A) = {±~vα | α ∈ A}.
We have to determine which subset A of Pk(n) defines a maximal an-

tipodal set Av(A) in G̃k(R
n).

Lemma 3.3. Let v = {v1, . . . , vn} be an orthonormal basis of Rn and

A be a subset of Pk(n). Av(A) is an antipodal set in G̃k(R
n) if and

only if the cardinality #(β−α) is even for any α, β ∈ A, where β−α =
{b ∈ β | b 6∈ α}.
Proof. For α, β ∈ Pk(n) we have

s~vα(~vβ) = rp(~vα)vβ(1) ∧ · · · ∧ rp(~vα)vβ(k) = (−1)#(β−α)~vβ.

So s~vα(~vβ) = ~vβ if and only if #(β − α) is even. Hence Av(A) is an

antipodal set in G̃k(R
n) if and only if the cardinality #(β − α) is even

for any α, β ∈ A. �

By the above lemma we introduce the following definition.
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Definition 3.1. α, β ∈ Pk(n) are antipodal, if the cardinality #(β−α)
is even. A subset A of Pk(n) is said to be antipodal, if any α, β ∈ A are
antipodal. By the definition α, β ∈ Pk(n) are antipodal if and only if
#(α ∩ β) ≡ k (mod2).
We denote by Sym(X) the symmetric group on a finite set X . If

X = {1, . . . , n}, we simply write Sym(n) = Sym(X) Two subsets X
and Y in Pk(X) are said to be congruent, if X is transformed to Y by
an element of Sym(X).

If A ⊂ B ⊂ Pk(n), then Av(A) ⊂ Av(B). This implication and the
lemmas mentioned above imply the following theorem.

Theorem 3.1. If v1, . . . , vn is an orthonormal basis of Rn and A is

a maximal antipodal subset of Pk(n), then Av(A) is a maximal an-

tipodal set in G̃k(R
n). Conversely for any maximal antipodal set S in

G̃k(R
n) there exist an orthonormal basis v1, . . . , vn of Rn and a max-

imal antipodal subset A of Pk(n) which satisfy S = Av(A). Moreover

the correspondence above induces a bijection from the set of all con-

gruent classes of maximal antipodal subsets in Pk(n) to the set of all

congruent classes of maximal antipodal sets in G̃k(R
n).

Corollary 3.1.

#2G̃k(R
n) = 2max{#A | A is a maximal antipodal subset of Pk(n)},

In order to determine maximal antipodal sets in G̃k(R
n) we have to

determine maximal antipodal subsets of Pk(n). We investigate maximal
antipodal subsets of Pk(n) in the sequel sections.

4. Maximal antipodal subsets of Pk(n)

In this section we consider a strategy to determine all congruent
classes of maximal antipodal subsets in Pk(n).
We denote by αc the complement of α ∈ Pk(n) in {1, . . . , n}. For

α, β ∈ Pk(n) we have β − α = αc − βc, which implies the following
lemma.

Lemma 4.1. A subset A ⊂ Pk(n) is antipodal if and only if Ac =
{αc | α ∈ A} ⊂ Pn−k(n) is antipodal. Moreover A is a maximal

antipodal subset of Pk(n) if and only if Ac is a maximal antipodal subset

of Pn−k(n).

We identify Pk(n) with Inck(n) and define the lexicographic order
on Pk(n). With respect to this order {1, 2, . . . , k} is the minimum
element. From now on we describe how to construct representatives of
all congruent classes of maximal antipodal subsets of Pk(n). At first we



6 HIROYUKI TASAKI

take A1 = {{1, 2, . . . , k}}. Next we construct some antipodal subsets
of cardinality i + 1 from an antipodal subset Ai of cardinality i. We
define the stabilizer S(Ai) of Ai by

S(Ai) = {g ∈ Sym(n) | g(Ai) = Ai}.

We consider the set of elements which are antipodal to Ai:

A(Ai) = {α ∈ Pk(n)− Ai | Ai ∪ {α} is antipodal}.

If A(Ai) is empty, Ai is a maximal antipodal subset of Pk(n) and the
procedure in the case of the orbit Ai ends. So we consider the case
where A(Ai) is not empty. S(Ai) stabilizes Ai and preserves the an-
tipodal relations, hence S(Ai) stabilizes A(Ai), too. We decompose
A(Ai) to a disjoint union of the orbits O1, . . . , Oj of S(Ai). We take
the minimum element αa of Oa for each 1 ≤ a ≤ j, add αa to Ai and
obtain Ai+1,a = Ai ∪ {αa}. Since αa belongs to A(Ai), each Ai+1,a

is antipodal. We divide the procedure to the cases by the orbits of
S(Ai). We take each Ai+1,a as Ai+1 and repeat the above procedure
until reaching a maximal antipodal subset of Pk(n).

Lemma 4.2. We can obtain representatives of all congruent classes of

maximal antipodal subsets of Pk(n) by the procedure mentioned above.

Proof. Let A be a maximal antipodal subset of Pk(n). Transforming A
by an element of Sym(n) we can suppose that A1 ⊂ A. Transforming
A by an element of S(A1) we can take the minimum element α of an
orbit of S(A1) in A(A1) which belongs to A. The second antipodal
subset A2 satisfies A2 = A1 ∪ {α} ⊂ A. We can repeat this procedure
until Ai = A for i = #A. �

Remark 4.1. If there exists a subset B of A(Aj) satisfying that any
element of B and any other element of A(Aj) are antipodal in the
procedure mentioned above, then we can add B to Aj and obtain
Aj+#B = Aj ∪ B.
It may happen that two of the maximal antipodal subsets obtained

by the procedure mentioned above are congruent. It actually happens
in the proof of Theorem 6.1, which classify maximal antipodal subsets
of P4(n).

In the case where k = 1 any two different elements in P1(n) are not
antipodal, so we get the following proposition.

Proposition 4.1. {{1}} is a maximal antipodal subset of P1(n). Con-
versely any maximal antipodal subset of P1(n) is congruent with it.
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The corresponding maximal antipodal set of G̃1(R
n) = Sn−1 is {±v}

for v ∈ Sn−1. This proposition and Corollary 3.1 imply the following
corollary.

Corollary 4.1. #2S
n−1 = 2.

Proposition 4.2. For a natural number l we put

A(2, 2l) = {{1, 2}, {3, 4}, . . . , {2l − 1, 2l}}.

A(2, 2[n/2]) is a maximal antipodal subset of P2(n). Conversely any

maximal antipodal subset of P2(n) is congruent with it.

Proof. Two different elements α, β in P2(n) are antipodal if and only
if α ∩ β = ∅. We take A1 = {{1, 2}}. We have A(A1) = P2({3, . . . , n})
and it is an orbit of S(A1). We take the minimum element {3, 4} of
A(A1), add it to A1 and obtain A2 = {{1, 2}, {3, 4}}. We can repeat
this procedure until we get

{{1, 2}, {3, 4}, . . . , {2[n/2]− 1, 2[n/2]}}.

Hence it is a maximal antipodal subset of P2(n), and any maximal
antipodal subset of P2(n) is congruent with it. �

Corollary 4.2. #2G̃2(R
n) = 2[n/2].

Remark 4.2. We can construct a 2-form from a subset A of P2(2l)
and an orthonormal basis {ei} of R2l as follows:

∑

α∈A

~e∗α =
∑

α∈A

e∗α(1) ∧ e∗α(2).

The 2-form constructed from the maximal antipodal subset {{1, 2}, . . . , {2l−
1, 2l}} of P2(2l) is the Kähler form

e∗1 ∧ e∗2 + · · ·+ e∗2l−1 ∧ e∗2l

on Cl = R2l with a suitable Hermitian structure.

In comparison with the cases where k = 1 and k = 2, the procedure
of constructing maximal antipodal subsets of Pk(n) is not simple in the
cases where k is greater than 2.
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5. Maximal antipodal subsets of P3(n)

In the case where k = 3, two different elements α, β in P3(n) are
antipodal if and only if #(α ∩ β) = 1. Let

A(3, 2l + 1) = {{1, 2, 3}, {1, 4, 5}, . . . , {1, 2l, 2l + 1}},
B(3, 6) = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}},
B(3, 7) = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6},

{1, 6, 7}, {2, 5, 7}, {3, 4, 7}}.
These are antipodal subsets in P3(2l+1), P3(6) and P3(7) respectively.
These satisfy

A(3, 5) ⊂ B(3, 6) ⊂ B(3, 7), A(3, 5) ⊂ A(3, 7) ⊂ B(3, 7).

These antipodal subsets can be visualized by Figure 1.

1

2

3

4

5

6

7

2l

2l+1

1

2

3

4

5

6

1

2

3

4

5

7

6

Figure 1. A(3, 2l + 1), B(3, 6) and B(3, 7)

As stated in Theorem 5.1, A(3, 2l+1) is a maximal antipodal subset
in P3(2l + 1) and P3(2l + 2) except for the cases of A(3, 5) ⊂ P3(6)
and A(3, 7) ⊂ P3(7), P3(8). The relation of inclusions mentioned above
shows that these are not maximal.

Remark 5.1. The intersection relation between elements in B(3, 7) is
equal to that between projective lines in the projective plane F2P

2 over
the binary field F2 consisting of 0 and 1.

Theorem 5.1. Let l = [(n − 1)/2]. Each in the following table is a

maximal antipodal subset of P3(n):

n 3, 4 5 6 7, 8 more than 8
A(3, 3) A(3, 5) B(3, 6) B(3, 7) A(3, 2l + 1), B(3, 7)

Conversely any maximal antipodal subset of P3(n) is congruent with

one of them.

Before proving the theorem we prepare some notation. For subsets
A,B ⊂ X satisfying A ∩B = ∅, we denote

Pk(A)× Pl(B) = {α ∪ β | α ∈ Pk(A), β ∈ Pl(B)} ⊂ Pk+l(X).
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For more than two subsets in X we can similarly define Pk1(A1)×· · ·×
Pkl(Al).

Proof. We take A1 = {{1, 2, 3}}. We have

A(A1) = P1({1, 2, 3})× P2({4, . . . , n}).
If n ≤ 4, A(A1) is empty and A1 = A(3, 3) is a maximal antipodal
subset of P3(n). Thus we suppose that n ≥ 5. The stabilizer S(A1) of
A1 is equal to Sym({1, 2, 3})× Sym({4, . . . , n}). So A(A1) is an orbit
of S(A1). We take the minimum element {1, 4, 5} of A(A1), add it to
A1 and obtain A2 = {{1, 2, 3}, {1, 4, 5}} = A(3, 5).

A(A2) = {α ∈ A(A1)− {{1, 4, 5}} | α and {1, 4, 5} are antipodal}
= P1({2, 3})× P1({4, 5})× P1({6, . . . , n})
∪ P1({1})× P2({6, . . . , n}).

If n = 5, A(A2) is empty and A2 = A(3, 5) is a maximal antipodal
subset of P3(5). Thus we suppose that n ≥ 6. The stabilizer S(A2) fixes
1 and induces permutations on {{2, 3}, {4, 5}}, so it acts transitively on
P1({2, 3})× P1({4, 5})× P1({6, . . . , n}) and P1({1})× P2({6, . . . , n}).
These are two orbits of S(A2). If n = 6, then the second orbit is
empty and A(A2) = P1({2, 3}) × P1({4, 5}) × P1({6}). We take the
minimum element {2, 4, 6} of the orbit A(A2), add it to A2 and obtain
A3,1 = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}}.
A(A3,1) = {α ∈ A(A2)− {{2, 4, 6}} | α and {2, 4, 6} are antipodal}

= {{3, 5, 6}}.
We add {3, 5, 6} to A3,1 and obtain

{{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}= B(3, 6),

which is a maximal antipodal subset of P3(6). We have obtained rep-
resentatives of all congruent classes of maximal antipodal subsets in
P3(n) for n ≤ 6.
We suppose that n ≥ 7. In this case A(A2) has two orbits of S(A2):

P1({2, 3})× P1({4, 5})× P1({6, . . . , n}),
P1({1})× P2({6, . . . , n}),

which are not empty. Hence we divide the procedure to two cases where
we take minimum elements in the two orbits.
(1) We take the minimum element {2, 4, 6} of the orbit P1({2, 3}) ×
P1({4, 5})× P1({6, . . . , n}), add it to A2 and obtain

A3,1 = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}}.
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We have

A(A3,1)

= {α ∈ A(A2)− {{2, 4, 6}} | α and {2, 4, 6} are antipodal}
= {{3, 5, 6}} ∪ P1({2})× P1({5})× P1({7, . . . , n})
∪ P1({3})× P1({4})× P1({7, . . . , n})
∪ P1({1})× P1({6})× P1({7, . . . , n})

= {{3, 5, 6}} ∪ {{1, 6}, {2, 5}, {3, 4}}× P1({7, . . . , n}).
In A(A3,1), {3, 5, 6} and other elements are antipodal. We can add it
to A3,1 and obtain

A4,1 = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}= B(3, 6).

We have

A(A4,1) = {{1, 6}, {2, 5}, {3, 4}}× P1({7, . . . , n}).
The stabilizer S(A4,1) induces permutations on

{{1, 6}, {2, 5}, {3, 4}},
so it acts transitively on A(A4,1). This is an orbit of S(A4,1). We take
the minimum element {1, 6, 7} of A(A4,1), add it to A4,1 and obtain

A5,1 = {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}, {1, 6, 7}}.
We have

A(A5,1) = {{2, 5, 7}, {3, 4, 7}}.
These two elements are antipodal. We can add these to A5,1 and obtain

{{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}, {1, 6, 7}, {2, 5, 7}, {3, 4, 7}}
= B(3, 7),

which is a maximal antipodal subset of P3(n) for n ≥ 7.
(2) We take the minimum element {1, 6, 7} of the orbit P1({1}) ×
P2({6, . . . , n}), add it to A2 and obtain

A3,2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}}.
We have

A(A3,2) = P1({2, 3})× P1({4, 5})× P1({6, 7})
∪ P1({1})× P2({8, . . . , n}).

The stabilizer S(A3,2) fixes 1 and induces permutations on

{{2, 3}, {4, 5}, {6, 7}},
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so it acts transitively on P1({2, 3})×P1({4, 5})×P1({6, 7}) and P1({1})×
P2({8, . . . , n}). These are two orbits of S(A3,2). If n ≤ 8, then the sec-
ond orbit is empty and A(A3,2) = P1({2, 3})× P1({4, 5})× P1({6, 7}).
We take the minimum element {2, 4, 6}, add it to A3,2 and obtain

A4,2 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}}.
We have

A(A4,2) = {{2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.
These are antipodal to each other. We can add these to A4,2 and
obtain B(3, 7). As we have showed in the case (1), B(3, 7) is a maximal
antipodal subset of P3(n) for n ≥ 7. We have obtained representatives
of all congruent classes of maximal antipodal subsets in P3(n) for n ≤ 8.
We suppose that n ≥ 9. In this case A(A3,2) has two orbits of

S(A3,2):

P1({2, 3})× P1({4, 5})× P1({6, 7}),
P1({1})× P2({8, . . . , n}),

which are not empty. If we take the minimum element {2, 4, 6}, then we
reach B(3, 7) in a way similar to the above argument. Hence we take the
minimum element {1, 8, 9} of the second orbit P1({1})×P2({8, . . . , n}),
add it to A3,2 and obtain

A4,3 = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {1, 8, 9}}.
We have

A(A4,3) = P1({1})× P2({10, . . . , n}).
The stabilizer S(A4,3) fixes 1 and induces permutations on

{{2, 3}, {4, 5}, {6, 7}, {8, 9}},
so it acts transitively on A(A4,3). We can repeat this procedure until
we get A(3, 2l + 1), where l = [(n − 1)/2]. Therefore we complete the
proof of the theorem. �

Corollary 5.1. The 2-number #2G̃3(R
n) is as follows:

n 4 5 6 7, . . . , 16 more than 16

#2G̃3(R
n) 2 4 8 14 2[(n− 1)/2]

Proof. We have

#A(3, 2l + 1) = l, #B(3, 6) = 4, #B(3, 7) = 7

and obtain the corollary by Corollary 3.1. �



12 HIROYUKI TASAKI

Remark 5.2. We can construct 3-forms from maximal antipodal sub-
sets of P3(n) in a way similar to Remark 4.2. The special Lagrangian
3-form on C

3 is defined by

Re[(e∗1 +
√
−1e∗2) ∧ (e∗3 +

√
−1e∗4) ∧ (e∗5 +

√
−1e∗6)]

= e∗1 ∧ e∗3 ∧ e∗5 − e∗1 ∧ e∗4 ∧ e∗6 − e∗2 ∧ e∗3 ∧ e∗6 − e∗2 ∧ e∗4 ∧ e∗5,

which corresponds to {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}. This is a
maximal antipodal subset of P3(6), so it is congruent with B(3, 6) by
Theorem 5.1. We can also directly see that the subset transformed by

acting the permutation

(

1 2 3 4 5 6
1 6 2 5 3 4

)

on it is equal to B(3, 6).

The 3-form constructed from B(3, 7) is equal to

e∗1 ∧ e∗2 ∧ e∗3 + e∗1 ∧ e∗4 ∧ e∗5 + e∗2 ∧ e∗4 ∧ e∗6 + e∗3 ∧ e∗5 ∧ e∗6 + e∗1 ∧ e∗6 ∧ e∗7
+ e∗2 ∧ e∗5 ∧ e∗7 + e∗3 ∧ e∗4 ∧ e∗7,

which was found by Harvey-Lawson [2] as a 3-form on ImO = R7

invariant under the action of the exceptional compact simple Lie group
G2 on ImO.

6. Maximal antipodal subsets of P4(n)

We define three antipodal subsets of P4(n) as follows:

A(4, 2l) = {α ∪ β ∈ P4(2l) | α, β ∈ {{1, 2}, {3, 4}, . . . , {2l − 1, 2l}}},
B(4, 7) = Bc(3, 7) = {αc | α ∈ B(3, 7)},
B(4, 8) = B(4, 7) ∪B(3, 7)× {{8}}.

It is easy to see that A(4, 2l) is antipodal. Lemma 4.1 and Theorem 5.1
imply that B(4, 7) is a maximal antipodal subset of P4(7). Since B(3, 7)
is antipodal in P3(7), so is B(3, 7)×{{8}} in P4(8). For α, β ∈ B(3, 7)
we have αc ∩ (β ∪ {8}) = β − α. Thus B(4, 8) is antipodal.
As stated in Theorem 6.1, A(4, 2l) is a maximal antipodal subset

in P4(2l) and P4(2l + 1) except for the cases of A(4, 6) ⊂ P4(7) and
A(4, 8) ⊂ P4(8), P4(9). We can directly show that these are not maxi-
mal.

B(4, 7) ⊃ {α ∪ β ∈ P4(7) | α, β ∈ {{2, 3}, {4, 5}, {6, 7}}},
which is congruent with A(4, 6) in P4(7). Thus A(4, 6) is not a maximal
antipodal subset in P4(7).

B(4, 8) ⊃ {α ∪ β ∈ P4(7) | α, β ∈ {{2, 3}, {4, 5}, {6, 7}, {1, 8}}},
which is congruent with A(4, 8) in P4(8). Thus A(4, 8) is not a maximal
antipodal subset in P4(8). Of course A(4, 8) is not maximal in P4(9).
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In order to state the main theorem of this section we prepare some
notation. A subset A ⊂ Pk(n) is said to be full in Pk(n), if A is not
congruent with any subset of Pk(n− 1). For example B(4, 7) is full in
P4(7), but it is not full in P4(8). We denote

A +m = {{α(1) +m, . . . , α(k) +m} | α ∈ A}

for an integer m.
The following main theorem of this section states that any maximal

antipodal subset of P4(n) is described by A(4, 2l), B(4, 7) and B(4, 8).

Theorem 6.1. Each of the followings is a maximal antipodal subset of

P4(n):

n 4, 5 6 7 8, 9 10
A(4, 4) A(4, 6) B(4, 7) B(4, 8) A(4, 10), B(4, 8)

In the case n > 10, A(4, 2[n/2]), B(4, 7)∪ [(a full MAS in P4(n− 7))+
7] and B(4, 8)∪ [(a MAS in P4(n− 8))+ 8], where MAS is an abbrevi-

ation of maximal antipodal subset. Conversely any maximal antipodal

subset of P4(n) is congruent with one of them.

Proof. We prove the theorem in each cases for n ≤ 10 and by induction
on n for n > 10. We take A1 = {{1, 2, 3, 4}}. We have

A(A1) = P2({1, 2, 3, 4})× P2({5, . . . , n}) ∪ P4({5, . . . , n}).

If n ≤ 5, A(A1) is empty and A1 = A(4, 4) is a maximal antipodal
subset of P4(n).
Thus we suppose that n ≥ 6. The stabilizer S(A1) is equal to

Sym({1, 2, 3, 4})× Sym({5, . . . , n}), which acts transitively on

P2({1, 2, 3, 4})× P2({5, . . . , n}) and P4({5, . . . , n}).

These are two orbits of S(A1). Hence we divide the procedure to two
cases where we take minimum elements in the two orbits.
(1) We take the minimum element {1, 2, 5, 6} of the orbit P2({1, 2, 3, 4})×
P2({5, . . . , n}), add it to A1 and obtain A2,1 = {{1, 2, 3, 4}, {1, 2, 5, 6}}.
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We have

A(A2,1) = {α ∈ A(A1)− {{1, 2, 5, 6}} | α and {1, 2, 5, 6} are antipodal}
= {{3, 4, 5, 6}} ∪ {{1, 2}, {3, 4}} × P2({7, . . . , n})
∪ P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, . . . , n})
∪ P2({5, 6})× P2({7, . . . , n}) ∪ P4({7, . . . , n})

= {{3, 4, 5, 6}}
∪ P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, . . . , n})
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({7, . . . , n})
∪ P4({7, . . . , n}).

In A(A2,1), {3, 4, 5, 6} and other elements are antipodal. We can add
it to A2,1 and obtain

A3,1 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}}= A(4, 6).

We have

A(A3,1) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, . . . , n})
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({7, . . . , n})
∪ P4({7, . . . , n}).

The stabilizer S(A3,1) induces permutations on {{1, 2}, {3, 4}, {5, 6}},
so it acts transitively on each of

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, . . . , n}),
{{1, 2}, {3, 4}, {5, 6}}× P2({7, . . . , n}),
P4({7, . . . , n}).

These are three orbits of S(A3,1). In the case n = 6, we have A(A3,1) =
∅ and A3,1 is a maximal antipodal subset of P4(6). Thus we suppose
that n ≥ 7. We divide the procedure to the three cases.
(1.1) We take the minimum element {1, 3, 5, 7} of the orbit P1({1, 2})×
P1({3, 4})× P1({5, 6})× P1({7, . . . , n}), add it to A3,1 and obtain

A4,1 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7}}.
We have

A(A4,1) = {α ∈ A(A3,1)− {{1, 3, 5, 7}} | α and {1, 3, 5, 7} are antipodal}
= {{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}}
∪ {{1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}}× P1({8, . . . , n})
∪ {{1, 2, 7}, {3, 4, 7}, {5, 6, 7}}× P1({8, . . . , n})
∪ P4({8, . . . , n}).
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Any element of {{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}} and any element of
A(A4,1) are antipodal. We can add these three elements to A4,1 and
obtain

A7,1 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7},
{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}}.

From the description of A7,1 we get

Ac
7,1 = {αc | α ∈ A7,1}

= {{5, 6, 7}, {3, 4, 7}, {1, 2, 7}, {2, 4, 6},
{2, 3, 5}, {1, 4, 5}, {1, 3, 6}}.

Acting the permutation

(

1 2 3 4 5 6 7
7 6 5 4 3 2 1

)

onAc
7,1 we obtainB(3, 7).

So A7,1 and B(4, 7) = Bc(3, 7) are congruent. We have

A(A7,1) = {{1, 2, 7}, {3, 4, 7}, {5, 6, 7},
{1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}}× P1({8, . . . , n})

∪ P4({8, . . . , n})
= Ac

7,1 × P1({8, . . . , n}) ∪ P4({8, . . . , n}).
Since the group of all projective transformations on F2P

2 acts tran-
sitively on the set of all projective lines in it, the stabilizer S(A7,1)
acts transitively on Ac

7,1 × P1({8, . . . , n}). It also acts transitively on
P4({8, . . . , n}). We can also directly see that S(A7,1) acts transitively
on Ac

7,1 × P1({8, . . . , n}). Hence
Ac

7,1 × P1({8, . . . , n}), P4({8, . . . , n})
are two orbits of S(A7,1). In the case n = 7 we have A(A7,1) = ∅ and
A7,1 is a maximal antipodal subset of P4(7). Thus we suppose that
n ≥ 8 in the case (1.1).
(1.1.1) We take the minimum element {1, 2, 7, 8} of the orbit Ac

7,1 ×
P1({8, . . . , n}), add it to A7,1 and obtain

A8,1 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7},
{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}, {1, 2, 7, 8}}.

We have

A(A8,1)

= {{3, 4, 7}, {5, 6, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}}× {{8}}
∪ P4({9, . . . , n}).
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{{3, 4, 7}, {5, 6, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}, {2, 4, 6}} × {{8}} is an-
tipodal and any element of it and any element of A(A8,1) are antipodal,
so we can add these six elements to A8,1 and obtain

A14 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7},
{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}}
∪ {{1, 2, 7}, {3, 4, 7}, {5, 6, 7}, {1, 3, 6},
{1, 4, 5}, {2, 3, 5}, {2, 4, 6}}× {{8}}

= A7,1 ∪ Ac
7,1 × {{8}},

which is congruent with B(4, 8). We have

A(A14) = P4({9, . . . , n}),
which is equivalent to A(B(4, 8)) = P4({9, . . . , n}). In the cases n =
8, 9, 10, 11 A(A14) is empty and A14 is a maximal antipodal subset of
P4(n). In the case n > 11 any maximal antipodal subset of P4(n) we
reach in this case is equal to A14 ∪ B for a maximal antipodal subset
B of P4({9, . . . , n}).
(1.1.2) We take the minimum element {8, 9, 10, 11} of the orbit P4({8, . . . , n}),
add it to A7,1 and obtain

A8,2 = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}, {1, 3, 5, 7},
{1, 4, 6, 7}, {2, 3, 6, 7}, {2, 4, 5, 7}, {8, 9, 10, 11}}.

We have

A(A8,2) = Ac
7,1 × P1({12, . . . , n})

∪ P2({8, 9, 10, 11})× P2({12, . . . , n}) ∪ P4({12, . . . , n}).
The stabilizer S(A8,2) is equal to

S(Ac
7,1)× Sym({8, 9, 10, 11})× Sym({12, . . . , n}),

which acts transitively on each of

Ac
7,1 × P1({12, . . . , n}),

P2({8, 9, 10, 11})× P2({12, . . . , n}),
P4({12, . . . , n}).

These are three orbits of S(A8,2). We divide the procedure to two
cases of (1.1.2.1) Ac

7,1×P1({12, . . . , n}) and (1.1.2.2) P2({8, 9, 10, 11})×
P2({12, . . . , n}), P4({12, . . . , n}).
(1.1.2.1) In the case n ≥ 12 we take the minimum element {1, 2, 7, 12}
of the orbit Ac

7,1 ×P1({12, . . . , n}). In a way similar to the case (1.1.1)
we reach the union of a maximal antipodal subset in P4({1, . . . , 7} ∪
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{12}) which is congruent with B(4, 8) and a maximal antipodal subset
of

P4({8, 9, 10, 11} ∪ {13, . . . , n}).
This is congruent with the union of B(4, 8) and a maximal antipodal
subset in P4({9, . . . , n}).
(1.1.2.2) We take the minimum element of the orbit P2({8, 9, 10, 11})×
P2({12, . . . , n}), P4({12, . . . , n}) and repeat the procedure. If we take
an element of Ac

7,1 × P1({12, . . . , n}) in this case, then the result re-
duces to the case (1.1.2.1). Hence it is sufficient to consider maximal
antipodal subsets of P4(n) which are included in

A8,2 ∪ P2({8, 9, 10, 11})× P2({12, . . . , n}) ∪ P4({12, . . . , n})
⊂ A7,1 ∪ P4({8, . . . , n}).

Any maximal antipodal subset of P4(n) we reach in this case is equal
to A7,1 ∪ B for a maximal antipodal subset of P4({8, . . . , n}). If B is
not full in P4({8, . . . , n}), then there exists m ∈ {8, . . . , n} which is not
contained in any element of B and

A7,1 ∪ B ⊂ A7,1 ∪ (Ac
7,1 × {{m}}) ∪B.

Here A7,1 ∪ (Ac
7,1 × {{m}}) ∪ B is antipodal and this contradicts to

the maximal property of A7,1 ∪ B. Thus B is full in P4({8, . . . , n}).
Conversely we show that A7,1 ∪ B is a maximal antipodal subset of
P4(n) if B is a full maximal antipodal subset of P4({8, . . . , n}). If
A7,1 ∪B is not a maximal antipodal subset of P4(n), then there exists
α /∈ A7,1 ∪ B such that α and any element of A7,1 ∪ B are antipodal.
In particular

α ∈ A(A7,1) = Ac
7,1 × P1({8, . . . , n}) ∪ P4({8, . . . , n}).

If α belongs to P1({8, . . . , n}), then this contradicts the maximal prop-
erty of B. If α belongs to Ac

7,1×P1({8, . . . , n}), then #(α∩{8, . . . , n}) =
1. By the assumption of induction B is a certain union of copies of
B(4, 7), B(4, 8) and A(4, 2l). Moreover B is full in P4({8, . . . , n}). So
there exists an element β in B such that #(α ∩ β) = 1, which is a
contradiction. Therefore A7,1 ∪ B is a maximal antipodal subset of
P4(n).
(1.2) We take the minimum element {1, 2, 7, 8} of the orbit

{{1, 2}, {3, 4}, {5, 6}}× P2({7, . . . , n}),
add it to A3,1 = A(4, 6) and obtain

A4,2 = A(4, 6) ∪ {{1, 2, 7, 8}}.
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We have

A(A4,2) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8})
∪ {{3, 4, 7, 8}, {5, 6, 7, 8}}
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({9, . . . , n})
∪ P2({7, 8})× P2({9, . . . , n}) ∪ P4({9, . . . , n}).

{{3, 4, 7, 8}, {5, 6, 7, 8}} is antipodal and any element of it and any
element of A(A4,2) are antipodal, so we can add it to A4,2 and obtain

A6,1 = A(4, 6) ∪ {{1, 2, 7, 8}, {3, 4, 7, 8}, {5, 6, 7, 8}}= A(4, 8).

We have

A(A6,1) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8})
∪ {{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, . . . , n})
∪ P4({9, . . . , n}).

The stabilizer A(A6,1) induces permutations on

{{1, 2}, {3, 4}, {5, 6}, {7, 8}},
so it acts transitively on each of

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8}),
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, . . . , n}),
P4({9, . . . , n}).

These are three orbits of S(A6,1). Hence we divide the procedure to
three cases.
(1.2.1) We take the minimum element {1, 3, 5, 7} of the orbit

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8}),
add it to A6,1 and obtain

A7,2 = A(4, 8) ∪ {{1, 3, 5, 7}}.
Let

Ev8 = {{i1, i2, i3, i4} | ij ∈ {2j − 1, 2j} (1 ≤ j ≤ 4),

the number of even numbers is even}.
We have

A(A7,2) = (Ev8 − {1, 3, 5, 7})∪ P4({9, . . . , n}).
Any element of Ev8 and any element of A(A7,2) are antipodal, so we
can add it to A7,2 and obtain

A(4, 8) ∪ Ev8 = A14.
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Thus the procedure in this case reduces to the case (1.1.1).
(1.2.2) We take the minimum element {1, 2, 9, 10} of the orbit

{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, . . . , n}),
add it to A6,1 and obtain

A7,3 = A(4, 8) ∪ {{1, 2, 9, 10}}.
We have

A(A7,3) = {{3, 4, 9, 10}, {5, 6, 9, 10}, {7, 8, 9, 10}}
∪ {{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({11, . . . , n})
∪ P2({9, 10})× P2({11, . . . , n})
∪ P4({11, . . . , n}).

{{3, 4, 9, 10}, {5, 6, 9, 10}, {7, 8, 9, 10}} is antipodal. Any element of it
and any element of A(A7,3) are antipodal, so we can add it to A7,3 and
obtain

A10 = A(4, 8) ∪ {{1, 2, 9, 10}, {3, 4, 9, 10}, {5, 6, 9, 10}, {7, 8, 9, 10}}
= A(4, 10).

We have

A(A10) = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}× P2({11, . . . , n})
∪ P4({11, . . . , n}).

Let M be a maximal antipodal subset of P4(n) we reach in this case.
Since M − A10 ⊂ A(A10), there exist

M1 ⊂ {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}× P2({11, . . . , n}),
M2 ⊂ P4({11, . . . , n})

satisfying M = A10 ∪M1 ∪M2. Let

N1 = {β ∈ P2({11, . . . , n}) | α ∪ β ∈ M1 for some

α = {2j − 1, 2j} (1 ≤ j ≤ 5)}.
This is an antipodal subset of P2({11, . . . , n}). So by an action of
Sym({11, . . . , n}) we can suppose that

N1 = {{11, 12}, {13, 14}, . . . , {2m− 1, 2m}}.
Any element ofN1 and any element ofM2 have even intersection. Hence
any element of A(4, 2m) and any element of M2 are antipodal and
A(4, 2m) ∪M2 is antipodal. We have

M = A10 ∪M1 ∪M2 ⊂ A(4, 2m) ∪M2.
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Since M is a maximal antipodal subset of P4(n), we obtain M =
A(4, 2m)∪M2. By repeating the procedure adding {1, 2, 11, 12}, {1, 2, 13, 14}
and so on, we reach A(4, 2m) and have

A(A(4, 2m)) = {{1, 2}, . . . , {2m− 1, 2m}} × P2({2m+ 1, . . . , n})
∪ P4({2m+ 1, . . . , n}).

Thus there exist

M3 ⊂ {{1, 2}, . . . , {2m− 1, 2m}} × P2({2m+ 1, . . . , n}),
M4 ⊂ P4({2m+ 1, . . . , n})

satisfying M = A(4, 2m) ∪ M3 ∪ M4. If M3 is not empty, then there
exists {2a − 1, 2a, b, c} with 1 ≤ a ≤ m, 2m + 1 ≤ b, c. The element
{b, c} of P2({2m + 1, . . . , n}) and any element of M4 have even inter-
section. Hence {1, 2, b, c} and any element of M4 are antipodal and
{b, c} belongs to N1, which is a contradiction. Therefore M3 is empty
and M = A(4, 2m) ∪ M4. So M4 is a maximal antipodal subset of
P4({2m + 1, . . . , n}). By the assumption of induction M4 is a certain
disjoint union of copies of B(4, 3), B(4, 8) and at most A(4, 2l) + 2m.
If there exists A(4, 2l) + 2m, then

A(4, 2m) ∪ (A(4, 2l) + 2m) ⊂ A(4, 2(m+ l))

and moreover any element of A(4, 2l)+ 2m and any element of M4. So
any element of A(4, 2(m + l)) and any element of M4 are antipodal,
too. Hence A(4, 2(m+ l)) ∪M4 is antipodal and

M = A(4, 2m) ∪ (A(4, 2l) + 2m) ∪M4 ⊂ A(4, 2(m+ l)) ∪M4,

which contradicts to the maximality of M . So M4 is a certain disjoint
union of copies of B(4, 7) and B(4, 8). If M4 is empty, then M =
A(4, 2m). If M4 is not empty, then M includes B(4, 7) or B(4, 8).
Thus the procedure in this case reduces to the case (1.1.2.2) or (1.1.1).
(1.2.3) We take the minimum element {9, 10, 11, 12} of the orbit P4({9, . . . , n}),
add it to A6,1 and obtain

A7,4 = A(4, 8) ∪ {{9, 10, 11, 12}}.
We have

A(A7,4) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8})
∪ {{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, 10, 11, 12})
∪ {{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({13, . . . , n})
∪ P2({9, 10, 11, 12})× P2({13, . . . , n})
∪ P4({13, . . . , n}).
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The stabilizer S(A7,4) induces permutations on {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
and {9, 10, 11, 12}, so it transitively acts on each of

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({7, 8}),
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, 10, 11, 12}),
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({13, . . . , n}),
P2({9, 10, 11, 12})× P2({13, . . . , n}),
P4({13, . . . , n}).

These are five orbits of S(A7,4). Hence we divide the procedure to five
cases.
(1.2.3.1) We take the minimum element {1, 3, 5, 7} of the orbit P1({1, 2})×
P1({3, 4})× P1({5, 6})× P1({7, 8}). This reduces to the case (1.1).
(1.2.3.2) We take the minimum element {1, 2, 9, 10} of the orbit

{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({9, 10, 11, 12}).
This reduces to the case (1.2.2).
(1.2.3.3) We take the minimum element {1, 2, 13, 14} of the orbit

{{1, 2}, {3, 4}, {5, 6}, {7, 8}}× P2({13, . . . , n}).
This reduces to the case (1.2.2) by the action of the permutation
(9 13)(10 14).
(1.2.3.4) We consider the orbits of P2({9, 10, 11, 12})×P2({13, . . . , n})
and P4({13, . . . , n}). When we proceed the procedure in this case, if
we take one element of the orbits of (1.2.3.1), (1.2.3.2) and (1.2.3.3),
this reduces to the cases of (1.1) or (1.2.2). Thus it is sufficient to take
elements of P2({9, 10, 11, 12}) × P2({13, . . . , n}) and P4({13, . . . , n}).
For any maximal antipodal subset M we reach in this case there exists
an antipodal subset M1 of P4({9, . . . , n}) which satisfies M = A(4, 8)∪
M1. However, this does not happen, because A(4, 8) is not a maximal
antipodal subset of P4(8).
(1.3) We take the minimum element {7, 8, 9, 10} of the orbit P4({7, . . . , n}),
add it to A3,1 and obtain

A4,3 = A(4, 6) ∪ {{7, 8, 9, 10}}.
We have

A(A4,3) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({11, . . . , n})
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({7, 8, 9, 10})
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({11, . . . , n})
∪ P2({7, 8, 9, 10})× P2({11, . . . , n})
∪ P4({11, . . . , n}).
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The stabilizer S(A4,3) induces permutations on {{1, 2}, {3, 4}, {5, 6}}
and {7, 8, 9, 10}, so it acts transitively on each of

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({11, . . . , n}),
{{1, 2}, {3, 4}, {5, 6}}× P2({7, 8, 9, 10}),
{{1, 2}, {3, 4}, {5, 6}}× P2({11, . . . , n}),
P2({7, 8, 9, 10})× P2({11, . . . , n}),
P4({11, . . . , n}).

These are five orbits of S(A4,3). Hence we divide the procedure to five
cases.
(1.3.1) We take the minimum element {1, 3, 5, 11} of the orbit P1({1, 2})×
P1({3, 4})× P1({5, 6})× P1({11, . . . , n}) and add it to A4,3. This case
reduces to the case (1.1) by the action of the permutation (7 11)(8 12).
(1.3.2) We take the minimum element {1, 2, 7, 8} of the orbit

{{1, 2}, {3, 4}, {5, 6}}× P2({7, 8, 9, 10})
and add it to A4,3. This case reduces to the case (1.2).
(1.3.3) We take the minimum element {1, 2, 11, 12} of the orbit

{{1, 2}, {3, 4}, {5, 6}}× P2({11, . . . , n})
and add it to A4,3. This case reduces to the case (1.2) by the action of
the permutation (7 11)(8 12).
(1.3.4) We take the minimum element {7, 8, 11, 12} of the orbit

P2({7, 8, 9, 10})× P2({11, . . . , n}),
add it to A4,3 and obtain

A5 = A(4, 6) ∪ {{7, 8, 9, 10}, {7, 8, 11, 12}}.
We have

A(A5) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({13, . . . , n})
∪ {{1, 2}, {3, 4}, {5, 6}}× {{7, 8}, {9, 10}, {11, 12}}
∪ {{1, 2}, {3, 4}, {5, 6}}× P2({13, . . . , n})
∪ {{9, 10, 11, 12}}
∪ {{7, 8}, {9, 10}, {11, 12}}× P2({13, . . . , n})
∪ P1({7, 8})× P1({9, 10})× P1({11, 12})× P1({13, . . . , n})
∪ P4({13, . . . , n}).

In A(A5) the element {9, 10, 11, 12} and other elements are antipodal,
so we can add it to A5 and obtain

A6,2 = A(4, 6) ∪ (A(4, 6) + 6).
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We have

A(A6,2) = P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({13, . . . , n})
∪ {{1, 2}, {3, 4}, {5, 6}}× {{7, 8}, {9, 10}, {11, 12}}
∪ {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}× P2({13, . . . , n})
∪ P1({7, 8})× P1({9, 10})× P1({11, 12})× P1({13, . . . , n})
∪ P4({13, . . . , n}).

The stabilizer S(A6,2) induces permutations on {{1, 2}, {3, 4}, {5, 6}}
and {{7, 8}, {9, 10}, {11, 12}} and interchanging these two, so it acts
transitively on each of

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({13, . . . , n})
∪ P1({7, 8})× P1({9, 10})× P1({11, 12})× P1({13, . . . , n}),
{{1, 2}, {3, 4}, {5, 6}}× {{7, 8}, {9, 10}, {11, 12}},
{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}× P2({13, . . . , n})
P4({13, . . . , n}).

These are four orbits of S(A6,2). Hence we divide the procedure to four
cases.
(1.3.4.1) We take the minimum element {1, 3, 5, 13} of the orbit

P1({1, 2})× P1({3, 4})× P1({5, 6})× P1({13, . . . , n})
∪ P1({7, 8})× P1({9, 10})× P1({11, 12})× P1({13, . . . , n})

and add it to A6,2. This reduces to the case (1.1).
(1.3.4.2) We take the minimum element {1, 2, 7, 8} of the orbit

{{1, 2}, {3, 4}, {5, 6}}× {{7, 8}, {9, 10}, {11, 12}}
and add it to A6,2. This reduces to the case (1.3.2).
(1.3.4.3) We take the minimum element {1, 2, 13, 14} of the orbit

{{1, 2}, {3, 4}, {5, 6}}× P2({13, . . . , n})
∪ {{7, 8}, {9, 10}, {11, 12}}× P2({13, . . . , n})

and add it to A6,2. This reduces to the case (1.2).
(1.3.4.4) We consider the orbit P4({13, . . . , n}). When we proceed the
procedure in this case, if we take one element of the orbits of (1.3.4.1),
(1.3.4.2) and (1.3.4.3), this reduces to the cases of (1.1), (1.2) or (1.3.2).
Thus it is sufficient to take elements of {{1, 2}, {3, 4}, {5, 6}}×P2({13, . . . , n})
and {{1, 2}, {3, 4}, {5, 6}}×P2({13, . . . , n}). For any maximal antipo-
dal subset M we reach in this case there exists an antipodal subset M1

of P4({13, . . . , n}) which satisfies M = A6,2 ∪M1. However, this does
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not happen, because A6,2 = A(4, 6) ∪ (A(4, 6) + 6) is not a maximal
antipodal subset of P4(12).
(1.3.5) We consider the orbit P4({11, . . . , n}). When we proceed the
procedure in this case, if we take one element of the orbits of (1.3.1),
(1.3.2), (1.3.3) and (1.3.4), this reduces to the cases already mentioned
above. Thus it is sufficient to take elements of P4({13, . . . , n}). For
any maximal antipodal subset M we reach in this case there exists an
antipodal subset M1 of P4({11, . . . , n}) which satisfies M = A4,3 ∪M1.
However, this does not happen, because A4,3 is not a maximal antipodal
subset of P4(10).
(2) We take the minimum element {5, 6, 7, 8} of the orbit P4({5, . . . , n}),
add it to A1 and obtain

A2,2 = {{1, 2, 3, 4}, {5, 6, 7, 8}}.
We have

A(A2,2) = P2({1, 2, 3, 4})× P2({5, 6, 7, 8})
∪ P2({1, 2, 3, 4})× P2({9, ..., n})
∪ P2({5, 6, 7, 8})× P2({9, ..., n})
∪ P4({9, ..., n}).

The stabilizer S(A2,2) induces permutations on {1, 2, 3, 4} and {5, 6, 7, 8}
and interchanging these two, so it acts transitively on each of

P2({1, 2, 3, 4})× P2({5, 6, 7, 8}),
P2({1, 2, 3, 4})× P2({9, ..., n}) ∪ P2({5, 6, 7, 8})× P2({9, ..., n}),
P4({9, ..., n}).

These are three orbits of S(A2,2). Hence we divide the procedure to
three cases.
(2.1) We take the minimum element {1, 2, 5, 6} of the orbit P2({1, 2, 3, 4})×
P2({5, 6, 7, 8}) and add it to A2,2. This reduces to the case (1).
(2.2) We take the minimum element {1, 2, 9, 10} of the orbit

P2({1, 2, 3, 4})× P2({9, ..., n}) ∪ P2({5, 6, 7, 8})× P2({9, ..., n})
and add it to A2,2. This reduces to the case (1).
(2.3) We take the minimum element {9, 10, 11, 12} of the orbit P4({9, ..., n})
and add it to A2,2. When we proceed the procedure in this case, if we
take one element of the orbits of (2.1) and (2.2), this reduces to the
cases already mentioned above. Thus it is sufficient to take elements
of P4({9, . . . , n}). For any maximal antipodal subset M we reach in
this case there exists an antipodal subset M1 of P4({9, . . . , n}) which
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satisfies M = A2,2 ∪M1. However, this does not happen, because A2,2

is not a maximal antipodal subset of P4(8). �

Example 6.1. We show the maximal antipodal subsets of P4(11).

A(4, 10), B(4, 8), B(4, 7) ∪ (A(4, 4) + 7).

Corollary 6.1. Any disjoint union of p subsets congruent with A(4, 2l)
where l ≥ 2 and l 6= 4 hold, q subsets congruent with B(4, 7) and r
subsets congruent with B(4, 8) is a maximal antipodal subset of P4(n)
in the following cases:

(1) p = 0, 1, q > 0, r ≥ 0, n = 2lp+ 7q + 8r,
(2) p = 1, q = 0, r ≥ 0, n = 2lp+ 7q + 8r, 2lp+ 7q + 8r + 1,
(3) p = 0, q = 0, r > 0, n = 2lp + 7q + 8r, 2lp + 7q + 8r + 1, 2lp +

7q + 8r + 2, 2lp+ 7q + 8r + 3.

Conversely any maximal antipodal subset of P4(n) is congruent with

one of the above subsets.

Proof. By Theorem 6.1 any maximal antipodal subset of P4(n) is equal
to a disjoint union of p subsets congruent with A(4, 2l) where l ≥ 2 and
l 6= 4 hold, q subsets congruent with B(4, 7) and r subsets congruent
with B(4, 8). We have to find a necessary and sufficient condition that
such a disjoint union is a maximal antipodal subset of P4(n). Since
A(4, 2l) ∪ (A(4, 2m) + 2l) ⊂ A(4, 2(l + m)), we have p = 0, 1. We
consider two cases where q > 0 and q = 0. Because of the relation
B(4, 7) ⊂ B(4, 8), we see that B(4, 7) is not a maximal antipodal subset
of P4(8). In the case where q > 0 we have n = 2lp + 7q + 8r. We
suppose q = 0. If l is not four, A(4, 2l) is a maximal antipodal subset
of P4(2l) and P4(2l + 1) but is not maximal in P4(2l + 2). B(4, 8) is
a maximal antipodal subset of P4(8), P4(9), P4(10) and P4(11) but is
not maximal in P4(12). Therefore in the case where p = 1 we have
n = 2lp+7q+8r, 2lp+7q+8r+1 and in the case where p = 0 we have
n = 2lp+7q+8r, 2lp+7q+8r+1, 2lp+7q+8r+2, 2lp+7q+8r+3. �

Corollary 6.2. The 2-number #2G̃4(R
n) is as follows:

n 5 6 7 8, . . . , 11 more than 11

#2G̃4(R
n) 2 6 14 28 [n/2]([n/2]− 1)

Proof. We have

#A(4, 2l) =

(

l

2

)

=
1

2
l(l − 1), #B(4, 7) = 7, #B(4, 8) = 14

and obtain the corollary by Corollary 3.1. �
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Remark 6.1. Some 4-forms correspond to maximal antipodal sub-
sets of P4(n) in a way similar to Remark 4.2. The half of the second
power product of the Kähler form on C

l = R
2l corresponds to A(4, 2l).

The fundamental 4-form on H2 defined by Kraines [3] corresponds to
B(4, 8). This form is invariant under the action of Sp(2)Sp(1).

7. Maximal antipodal subsets of Pk(n) for higher k

We show some results on maximal antipodal subsets of Pk(n) for
higher k, by generalizing some arguments in previous sections.
For k = 2k′ we define

A(k, 2l) = {α1 ∪ · · · ∪ αk′ ∈ Pk(2l) | αi ∈ {{1, 2}, . . . , {2l− 1, 2l}}}.
We can see easily that A(k, 2l) is an antipodal subset of Pk(2l). This
is a generalization of A(4, 2l) defined in the previous section.

Proposition 7.1. Let k = 2k′. If l ≥ 3k′ − 1, then A(k, 2l) is a

maximal antipodal subset of Pk(2l) and Pk(2l + 1).

Proof. We suppose that A(k, 2l) is not a maximal antipodal subset of
Pk(2l). We can take β ∈ Pk(2l) − A(k, 2l) which is antipodal with
every elements of A(k, 2l). Since β /∈ A(k, 2l), there exists 1 ≤ i ≤ l
satisfying #(β ∩ {2i− 1, 2i}) = 1. Let

B = {{1, 2}, . . . , {2l− 1, 2l}}.
Since #β = k, there exist α1, . . . , αk ∈ B satisfying β ⊂ α1 ∪ · · · ∪ αk.
B−{α1, . . . , αk} has l− k elements and l− k ≥ 3k′ − 1− 2k′ = k′ − 1.
Hence we can take

β1, . . . , βk′−1 ∈ B − {α1, . . . , αk}.
{2i− 1, 2i} ∪ β1 ∪ · · · ∪ βk′−1 ∈ A(k, 2l) and the cardinality of

β ∩ ({2i− 1, 2i} ∪ β1 ∪ · · · ∪ βk′−1) = β ∩ {2i− 1, 2i}
is one, thus β and {2i−1, 2i}∪β1∪· · ·∪βk′−1 are not antipodal, which
is a contradiction. Therefore A(k, 2l) is a maximal antipodal subset of
Pk(2l).
Next we suppose that A(k, 2l) is not a maximal antipodal subset of

Pk(2l+1). We can take take β ∈ Pk(2l+1)−A(k, 2l) which is antipodal
with every elements of A(k, 2l). Since A(k, 2l) is a maximal antipodal
subset of Pk(2l), β contains 2l+1. The cardinality of #β is even, thus
there is 1 ≤ i ≤ l satisfying #(β ∩ {2i − 1, 2i}) = 1. Hence we can
see that this is a contradiction in a way similar to the previous case.
Therefore A(k, 2l) is a maximal antipodal subset of Pk(2l + 1). �
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Remark 7.1. The 1/k′! times the k′-th power product of the Kähler
form on Cl = R2l corresponds to A(2k′, 2l).

In order to construct a maximal antipodal subset including A(4m, 8m)
in P4m(8m), we prepare the following lemma.

Lemma 7.1. For α = {α1, . . . , α2m} ∈ P1({1, 2}) × · · · × P1({4m −
1, 4m}) ⊂ P2m(4m) we define

αe = {i | αi is even}, αo = {i | αi is odd}.
For any α, β ∈ P1({1, 2})× · · · × P1({4m− 1, 4m}) we have

#(α ∩ β) = 2#(αe ∩ βe) + #βo −#αe.

Proof. We note that

αe ∪ αo = βe ∪ βo = {1, . . . , 2m}
are disjoint unions. We have

α ∩ β = {αi | i ∈ αe ∩ βe} ∪ {αi | i ∈ αo ∩ βo},
which is a disjoint union. Thus we obtain

#(α ∩ β) = #(αe ∩ βe) + #(αo ∩ βo)

= #(αe ∩ βe) + (#βo −#(αe ∩ βo))

= 2#(αe ∩ βe) + #βo −#αe.

�

We define Ev4m for a natural number m by

Ev4m = {{α1, . . . , α2m} | αi ∈ {2i− 1, 2i} (1 ≤ i ≤ 2m),

the number of even numbers is even}.
This is a subset of P1({1, 2})× P1({3, 4})× · · · × P1({4m− 1, 4m}) ⊂
P2m(4m) and a generalization of Ev8 defined in the proof of Theorem
6.1.

Proposition 7.2. A(4m, 8m)∪Ev8m is a maximal antipodal subset of

P4m(8m) for m ≥ 1.

Proof. We first show that A(4m, 8m) ∪Ev8m is an antipodal subset of
P4m(8m). For any α in A(4m, 8m) and β in Ev8m, #(α ∩ β) = 2m by
their definitions, thus they are antipodal. We take any elements α and
β in Ev8m. Lemma 7.1 implies

#(α ∩ β) = 2#(αe ∩ βe) + #βo −#αe,

which is even. Hence #(α ∩ β) is even and α and β are antipodal.
Therefore A(4m, 8m) ∪ Ev8m is antipodal.
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Next we show that A(4m, 8m)∪Ev8m is a maximal antipodal subset
of P4m(8m). For this purpose we show that for any α in P4m(8m) −
A(4m, 8m)∪Ev8m there exists an element in A(4m, 8m)∪Ev8m which
is not antipodal to α. There are two posibilities of α as follows:

(1) #(α ∩ {2i− 1, 2i}) = 2 for some i and #(α ∩ {2j − 1, 2j}) = 1
for some j,

(2) α ∈ P1({1, 2})× · · · × P1({8m− 1, 8m})−Ev8m.

In the case (1), we put

{i | #(α ∩ {2i− 1, 2i}) = 2} = {i1, . . . , ia},
{j | #(α ∩ {2j − 1, 2j}) = 1} = {j1, . . . , jb}.

These imply 4m = #α = 2a + b, hence b is even. Thus 2m = a + b/2.
In the case where b/2 is odd, we put

β = {2i1 − 1, 2i1} ∪ · · · ∪ {2ia − 1, 2ia}
∪ {2j1 − 1, 2j1} ∪ · · · ∪ {2jb/2 − 1, 2jb/2} ∈ A(4m, 8m)

and

#(α ∩ β) = 2a+
b

2
is odd, hence α and β are not antipodal. In the case where b/2 is even,
we take i∗ satisfying

α ∩ {2i∗ − 1, 2i∗} = ∅.
We put

γ = {2i1 − 1, 2i1} ∪ · · · ∪ {2ia − 1, 2ia}
∪ {2j1 − 1, 2j1} ∪ · · · ∪ {2jb/2−1 − 1, 2jb/2−1} ∪ {2i∗ − 1, 2i∗} ∈ A(4m, 8m)

and

#(α ∩ γ) = 2a+
b

2
− 1

is odd, hence α and γ are not antipodal.
In the case (2), #αe is odd. For any δ ∈ Ev8m we obtain

#(α ∩ δ) = 2#(αe ∩ δe) + #δo −#αe

by Lemma 7.1. Hence #(α ∩ δ) is odd, and α, δ are not antipodal.
Anyway there exists an element in A(4m, 8m) ∪ Ev8m which is not

antipodal to α. Therefore A(4m, 8m) ∪ Ev8m is a maximal antipodal
subset in P4m(8m). �

Remark 7.2. We have already proved the statement of Proposition
7.2 in the case m = 1 in the proof of Theorem 6.1, where we showed
A(4, 8) ∪ Ev8 = A14 is congruent with B(4, 8) in P4(8). Proposition
7.1 shows that A(k, 2l) is a maximal antipodal subset of Pk(2l) and
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Pk(2l + 1) for l ≥ 3k′ − 1. On the other hand, A(4m, 8m) is not a
maximal antipodal subset of P4m(8m) by Proposition 7.2. Moreover
the case of m = 1 shows that the condition l ≥ 3k′ − 1 of Proposition
7.1 is sharp.

Lemma 7.2. If A ⊂ Pk(n) is an antipodal subset, then A×{{n+1}} =
{σ ∪ {n+ 1} | σ ∈ A} is an antipodal subset of Pk+1(n+ 1).

Proof. For α, β ∈ A we have

(β ∪ {n+ 1})− (α ∪ {n + 1}) = β − α.

Thus A× {{n+ 1}} is antipodal, if A is antipodal. �

For a subset A ⊂ Pk(2k + 1), we have Ac ⊂ Pk+1(2k + 1) and
A × {{2k + 2}} ⊂ Pk+1(2k + 2). Using these we define the twisted

double TD(A) of A by

TD(A) = Ac ∪A× {{2k + 2}}.
This is a generalization of the construction of B(4, 8) from B(3, 7) in
the previous section. In the case where k = 3, we have TD(B(3, 7)) =
B(4, 8).

Proposition 7.3. We assume that k is odd. If A ⊂ Pk(2k + 1) is an

antipodal subset, then TD(A) is an antipodal subset of Pk+1(2k + 2).
Moreover, if A is a maximal antipodal subset of Pk(2k+1), then TD(A)
is a maximal antipodal subset of Pk+1(2k + 2).

Proof. If A is antipodal, Ac is an antipodal subset of Pk+1(2k + 1) by
Lemma 4.1, and A×{{2k+2}} is an antipodal subset of Pk+1(2k+2) by
Lemma 7.2. In order to prove that TD(A) is antipodal, it is sufficient
to show that αc and β ∪ {2k+ 2} are antipodal for α, β ∈ A. We have

(∗) αc ∩ (β ∪ {2k + 2}) = β − α,

where αc is the complement of α in {1, . . . , 2k+1}. The cardinality of
(∗) is even and k + 1 is even, thus αc and β ∪ {2k + 2} are antipodal
in Pk+1(2k + 2).
We suppose that A is a maximal antipodal subset of Pk(2k+1). We

take an element γ ∈ Pk+1(2k+2) which is antipodal with every elements
of TD(A). In the case where γ does not contain 2k + 2, γ belongs to
Pk+1(2k + 1). Ac is a maximal antipodal subset of Pk+1(2k + 1) and
γ is antipodal with every elements of Ac, hence γ ∈ Ac ⊂ TD(A). In
the case where γ contains 2k + 2, there is δ in Pk(2k + 1) satisfying
γ = δ ∪ {2k + 2}. For any β ∈ A γ and β ∪ {2k + 2} are antipodal,
thus the cardinality of

(β ∪ {2k + 2})− (δ ∪ {2k + 2}) = β − δ
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is even. Hence β and δ are antipodal. Because of the maximality of A
in Pk(2k + 1) we get δ ∈ A and γ ∈ A× {{2k + 2}} ⊂ TD(A). In any
case we have γ ∈ TD(A). Therefore TD(A) is a maximal antipodal
subset of Pk+1(2k + 2). �
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