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1 Introduction

The AdS/CFT correspondence shows that minimal surfaces in AdS space-time are dual to

the Wilson loops along their boundary [1, 2], where the area corresponds to the expectation

value of the Wilson loops at strong coupling. When the boundary is null-polygonal/light-

like, the minimal surfaces also give the gluon scattering amplitudes of N = 4 super Yang-

Mills theory [3], implying the duality between the amplitudes and the Wilson loops [3–5]

and hence the dual conformal symmetry [3, 6, 7]. This dual conformal symmetry com-

pletely fixes the n-point amplitudes/Wilson loops with n cusps up to n = 5. For n ≥ 6,

however, it allows deviation from the Bern-Dixon-Smirnov (BDS) formula [8] by the re-

mainder function [9–11], which is a function of the cross-ratios of the cusp coordinates

on the boundary.

At strong coupling, the corresponding area of the minimal surfaces is evaluated with

the help of integrability [12]. More concretely, one first solves a set of integral equations of

the thermodynamic Bethe ansatz (TBA) form, or an associated Y-/T-system [13–15]. The

cross-ratios are then expressed by its solution, i.e., the Y- or T-functions, and consequently

the main part of the remainder function is given by these Y-/T-functions as well as the

free energy associated with the TBA system.

In a previous paper [15], Sakai and the present authors pointed out that the TBA

equations for the minimal surfaces with 2ñ cusps in AdS3 coincide with those of the

SU(ñ − 2)2/U(1)
ñ−3 homogeneous sine-Gordon (HSG) model [16] with purely imaginary

resonance parameters. Similarly, it was inferred there that the TBA equations for the

minimal surfaces with n cusps in AdS4 are those of the HSG model associated with

SU(n− 4)4/U(1)
n−5.

These observations allow us to solve the TBA systems around the UV/high-

temperature limit, where the two-dimensional integrable (HSG) model reduces to a confor-

mal field theory (CFT). The deviation from the UV limit then corresponds to an integrable

relevant/mass perturbation of the CFT. The corrections to observables are also regarded

as finite size effects of the two-dimensional system, which can be computed by using the

conformal perturbation theory (CPT). By the standard procedure [17], one can indeed de-

rive an analytic expansion of the free energy around the UV limit. The Y-/T-functions are

also expanded by the CPT with boundaries [18, 19], based on the relation to the g-function

(boundary entropy) [20]. Since the Wilson loops become regular polygonal in the UV limit,

those expansions give an analytic expansion of the remainder function around this regular-

polygonal limit. For the analysis in the opposite IR/large-mass regime, see [12, 13, 21–25].

We have carried out the above program for the minimal surfaces embedded in

AdS3 [26, 27]. In this case, the relevant CFT is the SU(ñ − 2)2/U(1)
ñ−3 generalized

parafermion theory [28] and, by turning off some mass parameters so as to leave only

one mass scale (single-mass case), the TBA system is reduced to simpler ones for the per-

turbed SU(2) diagonal coset and minimal models. This is a key step which enables us to

find precise values of the expansion coefficients in terms of the mass parameters in the TBA

system, through the relation to the coupling of the relevant perturbation (mass-coupling

relation) and the correlation functions. We then derived the expansion of the 8- and 10-
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point remainder functions in [26], and that of the general 2ñ-point remainder function

in [27]. We observed that the appropriately rescaled remainder functions are close to those

evaluated at two loops [29–31].

The purpose of the present work is to study the analytic expression of the regularized

area of the null-polygonal minimal surfaces in AdS4 by extending the above results in

the AdS3 case. In particular, we derive the analytic expansion of the remainder function

around the UV limit by using the underlying integrable models and the CPT. In this case,

the corresponding TBA or Y-system is obtained by a projection from that for the minimal

surfaces in AdS5 [14]. The relevant CFT in the UV limit for the n-cusp surfaces is now the

SU(n−4)4/U(1)
n−5 generalized parafermion theory. The TBA systems with only one mass

parameter are given by those for the perturbed unitary SU(4) diagonal coset models and

W minimal models. We also argue that a similar correspondence to the perturbed non-

unitary diagonal coset and W minimal models holds for the systems with a pair of equal

mass parameters. These generalize the reduction in the AdS3 case, and are used to find

the precise expansion coefficients. Explicitly, we work out the leading-order expansion for

n = 6 and 7. In these cases, the input from the perturbed W minimal models completely

determines the leading-order expansion. For n = 6, we also compare the rescaled remainder

function with the two-loop one which is read off from [32–35], to observe that they are close

to each other.

This paper is organized as follows: in section 2, we review the remainder function

corresponding to the minimal surfaces in AdS4, and the associated TBA system. We

explicitly check that the TBA equations for the n-cusp minimal surfaces are obtained from

the SU(n − 4)4/U(1)
n−5 homogeneous sine-Gordon model. In section 3, we discuss the

TBA systems in the single-mass cases in relation to the perturbed SU(4) diagonal coset

and W minimal models. In section 4, we discuss the expansion of the free energy, and

derive the leading-order expansion for n = 6 and 7. In section 5, we extend the formalism

of the expansion of the T-/Y-functions to the AdS4 case, and derive the leading-order

expansion for n = 6 and 7. Combining those results, we derive the analytic expansion

of the remainder function for n = 6 and 7 in section 6. We also compare the rescaled

remainder function for n = 6 with the two-loop one. In the appendix, we summarize a

computation of a three-point function in a non-unitary W minimal model.

2 TBA equations for minimal surfaces in AdS4

In this section, we review the computation of the regularized area of the minimal surfaces

in the AdS space with a null polygonal boundary using integrability. As studied in [13–15],

such an area is governed by a set of non-linear integral equations of the TBA form or

the associated T-/Y-systems. Those equations coincide with the TBA equations of the

homogeneous sine-Gordon model.

2.1 Functional relations and TBA equations

The basic idea to compute the area of the minimal surfaces is as follows. We start with the

non-linear sigma model that describes the classical strings in AdS5. After the Pohlmeyer
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reduction, the equations of motion for classical strings are mapped to a linear system of

differential equations. Due to the integrability of the linear system, one can introduce

a spectral parameter θ. Using the bispinor representation, this system is brought to the

SU(4) Hitchin system with a Z4-symmetry. Solutions of this linear problem show the Stokes

phenomena [12]. The smallest solution is uniquely determined in each Stokes sector. Their

Wronskians evaluated at special values of the spectral parameter form the cross-ratios of the

cusp coordinates. From the Plücker relations, these Wronskians satisfy certain functional

relations called the T-system.

For AdS5, it reads as the following relations among the T-functions Ta,s(θ),

T+
a,sT

−
4−a,s = T4−a,s+1Ta,s−1 + Ta+1,sTa−1,s , (2.1)

where a = 1, 2, 3; s = 1, 2, · · · , n−5 for the n-cusp minimal surfaces and f±(θ) :=f
(

θ ± iπ
4

)

.

The boundary conditions for the T-functions are

Ta,0 = 1 (a = 1, 2, 3), T0,s = T4,s = 1 (s ∈ Z). (2.2)

At the boundary s = n− 4, we have also to impose the boundary condition related to the

formal monodromy [14]. For n 6∈ 4Z, the condition is simply given by

T1,n−4 = µ−(1+(−1)n)/2, T2,n−4 = 1, T3,n−4 = µ(1+(−1)n)/2, (2.3)

where µ is a constant. In this work, we focus on this n /∈ 4Z case, where we do not need to

consider extra monodromy factors. From the T-functions, the Y-functions are defined by

Ya,s =
Ta,s+1T4−a,s−1

Ta+1,sTa−1,s
. (2.4)

They satisfy a set of functional relations called the Y-system:

Y −
a,sY

+
4−a,s

Ya+1,sYa−1,s
=

(1 + Ya,s+1)(1 + Y4−a,s−1)

(1 + Ya+1,s)(1 + Ya−1,s)
. (2.5)

The boundary conditions for the Y-functions are Ya,0 = Ya,n−4 = 0 (a = 1, 2, 3) and

Y0,s = Y4,s = ∞ (s = 1, · · · , n − 5). The Y-system has many solutions in general. To

determine a solution of the Y-system, we need to know the analytic structure of the Y-

functions including their asymptotics for large |θ|, which has been studied in [14]. The

asymptotics is specified by auxiliary complex (mass) parameters ms and constants Cs, Ds.

For real ms, it is given by

log Y1,s(θ)→ −ms cosh θ − Cs ±Ds ,

log Y2,s(θ)→ −
√
2ms cosh θ , (2.6)

log Y3,s(θ)→ −ms cosh θ + Cs ∓Ds ,

as θ → ±∞. One can show that the Y-system can be rewritten into a set of integral

equations of the TBA form. Those equations for the minimal surfaces in the AdS5 space
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are given by

log Y1,s(θ) = −ms cosh θ − Cs −K1 ∗ αs −
1

2
K2 ∗ βs −

1

2
K3 ∗ γs,

log Y2,s(θ) = −
√
2ms cosh θ −K2 ∗ αs −K1 ∗ βs, (2.7)

log Y3,s(θ) = −ms cosh θ + Cs −K1 ∗ αs −
1

2
K2 ∗ βs +

1

2
K3 ∗ γs,

where ∗ stands for the convolution, f ∗ g :=
∫∞
−∞ dθ f(θ − θ′)g(θ′). The functions αs, βs

and γs are defined by

αs = log
(1 + Y1,s)(1 + Y3,s)

(1 + Y2,s−1)(1 + Y2,s+1)
, γs = log

(1 + Y1,s−1)(1 + Y3,s+1)

(1 + Y1,s+1)(1 + Y3,s−1)
,

βs = log
(1 + Y2,s)

2

(1 + Y1,s−1)(1 + Y1,s+1)(1 + Y3,s−1)(1 + Y3,s+1)
, (2.8)

and the kernels are by

K1(θ) =
1

2π cosh θ
, K2(θ) =

√
2 cosh θ

π cosh 2θ
, K3(θ) =

i

π
tanh 2θ. (2.9)

The constants Ds are obtained from γs by Ds = i
π

∫

dθ γs(θ), whereas the constant µ

in (2.3) is related to Cs.

In this paper, we particularly focus on the minimal surfaces in the AdS4 subspace,

which correspond to the amplitudes with the four-momenta of the external particles lying

in a three-dimensional subspace. In this case, the above integral equations are simplified

to the TBA equations of a known integrable system. To reduce the problem into AdS4,

we need a projection of the original system for the AdS5 space. This projection relates

the smallest solutions of the linear problem to those for the inverse problem via a gauge

transformation. This relation results in the following conditions in the TBA system,

T1,s(θ) = T3,s(θ), Y1,s(θ) = Y3,s(θ), (2.10)

where the latter relation leads to µ2 = 1. In this paper, we particularly consider the

case with µ = 1 and Cs = 0, so that one can analyze the area for small ms by the

underlying integrable models and conformal field theories. Then, we obtain the simplified

integral equations,

log Y1,s(θ) = −ms cosh θ −K1 ∗ αs −
1

2
K2 ∗ βs,

log Y2,s(θ) = −
√
2ms cosh θ −K2 ∗ αs −K1 ∗ βs, (2.11)

where αs and βs reduce to

αs = log
(1 + Y1,s)

2

(1 + Y2,s−1)(1 + Y2,s+1)
, βs = 2 log

(1 + Y2,s)

(1 + Y1,s−1)(1 + Y1,s+1)
. (2.12)
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So far, we have focused on the real mass (ms) case. One can generalize these results

to the complex-mass case as in [14]. If the masses in the TBA equations are complex,

ms = |ms|eiϕs , the driving terms of the TBA equations are modified as

−ma,s cosh θ → −
1

2
(m̄a,se

θ +ma,se
−θ) = −|ma,s|

2
(eθ−iϕs + e−(θ−iϕs)), (2.13)

where m1,s = m2,s/
√
2 = ms. Thus, defining Ỹa,s(θ) = Ya,s(θ + iϕs), the TBA equations

become

log Ỹ1,s = −|ms| cosh θ − 2K1 ∗ log(1 + Ỹ1,s)

+Ks,s−1
1 ∗ log(1 + Ỹ2,s−1) +Ks,s+1

1 ∗ log(1 + Ỹ2,s+1)

−K2 ∗ log(1 + Ỹ2,s) +Ks,s−1
2 ∗ log(1 + Ỹ1,s−1) +Ks,s+1

2 ∗ log(1 + Ỹ1,s+1),

log Ỹ2,s = −
√
2|ms| cosh θ − 2K2 ∗ log(1 + Ỹ1,s) (2.14)

+Ks,s−1
2 ∗ log(1 + Ỹ2,s−1) +Ks,s+1

2 ∗ log(1 + Ỹ2,s+1)

− 2K1 ∗ log(1 + Ỹ2,s) + 2Ks,s−1
1 ∗ log(1 + Ỹ1,s−1) + 2Ks,s+1

1 ∗ log(1 + Ỹ1,s+1),

where

Ks,s′

j (θ) = Kj(θ + iϕs − iϕs′) (j = 1, 2). (2.15)

Note that this integral equations are valid only when |ϕs − ϕs′ | < π/4 for all s, s′. If at

least one of |ϕs−ϕs′ | is greater than π/4, we need to modify the TBA equations due to the

poles in the kernels. The complex masses ms provide 2(n−5) independent real parameters

for the TBA system, which match the number of the independent cross-ratios formed by

the cusp coordinates of the AdS4 minimal surfaces.

2.2 TBA equations for SU(N)4/U(1)
N−1 HSG model

In [15], the integral equations for the 2ñ-cusp null-polygonal minimal surfaces in AdS3
were identified with the TBA equations of the SU(ñ−2)2/U(1)

ñ−3 HSG model with purely

imaginary resonance parameters σs = iϕs, where the masses of the particles are regarded

as complex parameters. The corresponding relation was also inferred in the same paper

between the present n-cusp minimal surfaces in AdS4 and the SU(n − 4)4/U(1)
n−5 HSG

model. The relation is indeed confirmed by comparing the integral equations in the previous

subsection with the TBA equations of this HSG model, which are read off from the general

expression in [36]. Let us see this explicitly below.

For this purpose, we first recall that the HSG model associated with the SU(N) coset is

defined as an integrable perturbation of the SU(N)k/U(1)
N−1 gauged WZNW/generalized

parafermion model by the weight-zero primary fields in the adjoint representation of su(N).

Here, we denote the SU(N) affine Lie algebra at level k by SU(N)k. This SU(N)k/U(1)
N−1

coset CFT has the central charge,

c(
SU(N)k
U(1)N−1

) =
(k − 1)N(N − 1)

k +N
, (2.16)

– 6 –
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and its primary field ΦΛ

λ (z) with weight λ in the highest-weight representation labeled by

Λ has the conformal dimension,

∆Λ

λ =
Λ(Λ+ 2ρsu(N))

2(k +N)
− λ2

2k
. (2.17)

ρsu(N) is half the sum of the positive roots (the Weyl vector) of the Lie algebra su(N). The

action of the HSG model then takes the form,

SHSG = SgWZNW + λ

∫

d2xΦ , (2.18)

where Φ is a combination of the weight-zero adjoint operators Φ
ω1+ωN−1

0
, which is

parametrized by the N − 1 real mass parameters Ms (s = 1, · · · , N − 1) and the real

resonance parameters σs. This perturbing operator Φ has the dimension,

∆ = ∆̄ := ∆
ω1+ωN−1

0
=

N

N + k
. (2.19)

On dimensional grounds, the coupling of the integrable relevant/mass perturbation is ex-

pressed by the dimensionless coupling κ and the mass scale M as

λ = −κM2−∆−∆̄ . (2.20)

We note that the above action describes a multi-parameter integrable perturbation, which

is a notable feature of the HSG model.

The particles in this model are labeled by two quantum numbers (a, s) and have masses

Ma,s = Ms sin

(

πa

k

)

/ sin

(

π

k

)

, (2.21)

where a = 1, . . . , k−1. The S-matrix of the diagonal scattering between the particles (a, r)

and (b, s) is then given by [37]

Srs
ab(θ;σrs) =

[

Smin
ab (θ)

]δr,s[

(ηr,s)
−abSF

ab(θ + σrs)
]−Irs

, (2.22)

where σrs := σr − σs, and

Smin
ab (θ) =

min(a,b)−1
∏

j=0

(a+ b− 2j)θ(a+ b− 2− 2j)θ (2.23)

with

(x)θ :=
sinh 1

2

(

θ + iπ
k x
)

sinh 1
2

(

θ − iπ
k x
) (2.24)

is the S-matrix of the Ak−1 minimal affine Toda field theory (ATFT) [38, 39]. In the second

factor, Irs = δr,s+1 + δr,s−1 is the incidence matrix of the Lie algebra su(N), ηr,s(= η−1
s,r )

are arbitrary kth roots of −1, and SF
ab is given by

SF
ab(θ) =

min(a,b)−1
∏

j=0

(a+ b− 1− 2j)θ . (2.25)

The parity-invariance of Srs
ab is broken due to ηr,s and σrs.

– 7 –
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Next, we recall that, for a diagonal scattering theory with the S-matrix SAB, the TBA

equations in the fermionic case take the form (see for example [40]),

log YA(θ) = −mA cosh θ +
∑

B

KAB ∗ log(1 + YB) , (2.26)

where KAB(θ) are the kernels defined by

KAB(θ) =
1

2πi

∂

∂θ
logSAB(θ) . (2.27)

On the right-hand side, mA = MAL is the dimensionless combination of the mass parameter

MA and the length scale/inverse temperature L. We have also assumed above that the

kernels are symmetric: KAB(θ) = KBA(θ). Once the resonance parameters are set to be

vanishing, σrs = 0, the kernels for the HSG model are indeed symmetric and one can apply

this formula.

From the resultant TBA equations, one can show that Y1,s = Y3,s for k = 4. After

imposing this condition, we find that the TBA equations of the SU(N)4/U(1)
N−1 HSG

model with vanishing σs are just the same as the integral equations (2.11) for the (N +4)-

cusp minimal surfaces in AdS4 with real mass parameters. Here, the correspondences of

the parameters are m1,s = m3,s = m2,s/
√
2 = ms for the masses mA = ma,s, and

Krs
12 = Krs

23 = K1 , Krs
22 = Krs

11 +Krs
13 = Krs

33 +Krs
13 = K2 , (2.28)

for the kernels KAB = Krs
ab . When the mass parameters are complex, ms = |ms|eiϕs , the

phases correspond to the purely imaginary resonance parameters σs = iϕs. One finds that

the TBA equations in this case are given by (2.14).

2.3 Remainder function

In the previous two subsections, we have seen that the null-polygonal minimal surfaces

with n cusps in AdS4 are characterized by the TBA equations for the SU(n− 4)4/U(1)
n−5

HSG model. We would like to know the area of such minimal surfaces. Here we see that

the area can be expressed in terms of the T-/Y-functions, the free energy and the mass

parameters associated with the TBA system.

The area shows divergence, since the surfaces extend to the boundary of AdS at infinity

and have the cusp points there. Introducing the radial-cutoff, the regularized area is given

by the Stokes data of the linear problem. For the n-cusp minimal surfaces, it takes the form,

An = Adiv +ABDS−like +Aperiods +Afree, (2.29)

where Adiv is the divergent part, Aperiods is the period part which depends on the mass

parameters governing the asymptotics of the Y-functions. ABDS−like is given by distances

among the cusp points, which is similar to the BDS expression but different. Afree is the

free energy associated with the TBA system.

The remainder function is now defined by the difference between the regularized area

and the BDS formula,

An = Adiv +ABDS +Rn . (2.30)
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The explicit form of the remainder function at strong coupling is then given by

Rn = ∆ABDS +Aperiods +Afree . (2.31)

The first term ∆ABDS := ABDS-like − ABDS is expressed in terms of the cross-ratios, and

its general expression for n /∈ 4Z is found in [13]. Here, we list the expressions for n = 6

and 7, which are used in the following sections:

∆A
(n=6)
BDS = −1

4

3
∑

i=1

[

1

2
log2 ui,i+3 + Li2(1− ui,i+3)

]

=
1

4

3
∑

i=1

Li2

(

1− 1

ui,i+3

)

, (2.32)

for n = 6 and

∆A
(n=7)
BDS = −1

4

7
∑

i=1

[

log2 ui,i+3 −
1

2
log ui,i+3 log

ui+2,i+5ui+1,i+5

ui+3,i+6ui,i+4
+ Li2(1− ui,i+3)

]

,(2.33)

for n = 7 (see also [23]). The cross-ratios ui,j above are defined by

ui,j :=
x2i,j+1x

2
i+1,j

x2i,jx
2
i+1,j+1

, (2.34)

and the cusps are labeled modulo n. These cross-ratios are concisely expressed by the

Y-/T-functions through

U [r]
s := 1 +

1

Y
[r]
2,s

=
T
[r+1]
2,s T

[r−1]
2,s

T
[r]
2,s+1T

[r]
2,s−1

(2.35)

with f [r] := f(θ = iπr/4) as follows [14],

U
[0]
2k−2 =

1

uk−1,−k−1
, U

[−1]
2k−1 =

1

uk−1,−k−2
. (2.36)

Other cross-ratios are generated by the Zn-symmetry, xµi → xµi+1, which corresponds to

the shift of the argument

Y [r]
a,s → Y [r+2]

a,s , T [r]
a,s → T [r+2]

a,s . (2.37)

In addition, other parts Aperiods and Afree are given by

Aperiods =
n−5
∑

s,s′=1

Kss′msm̄s′ ,

Afree =
n−5
∑

s=1

∫ ∞

−∞

dθ

2π
|ms| cosh θ log

[

(1 + Ỹ1,s(θ))
2(1 + Ỹ2,s(θ))

√
2
]

. (2.38)

The explicit forms of Kss′ are found in [14] for n 6∈ 4Z, and are conjectured in [21] for

n ∈ 4Z. Here we list the results for n = 6, 7 only:

K(n=6) =
1

4
, K(n=7) =

1

2
√
2

(√
2 1

1
√
2

)

. (2.39)
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Although ∆ABDS is given by the cross-ratios directly, Aperiods and Afree are related to

the cross-ratios indirectly through the Y-/T-functions and the mass parameters. Indeed,

the Y-functions are uniquely determined by solving the TBA equations for given masses

and, once Ya,s are obtained in terms of ms, the mass parameters and hence the Y-/T-

functions are related to the cross-rations through (2.35). As a result, the remainder function

at strong coupling is expressed as a function of the cross-ratios.

2.4 UV expansion

In the following sections, we discuss an analytic expansion of the remainder function around

the high-temperature/UV limit, where the mass parameters ms become vanishing and

the corresponding Wilson loops become regular-polygonal. This is achieved by several

steps: first, we note that around this limit the deformation term in (2.18) is treated as

a small-mass perturbation for the coset/generalized parafermion CFT [28]. Then, the

free energy of the TBA system, which is given by the ground-state energy in the mirror

channel, is obtained analytically by the conformal perturbation theory [17]. It is expanded

in terms of the correlation functions of the deformation operator Φ. Next, we use the

relation between the Y-/T-function and the g-function [20]. The g-function is regarded as

a boundary contribution to the free energy, and analytically expanded by the CPT with

boundaries [18, 19]. In the course of the discussion, we first set the mass parameters to be

real to keep the boundary integrability. Their phases are recovered after the expansion is

obtained, so that the Zn-symmetry is maintained.

These expansions are first given in terms of the coupling λ. To find the expansion in

terms of the mass parameters, we need the precise form of Φ and the relation between λΦ

and ms. Once this mass-coupling relation is found, one can obtain the expansion in terms

of the cross-ratios through (2.35) as discussed in the previous subsection.

Since there are multiple deformation operators in our case, it is a rather difficult

problem to find the exact mass-coupling relation due to operator mixing. However, when

some mass parameters are turned off so as to leave only one mass scale (single-mass case),

the TBA system reduces to simpler ones and the problem becomes tractable.

In the next section, we begin our discussion of the UV expansion by considering the

perturbation with single mass scale for the AdS4 minimal surfaces. We see that the TBA

systems in such cases reduce to those of the perturbed SU(4) diagonal coset models or W

minimal models. For the 6- and 7-cusp cases (n = 6, 7), it turns out that the input from

the W minimal models is enough to completely determine the leading-order expansion.

3 Perturbation with single mass scale and W minimal models

Before discussing the perturbation with single mass scale for the AdS4 minimal surfaces,

let us first recall those for the AdS3 case [26, 27]. The minimal surfaces embedded in AdS3
with 2ñ cusps are described by the TBA system of the SU(ñ − 2)2/U(1)

ñ−3 HSG model,

which is obtained as the perturbed SU(ñ − 2)2/U(1)
ñ−3 generalized parafermion model

by the weight-zero su(ñ − 2) adjoint operators with dimension ∆ = ∆̄ = (ñ − 2)/ñ. The

TBA system is characterized by the Añ−3 Dynkin diagram, where the mass parameters
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m m m m1 2 3 n-5

Figure 1. A3 ×An−5 diagram of the TBA system for the n-cusp minimal surfaces in AdS4.

ms = MsL are associated to each node. When only one mass parameter is non-zero,

Ms = δs,rM (r = 1, . . . , ñ − 3), the TBA equations reduce to those for the unitary

SU(2)r × SU(2)ñ−2−r/SU(2)ñ−2 diagonal coset model perturbed by the φ(1,1,adj) operator

with dimension h(1,1,adj) = h̄(1,1,adj) = (ñ − 2)/ñ [41]. In particular, when r = 1, they be-

come those of the unitary minimal modelMñ−1,ñ perturbed by the φ(1,3) operator [42, 43].

Furthermore, when the mass parameters are non-vanishing only at a pair of nodes,

Ms = (δs,r + δs,ñ−2−r)M , with ñ odd, the TBA system admits an orbifolding by the

Z2-action, and is characterized by the T(ñ−3)/2 = Añ−3/Z2 tadpole diagram with a mass

parameter only at the rth node. The TBA equations then reduce to those for the non-

unitary SU(2)r × SU(2)ñ/2−2−r/SU(2)ñ/2−2 diagonal coset model perturbed by φ(1,1,adj)

with dimension h(1,1,adj) = h̄(1,1,adj) = (ñ− 4)/ñ [44]. The exponents of the UV expansion

of observables are given by the dimension of the the perturbing operator (see the following

sections). The relation 1 − h(1,1,adj) = 2(1 − ∆) assures a consistency between the UV

expansions from the generalized parafermion and the diagonal coset model, respectively. In

particular, when r = 1, this perturbed diagonal coset model becomes equivalent to the non-

unitary minimal modelMñ−2,ñ perturbed by φ(1,3). For the 10-point remainder function,

the results from these unitary and non-unitary minimal models and their continuation to

complex masses are enough to completely determine the leading-order analytic expansion

around the UV limit [26].

As discussed in the previous section, the n-cusp minimal surfaces in AdS4 are described

by the TBA system of the SU(n − 4)4/U(1)
n−5 HSG model, which is obtained as the

perturbed SU(n−4)4/U(1)
n−5 generalized parafermion model by the weight-zero su(n−4)

adjoint operators with dimension ∆ = ∆̄ = (n−4)/n. The TBA system is characterized by

the rectangular diagram A3 ×An−5, where one has the A3 Dynkin diagram in the vertical

direction and the An−5 Dynkin diagram in the horizontal direction (figure 1). The mass

parameters ms = MsL are associated to each node of the An−5 diagram. Compared with

the AdS3 case, we notice that the level k = 2 is replaced with k = 4 in the AdS4 case.

3.1 Perturbed unitary diagonal coset/W minimal models

When only one mass parameter is turned on, Ms = δs,rM , one expects from the AdS3 case

that the TBA system of the HSG model reduces to that for the unitary

SU(4)r × SU(4)n−4−r/SU(4)n−4 (3.1)
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diagonal coset model perturbed by φ(1,1,adj) with dimension h(1,1,adj) = h̄(1,1,adj) = (n−4)/n.
In particular, when r = 1, the above model becomes equivalent to the perturbed unitary

W minimal model,

WA
(n−1,n)
3 . (3.2)

Here, we have used the relations (3.11) and (3.12).

This expectation is also supported by an observation that the TBA system of the

SU(N) Gross-Neveu model, which is characterized by the AN−1×Am diagram withm→∞,

is given by the TBA system of the perturbed SU(N)1×SU(N)m/SU(N)1+m diagonal coset

model [45]. Indeed, one can explicitly check that the above correspondences of the TBA

systems are correct by comparing the TBA equations of the HSG model and those of the

Gk ×Gk/Gk+l diagonal coset model perturbed by φ(1,1,adj) [46].

3.2 Perturbed non-unitary diagonal coset/W minimal models

When a pair of the mass parameters are turned on, Ms = (δs,r + δs,n−4−r)M , with n odd,

the TBA system is characterized by the diagram (A3×T(n−5)/2)r, namely, the A3×T(n−5)/2

diagram with a mass parameter only for the rth column. Taking into account the above

and AdS3 cases, one then expects that the TBA system in this case reduces to that for the

non-unitary

SU(4)r × SU(4)n/2−4−r/SU(4)n/2−4 (3.3)

diagonal coset model perturbed by φ(1,1,adj) with dimension h(1,1,adj) = h̄(1,1,adj) = (n−8)/n.
The relation 1 − h(1,1,adj) = 2(1 −∆) is consistent with the UV expansion. In particular,

when r = 1, this perturbed diagonal coset model becomes equivalent to the perturbed

non-unitary W minimal model,

WA
(n−2,n)
3 . (3.4)

These are particular examples of the correspondence between the TBA system char-

acterized by the diagram (G×Tl)r and the non-unitary diagonal coset model for G, which

has been suggested in [47]. In the following sections, assuming, in particular, the corre-

spondence for the 7-cusp (n = 7) case, we derive the analytic expansion of the remainder

function around the UV limit, to find a good agreement with the results from the numerical

computation. We regard this also as a non-trivial check of the above correspondence.

3.3 W minimal models

In the previous subsections, we observed/argued that the TBA systems for the AdS4 min-

imal surfaces in the single-mass cases reduce to those for the diagonal coset/W minimal

models. As mentioned, we consider the cases corresponding to the W minimal models to

determine the UV expansion of the remainder function for n = 6 and 7. For later use, we

thus summarize the W minimal model below.
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In the following, we focus on the WA
(p,q)
k−1 minimal model [48], where p, q (p < q) are

positive and relatively prime integers. The central charge of the model is

c(WA
(p,q)
k−1 ) = (k − 1)

(

1− k(k + 1)(p− q)2

pq

)

. (3.5)

The primary fields Φl,l′ have the dimensions

hl,l′ =
12Λ2

l,l′ − k(k2 − 1)(p− q)2

24pq
. (3.6)

Here, l = (l1, · · · , lk−1) and l′ = (l′1, · · · , l′k−1) are vectors of positive integers satisfying

k−1
∑

i=1

li ≤ q − 1,
k−1
∑

i=1

l′i ≤ p− 1 . (3.7)

Λl,l′ is given by

Λl,l′ =
k−1
∑

i=1

(pli − ql′i)ωi , (3.8)

where ωi (i = 1, · · · , k − 1) are the fundamental weights of Ak−1 normalized as

ωi · ωj =
i(k − j)

k
for i ≤ j . (3.9)

We also define the effective central charge by ceff(WA
(p,q)
k−1 ) := c(WA

(p,q)
k−1 ) − 24h0, where

h0 denotes the lowest conformal weight. For the unitary model with q = p+ 1, the lowest

weight is 0, but otherwise it is evaluated as [49]

ceff(WA
(p,q)
k−1 ) = (k − 1)

(

1− k(k + 1)

pq

)

. (3.10)

The WA
(p,q)
k−1 minimal model is represented by the coset model as [50]

WA
(p,q)
k−1 =

SU(k)1 × SU(k)m
SU(k)1+m

, (3.11)

where

m+ k =
p

q − p
. (3.12)

We note that m is not generally a non-negative integer corresponding to an integrable

representation. Instead, the general m corresponds to an admissible representation. Let

(µ1,µm,µm+1) be the weighs of su(k) for SU(k)1, SU(k)m and SU(k)m+1, respectively.

Since µ1 is determined by other two weights [49–51], one can label the fields in the coset

model by

(Λ+,Λ−) := (µm,µm+1) . (3.13)
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Then, the dimension of the field is given by

h(Λ+,Λ−) =

[

qΛ+ − pΛ− + (q − p)ρ
]2 − (q − p)2ρ2

2pq
, (3.14)

where ρ is the Weyl vector of su(k), i.e.,

ρ =
k−1
∑

i=1

ωi . (3.15)

Since ρ2 = k(k2 − 1)/12, comparing (3.14) and (3.6) gives

±Λl,l′ = qΛ+ − pΛ− + (q − p)ρ , (3.16)

up to field identifications.

For example, the perturbing operator φ(1,1,adj) for the single-mass cases is labeled by

(Λ+,Λ−) = (0,ω1 + ωk−1) , (3.17)

and has the dimension

h(1,1,adj) =
p− (k − 1)(q − p)

q
=

m+ 1

m+ k + 1
. (3.18)

In addition, for the non-unitary model WA
(n−2,n)
3 with n odd, which is used later, the

vacuum or ground-state operator φ0 is labeled by

(Λ+,Λ−) =

(

n− 7

2
ω2,

n− 5

2
ω2

)

, (3.19)

and has the dimension

h0 = −
15

2n(n− 2)
. (3.20)

The effective central charge is then ceff = 3
(

1− 20
n(n−2)

)

.

3.4 Level-rank duality and decomposition of coset models

In subsection 3.1, we discussed the relation between the TBA systems of the HSG model in

the single-mass cases and those of the perturbed unitary W minimal models. This relation

is directly found by using a decomposition of the generalized parafermion model into a

product of the diagonal coset models based on the level-rank duality [52, 53].

Let us start with a simple example of the SU(2)k/U(1) coset or the Zk-parafermion

theory [54, 55], which has the central charge c = 2(k − 1)/(k + 2) according to (2.16).

The perturbing operator, i.e., weight-zero adjoint operator, has the conformal dimen-

sion 2/(k + 2). By the level-rank duality, this parafermion CFT is equivalent to the

SU(k)1 × SU(k)1/SU(k)2 diagonal coset CFT or the WA
(k+1,k+2)
k−1 minimal model which

has the same central charge [56]. The perturbing field on the dual side is φ(1,1,adj) with the

dimension (3.18) for m = 1, which indeed coincides with 2/(k + 2).
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The above equivalence between the perturbed parafermion and diagonal coset/W min-

imal models can be generalized to the case of SU(N)k/U(1)
N−1. We see that

SU(N)k
U(1)N−1

=
(SU(k)1)

N

SU(k)N

=
SU(k)1 × SU(k)1

SU(k)2
× SU(k)1 × SU(k)2

SU(k)3
× · · · × SU(k)1 × SU(k)N−1

SU(k)N
. (3.21)

The first equation is due to [57], and the second expression is due to [58]. The matching

of the central charges follows from

c

(

SU(N)k
U(1)N−1

)

− c

(

SU(N − 1)k
U(1)N−2

)

= c
(

WA
(k+N−1,k+N)
k−1

)

. (3.22)

In the decomposition (3.21), the dimension of the perturbing operator on the left-hand side

is ∆ = N/(N + k), which coincides with that of φ(1,1,adj) in the rightmost model on the

right-hand side. This means that a weight-zero operator on the l.h.s. is represented solely

by the φ(1,1,adj) operator in the rightmost model, and thus the corresponding single-mass

case is described by the SU(k)1 × SU(k)N−1/SU(k)N = WA
(N+k−1,N+k)
k−1 model perturbed

by φ(1,1,adj).

For example, for the level k = 2 corresponding to the AdS3 case, one has a product

of the unitary minimal models in (3.21), and the relation has also been confirmed by

the decomposition of the characters [59, 60]. Further setting N = ñ − 2 for the 2ñ-cusp

minimal surfaces, the rightmost model becomes the unitary Mñ−1,ñ minimal model, as

already discussed. For k = 4 and N = n − 4, we indeed have the unitary WA
(n−1,n)
3

minimal model.

One finds a similar “decomposition” also for the TBA system characterized by the

Ak−1 × T(N−1)/2 diagram with N odd. To see this, we first note the relation among the

central charges,

c

(

SU(N)k
U(1)N−1

)

− c

(

SU(N − 2)k
U(1)N−3

)

= 2ceff

(

WA
(k+N−2,k+N)
k−1

)

, (3.23)

and then denote the relation after a successive use of it by

SU(N)k
U(1)N−1

∼
(

WA
(k+1,k+3)
k−1

)2
⋆
(

WA
(k+3,k+5)
k−1

)2
⋆ · · · ⋆

(

WA
(k+N−2,k+N)
k−1

)2
. (3.24)

In parallel with the decomposition (3.21), we find that the rightmost factor on the r.h.s.,

WA
(k+N−2,k+N)
k−1 = SU(k)1 × SU(k)(k+N)/2−k−1/SU(k)(k+N)/2−k, is the non-unitary diago-

nal coset/W minimal model describing the TBA system in the single-mass case which is

characterized by (Ak−1×T(N−1)/2)1. In particular, for the n-cusp minimal surfaces in AdS4

with n odd, we have WA
(n−2,n)
3 = SU(4)1 × SU(4)n/2−5/SU(4)n/2−4, as already observed

in subsection 3.2.

We note that, in the rank 2 cases withN = 3, there is only one factor of (WA
(k+1,k+3)
k−1 )2

on the r.h.s. of (3.24), which means that the central charge of the model on the l.h.s. is twice

that on the r.h.s.. This is in accord with the fact that the free energy for the Ak−1 × A2
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TBA system with equal mass parameters is twice that for (Ak−1 × T1)1 (see the next

section). Explicitly, in the AdS3 case with ñ = N + 2 = 5, the relation (3.24) reads as

SU(3)2/U(1)
2 ∼ (WA

(3,5)
1 )2 = (M3,5)

2. This was used to determine the UV expansion of

the remainder function for the 10-cusp minimal surfaces [26]. In the next section, we use

the relation for the AdS4 case with n = N + 4 = 7,

SU(3)4
U(1)3

∼
(

WA
(5,7)
3

)2
, (3.25)

to determine the UV expansion for the 7-cusp minimal surfaces.

The “decomposition” (3.24) based on the counting of the central charges tells us which

W minimal model appears in the single-mass case. It would be of interest to substantiate

this relation at a more fundamental level.

4 UV expansion of free energy

As explained in section 2, the HSG model is regarded as an integrable perturbation of the

generalized parafermion theory. Near the UV fixed point, we can thus analyze it by using

the 2d CFT technique. In this section, we consider the UV expansion of the free energy for

the SU(n− 4)4/U(1)
n−5 HSG model. In particular, we write down the analytic expression

of the UV expansion for n = 6, 7. The connection between the generalized parafermions

and the W minimal models in the previous section is useful. The expansion of the T-

functions will be considered in the next section. Before proceeding to detailed analysis, we

note our notation for the mass parameters:

ms = MsL = M̃sl, l = ML, (4.1)

where M̃s are the relative masses, M is the overall mass scale, and L is the circumference

of the cylinder on which the HSG model is defined.

Since the weight-zero adjoint operators of the SU(n − 4)4/U(1)
n−5 generalized

parafermion theory have the dimension ∆ = ∆̄ = (n − 4)/n, the free energy is expanded

around the UV fixed point l = 0 as [17]

Afree =
π

6
cn + fbulk

n +
∞
∑

p=2

f (p)
n l8p/n, (4.2)

where cn is the central charge and fbulk
n is the bulk contribution. In the case of our interest,

SU(n− 4)4/U(1)
n−5, the central charge is given by

cn =
3(n− 4)(n− 5)

n
. (4.3)

The general form of the bulk term is not known. Here we assume, as in the AdS3
case [26, 27], that this term just cancels the period term Aperiods around the UV limit, i.e.,

fbulk
n = −Aperiods. (4.4)
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This is equivalent to requiring that the remainder function is expanded by l4p/n for n /∈ 4Z,

as is the case for the T-/Y-functions discussed in the next section. For n = 6, this is indeed

the case [22], and we argue below that this holds also for n = 7. We expect it to be true

for any n 6∈ 4Z.

The expansion coefficients f
(p)
n are obtained from the connected n-point correlation

functions of the perturbing operator Φ at the CFT point. In particular, f
(2)
n is given by

f (2)
n =

π

6
(κnG(M̃s))

2C(2)
n , (4.5)

where we have denoted the dimensionless coupling in (2.20) by κn. The function G(M̃s)

is introduced as the normalization of the two-point function of the perturbing operator Φ

in (2.18) parametrized by M̃s,

〈Φ(z)Φ(0)〉 = G2(M̃s)

|z|4∆ , (4.6)

and C
(2)
n is given by

C(2)
n = 3(2π)2−16/nγ2

(

1− 4

n

)

γ

(

8

n
− 1

)

, (4.7)

with γ(x) = Γ(x)/Γ(1− x). We still need to determine the function G(M̃s). As discussed

below, it is trivial for n = 6, whereas for n = 7 it is determined by using the relation

between the TBA system and the W minimal models in the previous section.

4.1 Case of six-cusp minimal surfaces (n = 6)

In this case, there is only one mass scale. Thus the above function is trivially given by

G(M̃1) = M̃1, which is equal to 1 for real m1. As discussed in the previous section, the HSG

model for n = 6 is equivalent to a perturbed Z4-parafermion or SU(4)1×SU(4)1/SU(4)2 =

WA
(5,6)
3 model. The constant κ6 is thus read from the exact mass-coupling relation in [61]

κ6G =
1

2π
γ1/2

(

1

6

)[√
πγ

(

3

4

)]4/3

. (4.8)

We thus obtain

f
(2)
6 =

π

6
κ26G

2C
(2)
6 =

π

2
γ3
(

1

3

)

γ

(

1

6

)[

1

2
√
π
γ

(

3

4

)] 8
3

. (4.9)

This is indeed obtained by setting µ = 1 in the results in [26]. As discussed in [26],

this expression is continued to the complex-mass case as G2(M̃s) → |G(M̃se
iϕs)|2 so as

to maintain the Zn-symmetry. The continuation in this case is, however, trivial, to give

|G|2 = 1.
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4.2 Case of seven-cusp minimal surfaces (n = 7)

In this case, there are two mass parameters (m1,m2), which we first set to be real. To

fix the function G(M̃1, M̃2), we use the strategy explained in the previous section (see

also [26]). From the symmetry and the dimensional analysis, we see that this function

takes the form

G(M̃1, M̃2) =
2
∑

r,s=1

FrsM̃
4/7
r M̃4/7

s , (4.10)

where F11 = F22 and F12 = F21. We would like to fix such coefficients. For this purpose,

we consider the following two cases.

Let us first consider the case where (m1,m2)→ (l, 0). In this case, the TBA equations

reduce to those for an integrable perturbation of the W minimal model,

WA
(6,7)
3 = SU(4)1 × SU(4)2/SU(4)3. (4.11)

The perturbing operator is the relevant operator Φ with dimension ∆ = ∆̄ = 3/7. The

bulk term in this TBA system is [62]

fbulk = −1

2
l2 . (4.12)

We can also read off the mass-coupling relation for this perturbed model from [61]:

κ7G(1, 0) = κ7F11 =
2

3π

[

γ

(

2

7

)

γ

(

4

7

)]1/2 [ 3

4
√
2
Γ2

(

3

4

)]8/7

. (4.13)

To fix F12, let us next consider the case with m1 = m2. As argued in the previous

section, the TBA equations in this case may be equivalent to those for an integrable

perturbation of the non-unitary W minimal model,

WA
(5,7)
3 = SU(4)1 × SU(4)−3/2/SU(4)−1/2. (4.14)

The central charge and the effective central charge of this CFT are given, respectively, by

c
(

WA
(5,7)
3

)

= −27

7
, ceff

(

WA
(5,7)
3

)

=
9

7
. (4.15)

The perturbing operator Φ̂ = φ(1,1,adj) labeled by the weight (3.17) has the conformal

dimension ∆̂ =
¯̂
∆ = −1/7, while the vacuum operator Φ̂0 = φ0 labeled by (3.19) has the

dimension ∆0 = ∆̄0 = −3/14.
Now, let us consider the UV expansion of the free energy for this TBA system. The

mass-coupling relation [61] reads as

λ̂ = κ̂M32/7, (4.16)

where

(πκ̂)2 = 9γ

(

1

7

)

γ

(

−3

7

)

[

Γ
(

3
4

)

Γ
(

7
8

)

2Γ
(

5
8

)

] 32
7

. (4.17)
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The free energy is expanded around the UV fixed point as

F̂ (l) =
π

6
ceff + f̂bulk(l) +

∞
∑

p=1

f̂ (p)l16p/n, (4.18)

where the bulk term is given by [62]

f̂bulk(l) = −1 +
√
2

2
√
2

l2, (4.19)

and the coefficients f̂ (p) are expressed as

f̂ (p) =
π

6
κ̂pĈ(p). (4.20)

The coefficients Ĉ(p) are given by the correlation functions of the vacuum and the perturb-

ing operators, and the integral forms of Ĉ(p) are found in [17, 63]. Here, we are interested

in the first correction given by

f̂ (1) =
π

6
κ̂Ĉ(1), Ĉ(1) = −12(2π)2∆̂−1CΦ̂0Φ̂Φ̂0

, (4.21)

where CΦ̂0Φ̂Φ̂0
is the three-point structure constant. This structure constant is computed

in appendix A, and given by (1.25). Thus the first correction is finally given by

f̂ (1) =
1

2π9/7
γ

(

2

7

)

γ

(

1

14

)

[

Γ
(

3
4

)

Γ
(

7
8

)

2Γ
(

5
8

)

] 16
7

. (4.22)

From this result, we can fix F12. Form1 = m2 (M̃1 = M̃2 = 1), we find from (4.10) that

f
(2)
7 =

π

6
(κ7F11)

2C
(2)
7 × 4

(

1 +
F12

F11

)2

. (4.23)

This correction must be twice f̂ (1). Using (4.7), (4.13) and (4.22), we thus obtain

1 +
F12

F11
=

(

π8

23 · 32
)

1
14
[

γ

(

4

7

)

γ

(

6

7

)

γ

(

1

14

)]1/2
[

Γ
(

7
8

)

Γ
(

3
4

)

Γ
(

5
8

)

] 8
7

. (4.24)

In summary, for n = 7, the function G(M̃1, M̃2) has the following form,

κ7G(M̃1, M̃2) = κ7F11(M̃
8/7
1 + M̃

8/7
2 +BM̃

4/7
1 M̃

4/7
2 ), (4.25)

where κ7F11 is given by (4.13) and the constant B is given by

B =

(

211π8

32

)
1
14
[

γ

(

4

7

)

γ

(

6

7

)

γ

(

1

14

)]1/2
[

Γ
(

7
8

)

Γ
(

3
4

)

Γ
(

5
8

)

] 8
7

− 2. (4.26)

We also find that the bulk terms in the above two cases, (4.12) and (4.19), fix the form in

the general case to be fbulk(l) = −Aperiods, as expected. Thus, from the connections to the

W minimal models, we indeed find this relation for n = 7.
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Figure 2. The (relative) phase dependence of the bulk term (left) and f
(2)
7 (right).

So far, we have considered the case of realms. Let us now consider the UV expansion of

the free energy when the masses are complex. By the relation to Aperiods, or the argument

in [26] to maintain the Zn-symmetry, the bulk term is given by

fbulk(l) = −Aperiods = −
1

2
(m1m̄1 +m2m̄2)−

1

2
√
2
(m1m̄2 +m2m̄1)

= −1

2

(

M̃2
1 + M̃2

2 +
√
2M̃1M̃2 cos(ϕ1 − ϕ2)

)

l2, (4.27)

where |ms| = M̃sl. Similarly, following [26], we find that the function G is continued as

G2(M̃1, M̃2)→ |G(M̃1e
iϕ1 , M̃2e

iϕ2)|2. (4.28)

In order to check the validity of these expressions, we compare them with numerical

results from the TBA equations. Here, we remark that the TBA equations for the AdS4
minimal surfaces generally exhibit an instability [64] around the UV limit, in that simple

iterations for numerics do not converge. However, we have found that numerics based on

the iteration works if |m1| = |m2| up to some value of l. When the phases are turned

off, the numerics works for smaller l. For the comparison, we have thus solved the TBA

equations for |m1| = |m2| from l = 1/20 to l = 1/2 with step 1/100 for various values of

ϕ := ϕ1 − ϕ2. We have then fitted the free energy by the function,

A
(fit)
free =

π

6
c+ bl2 + f

(2)
7 l16/7 + f

(3)
7 l24/7 + f

(4)
7 l32/7, (4.29)

and found the best values of the fitting for each value of ϕ. Note that Ỹa,s and hence Afree

depend on the phases only through ϕ in this case. In figure 2, we plot the ϕ-dependence

of the coefficients b and f
(2)
7 . The solid lines represent our analytic prediction while the

dots show the numerical data from the TBA equations. Our analytic expressions show a

good agreement with the numerical data, which strongly supports the correspondence to

the non-unitary W minimal models proposed in subsection 3.2, as well as the continuation

to the complex masses.
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5 UV expansion of T-functions

To derive the UV expansion of the remainder function, we need to expand the Y-/T-

functions, as well as the free energy part discussed in the previous section. This is achieved

by using an interesting relation between the T-function and the g-function (boundary

entropy) [18, 65]. Here, we extend the discussion for the minimal surfaces in AdS3 [26, 27]

to the AdS4 case. We concentrate on the case with n /∈ 4Z.

5.1 T-functions for SU(N)4/U(1)
N−1 HSG model

The first step to derive the expansion of Ta,s is to compare the integral equations for the T -

and g-functions of the SU(N)k/U(1)
N−1 HSG model with level k = 4. In this subsection,

we consider those for the T-functions, which are obtained by a procedure similar to the one

from Y-systems to TBA equations. The extension to general k may be straightforward.

For the reason explained in the next subsection, we also set ms to be real.

Let us start our discussion by considering the asymptotic behavior of Ta,s for large |θ|.
To see this, we note that, when N ∈ 2Z+ 1 with the boundary conditions (2.2), (2.3), one

can invert the relation between the Y- and T-functions (2.4) for AdS5, to express Ta,s by

Ya,s. This is also possible for N ∈ 4Z + 2 after imposing the AdS4 condition Y1,s = Y3,s
and T1,s = T3,s. In such cases, the asymptotic behavior of Ya,s (2.6) implies that of Ta,s,

log Ta,s → −νa,s cosh θ , (5.1)

for 0 ≤ a ≤ k(= 4) and 0 ≤ s ≤ N , where constants νa,s are related by (2.4) to ma,s =

Ma,sL as

ma,s = νa,s+1 + νk−a,s−1 − νa+1,s − νa−1,s . (5.2)

At the boundary a = 0, k or s = 0, N , we have νa,s = 0. The above relation together with

the mass ratios (2.21) in turn gives

νa,s = νs sin

(

πa

k

)

/ sin

(

π

k

)

, (5.3)

and hence

ms =

(

IN−1 − 2 cos
π

k
· 1
)

sr

νr , (5.4)

where 1 is the (N − 1)× (N − 1) unit matrix and IN−1 is the incidence matrix for AN−1.

This relation is inverted as

νs = (VN−1 · JN−1 · VN−1)srmr , (5.5)

where

(VN−1)rs :=

√

2

N
sin

rsπ

N
, (5.6)
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and (JN−1)rs := δrs/2
(

cos πr
N − cos π

k

)

. We have also used V −1
N−1 = VN−1 and

(VN−1 · IN−1 · VN−1)rs = δrs · 2 cos
πr

N
. (5.7)

Given the asymptotics (5.1) , we next subtract the linear terms in l = ML from log Ta,s

and define

Ua,s := log(Ta,se
νa,s cosh θ) , (5.8)

so that Ua,s → 0 for large |θ|. From (5.3) as well as the T-system (2.1) and the relation

between Ta,s and Ya,s (2.4) with Tk−a,s = Ta,s, we find that

log
T+
a,sT

−
a,s

Ta+1,sTa−1,s
= U+

a,s + U−
a,s − Ua+1,s − Ua−1,s = log(1 + Ya,s) . (5.9)

Note that terms with νa,s cancel each other due to (5.3), and that the above relation

involves the same s only. Assuming that Ua,s are analytic in the strip −π/k < Im θ < π/k

and vanishing rapidly enough for large |θ|, which is expected from the relation to Ya,s,

one can Fourier-transform the above equations. Further taking into account the boundary

conditions on Ta,s and using again (5.6) and (5.7) with N being replaced by k, we obtain

Ũa,s = −(Vk−1 · J ′
k−1 · Vk−1)ab ˜log(1 + Yb,s) , (5.10)

where tildes stand for the Fourier transform, f̃(ω) =
∫

dθ eiωθf(θ), and J ′
k−1 is given by

(J ′
k−1)ab := δab/2

(

cos πa
k − cosh πω

k

)

. Taking into account U1,s = U3,s for k = 4, and

Fourier-transforming back (5.10), we find the integral equations of Ua,s for k = 4:

Ua,s = Kab ∗ log(1 + Yb,s) , (5.11)

where

K(θ) =
(

K2(θ) K1(θ)

2K1(θ) K2(θ)

)

, (5.12)

and K1,K2 are given in (2.9).

5.2 g-functions for SU(N)4/U(1)
N−1 HSG model

Next, let us consider the g-function or boundary entropy for the SU(N)4/U(1)
N−1 HSG

model. The g-function is associated with a boundary, and hence with a set of corresponding

reflection factors in an integrable quantum field theory. To keep the boundary integrability,

we thus set the resonance parameters of the HSG model to be vanishing, so that the bulk

S-matrix has the parity invariance up to constant factors ηr,s in the S-matrix (2.22). This

corresponds to considering real mass parameters ms in the TBA equations. The case of

the complex ms is discussed later.

– 22 –



J
H
E
P
0
2
(
2
0
1
3
)
0
6
7

The reflection factors are constrained by the conditions from the unitarity, crossing-

unitarity and boundary bootstrap [66, 67]. In our case, they read as

Ra,s(θ)Ra,s(−θ) = 1 ,

Ra,s(θ)Rā,s(θ − iπ) = Sss
aa(2θ) , (5.13)

Rc̄,s(θ) = Ra,s(θ + iūbac)Rb,s(θ − iūabc)S
ss
ab(2θ + iūbac − iūabc) .

Here, ū = π − u and we have used (a, s) = (ā, s) = (k − a, s). The location of the poles

specified by uabc is the same as that for the Ak−1 minimal ATFT. Note that the boundary

bootstrap equations involve the same label s only. Given a set of the reflections factors

Ra,s, one can deform it as R′
a,s = Ra,s/Za,s [68], where the deforming factors Za,s need

to satisfy

Za,s(θ)Za,s(−θ) = 1 ,

Za,s(θ) = Zā,s(iπ − θ) , (5.14)

Zc̄,s(θ) = Za,s(θ + iūbac)Zb,s(θ − iūabc) ,

in order to maintain the conditions (5.13).

Assuming the existence of the reflection factors corresponding to the boundary labeled

by the identity operator, R
|1〉
a,s, we then consider the deformed reflection factors,

R|b,r;C〉
a,s = R|1〉

a,s/Z
|b,r;C〉
a,s , (5.15)

where

Z |b,r;C〉
a,s =

[

SF
ab

(

θ +
iπ

k
C

)

SF
ab

(

θ − iπ

k
C

)

]δsr

, (5.16)

and SF
ab is defined in (2.25). The deforming factors Z

|b,r;C〉
a,s are non-trivial only in the case

s = r, where they reduce to those for the minimal ATFT [19]. This assures that they

indeed satisfy the conditions (5.14). We also note that when k = 2, the indices a, b take

only 1, and the deforming factors of the form (5.16) reduce to

Z
|1,r;C〉
1,s =

[

(1 + C)θ(1− C)θ

]δsr
, (5.17)

which were used to analyze the T-functions for the minimal surfaces in AdS3 [26, 27].

Given a pair of sets of the reflection factors, the g-functions associated with the corre-

sponding boundaries satisfy [19, 69]

log
g|α〉(l)

g|β〉(l)

c|β〉
c|α〉

=
1

4

∑

γ

∫

R

dθ
(

φ|α〉
γ (θ)− φ|β〉

γ (θ)
)

log
(

1 + Yγ(θ)
)

, (5.18)

where c|α〉 are certain constants related to the vacuum degeneracy, and

φ|α〉
γ :=

1

πi
∂θ logR

|α〉
γ (θ) . (5.19)
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When we choose R
|b,r;C〉
a,s and R

|1〉
a,s for the pair, the right-hand side of (5.18) is de-

termined only through the deforming factors Z
|b,r;C〉
a,s . By further using the relations

Ya,s(θ) = Ya,s(−θ) and Y1,s = Y3,s for k = 4, we find that

Ga,s(C) := log
g|a,s;C〉(l)

g|1〉(l)

c|1〉
c|a,s;C〉

=
[

Kab ∗ log(1 + Yb,s)
]( iπ

k
C
)

. (5.20)

By comparing (5.11) and (5.20), we see that Ga,s(C) = Ua,s

(

πi
k C
)

. Moreover, assuming

that c|1〉 = c|a,s;C〉 as in the case of AdS3, and subtracting the linear terms in l ∝ νa,s from

both sides, we arrive at the relation,

G(0)|a,s;C〉

G(0)|1〉
= Ta,s

(πi

k
C
)

. (5.21)

The ratios of G(0)|α〉 := log g|α〉−f|α〉l on the left-hand side, with f|α〉 being a constant, are the

quantities which are directly computed around the UV limit by the conformal perturbation

theory with boundaries [18, 19].

5.3 Expansion of Ta,s

Another input for the expansion of the T-functions is their periodicity. To see this, we first

note that, from the Y-system (2.5) with Y1,s = Y3,s and the boundary conditions given in

section 2.1, the Y-functions have the quasi-periodicity,

Ya,s

(

θ +
n

k
πi
)

= Ya,N−s(θ) , (5.22)

where n = N + k and k = 4. Since our T-functions are expressed by the Y-functions for

N /∈ 4Z, they inherit the same quasi-periodicity,

Ta,s

(

θ +
n

k
πi
)

= Ta,N−s(θ) (N /∈ 4Z) . (5.23)

Taking also into account the structure of the CPT, we find that Ta,s are expanded as

Ta,s(θ) =
∞
∑

p,q=0

t(p,2q)a,s l(1−∆)(p+2q) cosh
(kp

n
θ
)

, (5.24)

with t
(p,2q)
a,N−s = (−1)pt(p,2q)a,s . For lower orders, one can check from the T-system (2.1) that

the terms tp,q
′

a,s with q′ odd are indeed absent, and that the first two non-trivial coefficients

are t
(0,0)
a,s and t

(2,0)
a,s . The Y-functions also have similar expansion, the coefficients of which

are related to t
(p,2q)
a,s by (2.4) with (2.10).

To compute these coefficients using the relation to the g-functions (5.21), we still need

to find which boundary the reflection factors R
|b,r;C〉
a,s correspond to. For this purpose, we

recall that similar reflection factors for the SU(ñ − 2)2/U(1)
ñ−3 HGS model in the AdS3

case corresponded to a boundary labeled by a fundamental representation of su(ñ−2). It is
thus expected that the reflection factors in the present case also correspond to a boundary
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labeled by a definite representation. Expressing the weight vector by the Dynkin label as

λ = [λ1, λ2, · · · ], we infer the following correspondence,

|a, s;C〉 ←→ λ(a,s) with (λ(a,s))j = aδjs . (5.25)

The result of the CPT and (5.21) then give [18, 19]

t(0,0)a,s =
S
(k)
λ(a,s)0

S
(k)
00

, (5.26)

where S
(k)
λµ is the modular S-matrix for SU(N)k given by the formula [70],

S
(k)
λµ = (N + k)−(N−1)/2 i

N(N−1)/2

√
N

exp





2πi

N(N + k)





N−1
∑

j=1

j(λj + 1)









N−1
∑

j=1

j(µj + 1)







,

× det



exp



− 2πi

N + k





N−1
∑

j=a

(λj + 1)









N−1
∑

j=b

(µj + 1)













1≤a,b≤N

. (5.27)

For lower N , one can check that (5.26) indeed solve the constant T-system, in which Ta,s

are set to be constants corresponding to the UV limit. This provides a justification of the

correspondence (5.25).

From the fact that the HSG model is obtained from an integrable deformation of the

coset model by weight-zero adjoint operators, the CPT also gives [18, 19]

t
(2,0)
a,s

t
(0,0)
a,s

= −κnG(M̃s) ·
B(1− 2∆,∆)

2(2π)1−2∆







S
(k)
λ(a,s)ρadj

S
(k)
λ(a,s)0

√

√

√

√

S
(k)
00

S
(k)
0ρadj

−

√

√

√

√

S
(k)
0ρadj

S
(k)
00






, (5.28)

at the next non-trivial order. Here, ρadj = [1, 0, . . . , 0, 1] and 0 = [0, . . . , 0] are the Dynkin

labels of the adjoint and the vacuum representation of su(N), respectively.

Now, we are in the position to consider the expansion for complex ms. As discussed

in [26], the T-functions in this case are expanded as

Ta,s(θ) =
∞
∑

p,q=0

1

2

(

t(p,2q)a,s e−
kp

n
θ + t̄(p,2q)a,s e

kp

n
θ
)

l(1−∆)(p+2q) , (5.29)

where the coefficients are argued to be continued from the real-mass case as t
(p,2q)
a,s (ms)→

t
(p,2q)
a,s (|ms|eiϕs). We confirm below that the expansions obtained in this way indeed agree

with numerical results.

5.4 Case of N = 2 (n = 6)

In the next section, we discuss the UV expansion of the remainder functions for the 6- and

7-cusp minimal surfaces, which correspond to N = 2 and N = 3, respectively. Here, we

list the relevant data for the expansion of Ta,s.
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First, when N = 2, the coefficients t
(p,2q)
a,s with p odd vanish due to (5.23). At the

lowest order, (5.26) and (5.27) give1

t
(0,0)
1 = t

(0,0)
3 =

√
3 , t

(0,0)
2 = 2 , (5.30)

where we have omitted the index s since it takes 1 only in this case. Denoting λa,s by a

and ρadj = λ2,s by 2, the ratios of the modular S-matrix elements appearing in t
(2,0)
a are

S
(4)
02

S
(4)
00

= 2 ,
S
(4)
12

S
(4)
10

=
S
(4)
32

S
(4)
30

= 0 ,
S
(4)
22

S
(4)
20

= −1 . (5.31)

Collecting these results, we find

t
(2,0)
1 = κ6G ·

√
6
B(13 ,

1
3)

2(2π)1/3
, t

(2,0)
2 =

√
3t

(2,0)
1 , (5.32)

where κ6G is given by (4.8) with G = M̃1 = 1. In addition, substituting the ex-

pansion (5.24) into the T-system (2.1) with T1,1 = T3,1, we also find that t
(0,2)
a = 0,

t
(2,0)
2 =

√
3t

(2,0)
1 and

(

t
(0,4)
1

t
(0,4)
2

)

=
1

24
√
3

(

6 1

6
√
3 2
√
3

)(

(t
(2,0)
1 )2

(t
(2,0)
2 )2

)

. (5.33)

The ratio of t
(2,0)
1 and t

(2,0)
2 from the T-system agrees with (5.32), which provides a non-

trivial check of our computations.

In [22], the expansion of the Y-functions for N = 2 was numerically determined up

to and including O(l4/3). We can compare this with the above results. To this end, we

note that the relation between the Y- and T-functions in this case reads as Y1 = 1/T2,

Y2 = 1/(T1)
2, and that the Y-functions in [13, 22] and those in this paper are inverse to

each other, Y AGM
a = 1/Y here

a .2 Then,

Y AGM
2 = (T1)

2 = (t
(0,0)
1 )2 + 2t

(0,0)
1 t

(2,0)
1 l4/3 cosh

(4

3
θ
)

+O(l8/3)

≈ 3 + 5.4805|Z|4/3 cosh
(4

3
θ
)

+O(l8/3) , (5.34)

for real ms, where |Z| = l/2. This agrees with the result in [22].

5.5 Case of N = 3 (n = 7)

When N = 3, it follows from (5.23) that t
(p,q)
a,2 = (−1)pt(p,q)a,1 , and thus the independent

variables are t
(p,q)
a,1 only. At the lowest order, (5.26) and (5.27) give

t
(0,0)
1,1 = t

(0,0)
3,1 =

sin 3
7π

sin π
7

, t
(0,0)
2,1 =

sin 3
14π

sin π
14

. (5.35)

1For SU(2)k, the modular S-matrix (5.27) simplifies to S
(k)
ab =

√

2
k+2

sin
(

(a+1)(b+1)π
k+2

)

.
2We also need to rename the i

th cusp to the (i+ 1)th cusp to match the conventions.
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The ratios of the modular S-matrix elements appearing in t
(2,0)
a,s are

S
(4)
0ρadj

S
(4)
00

=
sin 5π

14

sin π
14

,
S
(4)
λ(1,s)ρadj

S
(4)
λ(1,s)0

=
S
(4)
λ(3,s)ρadj

S
(4)
λ(3,s)0

= 1 ,
S
(4)
λ(2,s)ρadj

S
(4)
λ(2,s)0

= − sin π
14

sin 3π
14

,

for s = 1, 2 . Collecting these results gives

t
(2,0)
1,s = −κ7G ·

B(17 ,
3
7)

2(2π)1/7
sin 3π

7

sin π
7





√

sin π
14

sin 5π
14

−
√

sin 5π
14

sin π
14



 , t
(2,0)
2,s = 2 cos

π

7
· t(2,0)1,s , (5.36)

where κ7G is given in (4.25). In addition, substituting the expansion (5.24) into the T-

system (2.1) with T1,s = T3,s, we find that t
(0,2)
a,s = t

(1,0)
a,s = 0, t

(2,0)
2,s = 2 cos π

7 · t
(2,0)
1,s , and

(

t
(0,4)
1,1

t
(0,4)
2,1

)

=
s0

2(1 + s0)(3− 4s0)

(

2 + s0 − 4s20 s0
s−1
0 1− s0

)(

(t
(2,0)
1,1 )2

(t
(2,0)
2,1 )2

)

, (5.37)

where s0 = sin(π/14). The ratio of t
(2,0)
1,s and t

(2,0)
2,s from the T-system agrees with (5.36),

which provides a non-trivial check of our computations again.

We have checked our analytic expansion by comparing it with numerical results. For

example, figure 3 (a) shows plots of Y2,1(0) from numerics (points) and from our expansion

(solid line) for real and equal mass parameters m1 = m2 = l, which are in good agreement

with each other around the UV limit. To check the phase dependence, we have also

numerically solved the TBA equations from l = 1/20 to 3/2 for ms = eiϕs l with ϕ =

ϕ1 − ϕ2 = −πj/40 (j = 0, . . . , 9), and fitted Ỹ2,1(0) by the function

Ỹ
(fit)
2,1 (0) = Ỹ

(0)
2,1 +

10
∑

p=1

ỹ
(p)
2,1(ϕ)l

4p/7 . (5.38)

Here, Ỹ
(0)
2,1 = t

(0,0)
2,1 /(t

(0,0)
1,1 )2 ≈ 0.554958 is the exact value in the UV limit. The points in

figure 3 (b) show the fitted values of ỹ
(2)
2,1 for each ϕ. We find a good agreement with our

analytic expression (solid line) again.

6 UV expansion of remainder function

Based on the results so far, we derive the UV expansion of the remainder function in this

section.

6.1 Remainder function for six-cusp minimal surfaces

In the case of n = 6 (N = 2), the relevant cross-ratios for ∆ABDS in (2.32) are

ur,r+3 =
(

U
[2r−1]
1

)−1
=

1

T
[2r−2]
2,1 T

[2r]
2,1

. (6.1)

These are also rewritten by using T
[6+r]
2,1 = T

[r]
2,1. In the UV limit, the cross-ratios become

ur,r+3 = 1/4 and equal to each other. Form (6.1) and the expansion of the T-functions,

– 27 –



J
H
E
P
0
2
(
2
0
1
3
)
0
6
7

0.1 0.2 0.3 0.4 0.5

0.40

0.45

0.50

0.55

l

!"# !"$ !"% !"&

!!"'%

!!"'$

!!"'#

!!"'!

!!"$&

!!"$%

 

\
��
�
�
�

a
�
�
�

(a) (b)

Figure 3. (a) Plots of Y2,1(0) from numerics (points) and from the analytic expansion (solid line)

for m1 = m2 = l. (b) Phase dependence of an expansion coefficient of Ỹ2,1(0). The points are from

numerical fitting, whereas the solid line represents the analytic expression.

one finds that ∆ABDS is expanded in terms of t
(0,0)
a,s , (t

(2,0)
a,s )2 and t

(0,4)
a,s for real ms up to

O(l4(1−∆)). Similarly to the AdS3 case [26, 27], other t
(p,2q)
a,s do not appear in the expansion

due to the Zn-symmetry. Further using (5.32) and (5.33), we find

∆ABDS =
3

4
Li2(−3)−

1

16
(3 + 2 log 2)(t

(2,0)
2,1 )2l4(1−∆) +O(l6(1−∆)) . (6.2)

Since the period term and the bulk term in the free energy part cancel each other, we arrive

at the expansion of the remainder function,

R6 =
π

6
+

3

4
Li2(−3) +

[

π

6
C

(2)
6 −

1

16
(3 + 2 log 2)(t̃

(2,0)
1,1 )2

]

(κ6G)2 · l8/3 +O(l4) , (6.3)

where we have introduced

t̃(2,0)a,s := t(2,0)a,s /κnG , (6.4)

and C
(2)
6 , t

(2,0)
1,1 and κ6G are given by (4.7), (5.32) and (4.8) with G = M̃1 = 1, respectively.

For complex ms, one has only to replace G2(M̃s) by |G(M̃se
iϕs)|2, giving just |G|2 = 1.

These results agree with those in [22].

6.2 Remainder function for seven-cusp minimal surfaces

In the case of n = 7 (N = 3), the relevant cross-ratios for ∆ABDS in (2.33) are

ur,r+3 =
(

U
[2r−2]
2

)−1
=

T
[2r−2]
2,1

T
[2r−3]
2,2 T

[2r−1]
2,2

. (6.5)

These are also rewritten by using T
[7+r]
2,1 = T

[r]
2,2. From (6.5) and the expansion of the

T-functions, one finds again that ∆ABDS is expanded in terms of t
(0,0)
a,s , (t

(2,0)
a,s )2 and t

(0,4)
a,s

for real ms up to O(l4(1−∆)). Further using (5.36) and (5.37), we find that

∆ABDS = D
(0)
7 +D

(4)
7 (t

(2,0)
1,1 )2l4(1−∆) +O(l6(1−∆)) , (6.6)
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Figure 4. 7-point remainder function at strong coupling. The points are from numerics, whereas

the solid line is from our analytic expansion (6.8). These are evaluated form1 = e−
π

40
il,m2 = e−

π

20
il.

where

D
(0)
7 = −7

4

[

log2
(

2 cos
π

7
+ 1
)

+ Li2

(

2 cos π
7

2 cos π
7 + 1

)]

, (6.7)

D
(4)
7 = − 7

16s0(15 + 5s0 − 24s20)

[

s0(3− 4s0) + (1− s0)(1− 4s0) log(3− 4s20)
]

.

Due to the cancelation between the period and bulk terms, we arrive at the expansion

of the remainder function,

R7 =
π

6
c7 +D

(0)
7 +

[

π

6
C

(2)
7 +D

(4)
7 (t̃

(2,0)
1,1 )2

]

(κ7G)2 · l16/7 +O(l24/7) , (6.8)

where C
(2)
7 , t

(2,0)
1,1 and κ7G(M̃s) are given by (4.7), (5.36) and (4.25), respectively. For

complex ms,
(

κ7G(M̃s)
)2

is replaced by |κ7G(M̃se
iϕs)|2.

In figure 4, we show plots of the 7-point (7-cusp) remainder function for m1 = e−
π
40

il,

m2 = e−
π
20

il from numerics (points) and from our analytic expansion (solid line). They are

in good agreement around the UV limit.

6.3 Rescaled remainder function

In [29], it was observed numerically for the 8-cusp minimal surfaces in AdS3 that the remain-

der functions at strong coupling and at two loops are close to each other, but different, if

they are appropriately shifted and rescaled. In [26, 27], this was analytically demonstrated

around the UV limit for the general null-polygonal minimal surfaces in AdS3.

Similarly, one can define the rescaled remainder function for the AdS4 case by

R̄n :=
Rn −Rn,UV

Rn,UV −Rn,IR
. (6.9)

Here, Rn,UV is the n-point remainder function in the UV limit, which is read off from (6.3)

and (6.8). Rn,IR is the n-point remainder function in the IR limit where |ms| → ∞. To
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find this constant, we note the asymptotics of Ya,s (2.6) valid for real ms and | Im θ | < π/2,

and successively use the Y-system (2.5), to express Y
[r]
a,s , e.g., by Y

[0]
a,s and Y

[−1]
a,s in the IR

limit. We then find that

(u1,4, u2,5, u3,6) ∼ (e−m1 , 1, e−m1) , (6.10)

for n = 6 [13], and that

(u1,4, u2,5, u3,6, u4,7, u1,5, u2,6, u3,7) ∼
(

e−
√
2m2 ,

1

2
, 1, e−m1 , e−m1 , 1,

1

2

)

, (6.11)

for n = 7. The leading terms in ∆ABDS thus cancel Aperiods [23]. Furthermore, from the

fact that Afree vanishes in the IR limit, it follows that

R6,IR = −π2

12
, R7,IR = −π2

6
. (6.12)

Substituting these values into (6.9), we find that

R̄6 ≈ −0.0528126l8/3 +O(l12/3) , (6.13)

for n = 6, and

R̄7 ≈ −0.707647|κ7G|2l16/7 +O(l24/7) , (6.14)

for n = 7.

On the weak-coupling side, the remainder function at two loops for n = 6 in the AdS4
case is read off from the results in the AdS5 case [32–35]. In particular, one can find the

UV expansion of the remainder function from a very concise expression in [35] and the

expansion of the T-functions in the previous section: R2-loop
6 ≈ 1.08917 − 0.0487985l8/3.

The value in the UV limit l→ 0 has been given in [32, 34]. The rescaled remainder function

is defined similarly to (6.9). Since the two-loop remainder function vanishes in the IR limit,

the rescaled remainder function at two loops is expanded as

R̄2-loop
6 ≈ −0.0448036l8/3 +O(l12/3) . (6.15)

The ratio of the rescaled remainder functions at strong coupling and at two loops is then

R̄6

R̄2-loop
6

≈ 1.17876 , (6.16)

which is close to 1. By numerics, we also find that the two 6-point rescaled remainder

functions are close to each other for all the scales as shown in figure 5 (a). We also show

the 7-point rescaled remainder function from the numerics in figure 5 (b). For both the 6-

and 7-point cases, we find a good agreement with our analytic expansions around the UV

limit. It would be of interest to compare the 7-point rescaled remainder function at strong

coupling with the one at weak coupling, which is yet to be computed.
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Figure 5. (a) 6-point rescaled remainder functions. Points denoted by ∗/+ stand for a plot from

numerics at strong coupling/two loops. The solid/dashed line represents the analytic expansion

around the UV limit at strong coupling/two loops. These are evaluated for m1 = e−
π

20
il. (b) 7-

point rescaled remainder function at strong coupling. Points are from numerics and the solid line

represents the analytic expansion around the UV limit. These are evaluated for m1 = e−
π

40
il,

m2 = e−
π

20
il.

6.4 Cross-ratios and mass parameters

We have expanded the remainder function by the mass parameters. In order to express it

by the cross-ratios, one needs to invert the relation between the former and the latter.

For n = 6, it follows from (6.1) and the expansion of the T-functions in the previous

section that

ur,3+r =
1

4
− 1

8
cos

(

1

3
(4ϕ− (2r − 1)π)

)

· |t(2,0)2 |l2(1−∆) +O(l4(1−∆)) . (6.17)

Inverting this relation, one can express the mass parameter m1 = eiϕl by the cross-

ratios [22]. In the notation in this paper, the result reads as

tan
4

3
ϕ =

√
3(U

[−1]
1 − U

[1]
1 )

2U
[3]
1 − U

[−1]
1 − U

[1]
1

, l
4
3 =
−2U [3]

1 + U
[−1]
1 + U

[1]
1

6
√
3|t(2,0)1 | cos 4

3ϕ
. (6.18)

For n = 7, it follows from (6.5) and the expansion of the T-function in the previous

section that

ur,r+3 =
1

t
(0,0)
2,1

− 2 cos 2π
7 − 1

2(t
(0,0)
2,1 )2

(

t
(2,0)
2,1 e−

4
7
π(r−1)i + t̄

(2,0)
2,1 e

4
7
π(r−1)i

)

l2(1−∆)+O(l3(1−∆)) . (6.19)

By inverting this relation, one can express the mass parameters by the cross-ratios. For

example, when ϕ1 = ϕ2, the inversion is simple, but generically it is not.

7 Conclusions and discussion

In this paper we have evaluated the regularized area of the null-polygonal minimal sur-

faces in AdS4, and the remainder function for the corresponding Wilson loops/amplitudes
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at strong coupling. They are described by the TBA integral equations or the associated

T-/Y-system of the HSG model, which is regarded as the integrable perturbation of the

generalized parafermion CFT by the weight-zero adjoint fields. The connection to the

HSG model as well as to the corresponding CFT allows us to derive the analytic expansion

of the remainder function around the UV/regular-polygonal limit by using the conformal

perturbation theory. Generalizing the results in the AdS3 case, we have found or argued

that the TBA systems in the single-mass cases are given by those for the perturbed SU(4)

diagonal coset models and W minimal models. This is used to find the precise expansion

coefficients through their mass-coupling relations and correlation functions. We have de-

rived the leading-order expansion explicitly for n = 6 and 7. For the 6-point case, we have

also compared the rescaled remainder function with the two-loop one. They are close to

each other, but different, similarly to the AdS3 case. Although we have focused on the

n /∈ 4Z case in this paper, it would be an interesting problem to generalize our analysis to

the minimal surfaces with general n, and to compare their remainder functions with those

at weak coupling.

As noted in section 4, the TBA equations for the AdS4 minimal surfaces generally

exhibit a numerical instability around the UV limit. In spite of that, our analytic expansion

works well, which proves our formalism to be useful in this respect as well. It would also

be desirable to establish the proposed connection to the TBA systems of the non-unitary

diagonal coset/W minimal models, and to substantiate the “decomposition” discussed

in section 3.

The remainder function at strong coupling for general kinematical configurations are

given by the minimal surfaces in AdS5. The corresponding TBA system is recovered by

reintroducing the parameters dropped in the AdS4 case. For example, in the 6-point case,

the relevant chemical potential is turned on by a twist operator in the Z4-parafermion or

the SU(2)4/U(1) coset CFT. It would be interesting to find corresponding operators for

higher-point cases, as well as to identify the relevant integrable system and the CFT. This

would also provide a way to analyze the AdS4 minimal surfaces with the chemical potential

µ = −1, which are not discussed in this paper. Finally, it would be very interesting to

find the quantum/strong-coupling corrections to the minimal surfaces, and possibly to

extrapolate the results to the weak-coupling side.
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A Three-point function in W minimal models

In this appendix we review the free field representation of the WA
(p,q)
k−1 minimal model and

compute the three-point function of the ground-state and perturbing operators for k = 4

and p = 5, q = 7, that is used in section 4 to analyze the 7-point remainder function. To

lighten the notation, we refrain from using boldface letters for the weight vectors.

A.1 Free field representation

The WAk−1 minimal model [48] is realized by the scalar fields ϕ = (ϕ1, . . . , ϕk−1) in the

sl(k) conformal Toda field theory with the Lagrangian,

L =
1

8π
(∂ϕ)2 + µ̃

k−1
∑

j=1

eb(ej ,ϕ) . (1.1)

Here, ej are the simple roots of sl(k), ( , ) denotes the inner-product, µ̃ is the scale param-

eter and b is the dimensionless coupling. The system has the background charge,

Q =

(

b+
1

b

)

ρ , (1.2)

where ρ =
∑

j ωj is the Weyl vector of sl(k) and ωj are the fundamental weights satisfying

(ei, ωj) = δij . The energy momentum tensor is

T (z) = −1

2
(∂ϕ)2 + (Q, ∂2ϕ) . (1.3)

The central charge is given by

c = k − 1 + 12Q2 = (k − 1)

[

1 + k(k + 1)

(

b+
1

b

)2 ]

. (1.4)

For the WA
(p,q)
k−1 minimal model with the central charge (3.5), the coupling is given by

ib =

√

p

q
. (1.5)

The primary field of the CFT is represented by the vertex operator,

Vα := e(α,ϕ) , (1.6)

which has the dimension

h(α) = h(2Q− α) =
1

2
(α, 2Q− α) . (1.7)

Thus, the field with the dimension (3.14) is represented by the vertex operator with

α = α(Λ+,Λ−) := −
1

b
Λ+ − bΛ− . (1.8)
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For example, from (3.17), we find that the operator φ(1,1,ad) corresponds to Vα with

α = α(1,1,adj) := −be0 , (1.9)

where

e0 =
k−1
∑

j=1

ej = ω1 + ωk−1 (1.10)

is the highest root, i.e., the highest weight of the adjoint representation. Similarly,

from (3.19), the ground-state operator for k = 4 and p = n − 2, q = n with n odd corre-

sponds to

α = α0 := −
(

n− 7

2
b−1 +

n− 5

2
b

)

ω2 . (1.11)

For n = 7, this simplifies to

α0 = −bω2. (1.12)

A.2 Three-point function

We are interested in the three-point structure constant Cφ0φ(1,1,adj)φ0 of the ground-state

operator φ0 and the perturbing operator φ(1,1,adj) for k = 4 and p = 5, q = 7, where

φ0 ∼ Vα0 , φ(1,1,adj) ∼ V−be0 , (1.13)

up to normalization. To compute this, we first note that the normalized three-point func-

tion is generally given by [71, 72]

〈

Oα1Oα2Oα3

〉

normalized
= B(α1)B(α2)B

−1(α3)
〈

Vα1Vα2V2Q−α∗

3

〉

, (1.14)

where Oα := B(α)Vα is the normalized operator so that
〈

Oα(z)Oα∗(0)
〉

normalized
=

|z|−4h(α), and α∗ for α is defined through (α, ej) = (α∗, ek−j). The normalization con-

stant B(α) is given by

B(α) =

√

A(α)A(2Q)

A(2Q− α)A(0)
,

A(α) =
(

πµ̃γ(b2)
)(α−Q,ρ)/b∏

e>0

Γ
(

1− b(α−Q, e)
)

Γ
(

−b−1(α−Q, e)
)

, (1.15)

with the product being over the positive roots. The normalization of the vacuum has also

been taken into account. Next, the unnormalized structure constant Cα3
α1,α2

is obtained

by extracting the residue of the Coulomb-gas integral for
〈

Vα1(∞)Vα2(1)V2Q−α3(0)
〉

. In

particular, a class of the structure constants has been evaluated in eq. (1.53) of [71]:

Cα
−be0,α =

k
∑

i=1

k
∏

j 6=i

πµ̃γ
(

b(α−Q, hji)
)

γ(−b2)γ
(

1 + b2 + b(α−Q, hji)
)F2

i (α) , (1.16)
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where

Fi(α) := 1 +

∞
∑

p=1

k
∏

j=1

(

b(Q− α, hji)− b2
)

p
(

1 + b(Q− α, hji)
)

p

= kFk−1

(

b(Q− α, h1i)− b2, · · · , −b2, · · · , b(Q− α, hki)− b2

1 + b(Q− α, h1i), · · · · · · , 1 + b(Q− α, hki)

∣

∣

∣

∣

1

)

, (1.17)

and the i-th entry in the lower row is empty. We have also defined

(x)p = x(x+ 1) · · · (x+ p− 1) =
Γ(x+ p)

Γ(x)
, (1.18)

γ(x) = Γ(x)/Γ(1− x) and

hij := hi − hj , hj = ω1 − e1 − · · · − ej−1 . (1.19)

We now concentrate on the case of k = 4. Since α0 = −bω2 for p = 5, q = 7 of our

interest, we first evaluate C−bω2
−be0,−bω2

with b being generic. Taking into account the fact that

the coefficients in front of Fi in (1.16) vanish for i = 2, 4, we find after some algebras that

C−bω2
−be0,−bω2

=

(

πµ̃

γ(−b2)

)3 γ(1 + b2)

γ(2 + 2b2)

[

γ(2 + 3b2)

γ(4 + 5b2)
F2
1 (−bω2) +

γ(−2− 3b2)

γ(−b2) F2
3 (−bω2)

]

,

=

(

πµ̃

γ(−b2)

)3 γ2(1 + b2)

γ(2 + 2b2)γ(4 + 5b2)

Γ2(3 + 4b2)

Γ2(2 + 2b2)
· (−2) cos(2πb2) , (1.20)

where

F1(−bω2) = 4F3

(−b2, −1− 2b2, −2− 4b2, −3− 5b2

−b2, −1− 3b2, −2− 4b2

∣

∣

∣

∣

1

)

=
Γ(−1− 3b2)Γ(3 + 4b2)

Γ(−b2)Γ(2 + 2b2)
,

F3(−bω2) = 4F3

(−b2, 2 + 2b2, 1 + b2, −1− 2b2

3 + 3b2, 2 + 2b2, −b2
∣

∣

∣

∣

1

)

(1.21)

=
Γ(3 + 3b2)Γ(3 + 4b2)

Γ(2 + 2b2)Γ(4 + 5b2)
.

To obtain the normalized structure constant through (1.14), we next need B(−be0), which
is evaluated by using

A(α)

A(2Q− α)
=
(

πµ̃γ(b2)
)2(α−Q,ρ)/b∏

e>0

1

b2
γ
(

1− b(α−Q, e)
)

γ
(

1 + b−1(α−Q, e)
) , (1.22)

as

B2(−be0) =
(

πµ̃γ(b2)
)−6

b−24

(

3 + 4b2

4 + 5b2

)2

γ−2(1 + b2)γ(3 + 3b2)γ(5 + 5b2) . (1.23)
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Combining (1.20) and (1.23), we find the normalized structure constant,

C−bω2; normalized
−be0,−bω2

= B(−be0)C−bω2
−be0,−bω2

(1.24)

= −2 cos(2πb2) · (3 + 4b2)(4 + 5b2)
Γ2(3 + 4b2)

Γ2(2 + 2b2)

γ(1 + b2)

γ(2 + 2b2)

√

γ(3 + 3b2)

γ(5 + 5b2)
.

The factors of πµ̃ have been canceled, as they should.

Finally, the normalized structure constant Cφ0φ(1,1,adj)φ0 for p = 5, q = 7 and k = 4 is

obtained by plugging b2 = −5/7 in the above expression,

Cφ0φ(1,1,adj)φ0 = − 6

49
cos

(

10

7
π

)

Γ2
(

1
7

)

γ
(

2
7

)

Γ2
(

4
7

)

γ
(

4
7

)

√

γ
(

6
7

)

γ
(

10
7

) ≈ 1.31083
√
−1 . (1.25)

This is purely imaginary since γ(10/7) < 0. In subsection 4.2, φ0 and φ(1,1,adj) for WA
(5,7)
3

are denoted by Φ̂0 and Φ̂, respectively.

Open Access. This article is distributed under the terms of the Creative Commons
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