1	Epitaxial growth of ferromagnetic $Co_xFe_{4-x}N$ thin films on $SrTiO_3(001)$ and
2	magnetic properties
3	
4	Tatsunori Sanai, Keita Ito, Kaoru Toko, and Takashi Suemasu
5	
6	Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
7	
8	Keywords: A3. Molecular beam epitaxy, B2. Ferromagnetic materials, B1. Co _x Fe _{4-x} N, B1.
9	SrTiO ₃
10	
11	
12	
13	
14	Corresponding author: T. Suemasu
15	Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
16	TEL/FAX: +81-29-853-5111, Email: suemasu@bk.tsukuba.ac.jp
17	

19	We formed $\text{Co}_x\text{Fe}_{4-x}$ N ($0 \le x \le 2.9$) epitaxial thin films on SrTiO ₃ (001) substrates by molecular
20	beam epitaxy supplying solid Co and Fe and a radio frequency N2 plasma, simultaneously.
21	The composition ratio of Co/Fe in Co _x Fe _{4-x} N was controlled by changing the weight ratio of
22	Co to Fe flakes in the crucible of the Knudsen cell used. Epitaxial growth of $Co_x Fe_{4-x}N$ thin
23	films were confirmed by reflection high-energy electron diffraction and θ -2 θ X-ray diffraction
24	patterns. Magnetization versus magnetic field curves measured at room temperature using a
25	vibrating sample magnetometer showed that the axis of easy magnetization was changed from
26	[100] to [110] with increasing x in $Co_x Fe_{4-x}N$.

29 **1. Introduction**

Spintronics has attracted significant attention in recent years. Techniques of spin 30 injection, control and detection are required to achieve spintronic devices. Therefore, highly 31spin-polarized ferromagnetic materials are of great importance as spin sources. Numerous 32different types of half metals and hetero junctions have been studied extensively [1-4]. 33 Among such materials, we have focused on cubic perovskite 3d ferromagnetic nitrides such 34as Fe₄N and Co₄N [5-10]. Fe₄N has been extensively studied over the past few years. It has a 3536 cubic perovskite lattice structure, wherein a nitrogen atom is located in the body center of the fcc-Fe lattice. Spin polarization of the density of states (P) at the Fermi level ($E_{\rm F}$) and 37spin asymmetry of the electrical conductivity were calculated to be -0.6 and -1.0, 38 respectively [11]. There have been a few reports on the inverse tunnel magnetoresistance of 39 40 -75% in CoFeB/MgO/Fe₄N magnetic tunnel junctions and negative anisotropic magnetoresistance in Fe₄N films at room temperature (RT) [12-15]. Therefore, Fe₄N is 41 considered an appropriate material for application in spintronics devices. A recent theoretical 42calculation predicts that Co₄N has a larger negative polarization than Fe₄N [16]. In particular, 43recent first-principles calculation indicating that P was estimated to be -1.0 in Co₃FeN has 44 renewed interest in this material [17]. $Co_x Fe_{4-x}N$ also has a cubic perovskite lattice structure, 45which is the same as those of Fe₄N and Co₄N, with a nitrogen atom occupying the body 46center such as. However, there has been no data about whether the Co atoms occupy the 47

face-centered positions or corner positions. We therefore expect that Co_xFe_{4-x}N alloy is very 48promising for application in spintronics devices. However, there had been no reports so far 4950on epitaxial growth of $Co_xFe_{4-x}N$ thin films. Very recently, we successfully formed epitaxial growth of Co_xFe_{4-x}N films on SrTiO₃(STO)(001) substrates by molecular beam epitaxy 51(MBE) [18]. The epitaxial orientation of $Co_xFe_{4-x}N$ on STO(001) is $Co_xFe_{4-x}N$ 52(001)//STO(001) with Co_xFe_{4-x}N [100] or [010] // STO[100]. However, there have been no 53reports thus far on the magnetic properties of Co_xFe_{4-x}N thin films. In this work, we aimed to 54form Co_xFe_{4-x}N thin films, and measured the magnetic properties of the films at RT. 55

56

57 2. Experimental procedures

An ion-pumped MBE system equipped with a high-temperature Knudsen cell for Fe 5859and Co sources, and a radio-frequency (RF) N₂ plasma for N was used [6,7,18]. Prior to the 60 growth, the STO(001) substrates were immersed into a buffered HF solution to obtain an atomically flat surface [19]. The lattice mismatch between Fe₄N and STO is 2.8% [20]. Co 61 and Fe flakes were placed into the same crucible. Various weight ratios of Co/Fe in the 62 crucible were used including 0:1 (sample A), 0.5:1 (sample B), 1:1 (sample C), 3:1 (sample 63 D) and 5.6:1 (sample E). During the growth of these samples, the temperature of the STO 64 65 substrate was kept at 450 °C, and the deposition rate of Co plus Fe was set to be 66 approximately 0.5 nm/min. The flow rate of the N₂ gas was fixed at 1.0 sccm, and the input

67	power to the RF plasma was 140 W. The pressure inside the chamber was approximately 1 \times
68	10^{-4} Torr during film growth. Sample preparation was summarized in Table 1.
69	The crystalline quality of samples A-E was evaluated by reflection high-energy
70	electron diffraction (RHEED), θ -2 θ X-ray diffraction (XRD) using Cu K_{α} X-ray, and atomic
71	force microscopy (AFM). The composition ratio of Co/Fe in the films was determined by
72	energy dispersive X-ray spectroscopy (EDX) using an accelerating voltage of 10 kV with a
73	spot size of 30 μm and by Rutherford back scattering spectrometry (RBS) using a He ion
74	beam with an acceleration voltage of 2.3 MeV. Magnetization versus magnetic field curves
75	were measured on approximately 10-mm-squared samples at RT using a vibrating sample
76	magnetometers (VSM) in the range of external magnetic field H (-1 T $\leq H \leq 1$ T).
77	
78	3. Results and discussion
79	Figures 1(a)-1(e) show the RHEED patterns observed along the STO[100] azimuth of
80	samples A-E, respectively. Streaky RHEED patterns were observed except for the spotty
81	patterns for samples B and C. The RBS depth profiles of Co, Fe, and N atoms revealed that
82	the composition ratio of (CoFe) ₄ N in sample D was Co _{2.3} Fe _{1.7} N [18]. Using sample D as a
83	reference, the composition ratios were determined from the signal intensities of Co K_{α} (6.924)
84	keV) and Fe K_{β} (7.057 keV) X-rays in the EDX spectra for samples B, C and E. We
85	evaluated the composition ratio of Co/Fe for samples B, C and E to be $\mathrm{Co}_{0.4}\mathrm{Fe}_{3.6}\mathrm{N},$

86 Co_{1.2}Fe_{2.8}N and Co_{2.9}Fe_{1.1}N, respectively, as summarized in Table 1. Detailed procedure was
87 given in our previous report [18].

- -

The out-of-plane θ -2 θ XRD patterns of samples A-E are shown in Figs. 2(a)-2(e), respectively. The diffraction peaks of (CoFe)₄N(001), (002) and (004) were observed. With increasing weight ratio of Co to Fe in the crucible, these peaks shifted to a higher angle, meaning that the out-of-plane lattice constants decrease with increasing Co/Fe ratio in Co_xFe_{4-x}N.

Figures 3(a) and 3(b) present the AFM images of samples C and E, respectively. The root-mean-square (rms) roughness values of these samples were 0.98 and 1.74 nm, respectively. With respect to the $Co_xFe_{4-x}N$ layer thicknesses of these samples, these rms values are not small. Thus, further studies are mandatory to achieve $Co_xFe_{4-x}N$ layers with much smoother surfaces.

Next, we discuss the magnetic properties of the grown films. Figures 4(a)-4(e) present the incident *H* angle dependence of the ratio of remanent magnetization (M_r) to saturation magnetization (M_s), namely M_r/M_s for samples A-E, respectively, at RT. External *H* was applied between the [110] and [1-10] azimuths of Co_xFe_{4-x}N parallel to the sample surface. The crystalline magnetic anisotropy was observed. Owing to the 10-mm-squared samples, shape magnetic anisotropy is considered to be negligibly small. M_r differs depending on the directions of applied external *H*. For sample A, Fe₄N, the in-plane [100] direction is an

105	easy magnetization axis in Fig. 4(a). When the Co/Fe ratio increases a little in sample B,
106	$Co_{0.4}Fe_{3.6}N$, the easy magnetization axis remained the same as in Fig. 4(b). But when the
107	Co/Fe ratio increased further in samples C-E, the axis of easy magnetization drastically
108	changed from [100] to [110] or [1-10] direction. These results indicate that the magnetic
109	anisotropy changed depending on the Co/Fe ratio of the film. The reason for this change is not
110	made clear at present. Thus, further studies are required to clarify the mechanism that explains
111	this change.
112	
113	4. Conclusions
114	We have succeeded in growing $Co_x Fe_{4-x}N$ ($0 \le x \le 2.9$) thin films epitaxially on
115	STO(001) substrates by MBE supplying solid Co, Fe, and RF-N ₂ , simultaneously. VSM
116	measurements revealed that the axis of easy magnetization was [100] for Fe ₄ N and
117	$Co_{0.4}Fe_{3.6}N$. When the Co/Fe ratio increased further, the axis of easy magnetization was
118	changed from [100] to [110].
119	
120	Acknowledgements
121	The authors thank Dr. Y. Imai of the National Institute of Advanced Industrial
122	Science and Technology (AIST), Tsukuba, for useful discussions. Magnetic characterizations
123	were performed with the cooperation of Dr. H. Yanagihara.
124	7

125 **References**

- 126 [1] M. Bowen, M. Bibes, A. Barthe'le'my, J.-P. Contour, A. Anane, Y. Lemai'tre, A. Fert,
- 127 Appl. Phys. Lett. 82 (2003) 233.
- 128 [2] J. M. D. Coey, M. Venkatesan, J. Appl. Phys. 91 (2002) 8345.
- [3] T. Ishikawa, S. Hakamata, K. Matsuda, T. Uemura, M. Yamamoto, J. Appl. Phys. 103
 (2008) 07A919.
- 131 [4] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuk, K. Ando, Nat. Mater. 3 (2004) 868.
- [5] A. Narahara, K. Ito, T. Suemasu, Y. K. Takahash, A. Rajanikanth, K. Hono, Appl. Phys.
 Lett 94 (2009) 202502.
- 134 [6] K. Ito, G. H. Lee, H. Akinaga, T. Suemasu, J. Cryst. Growth 322 (2011) 63.
- 135 [7] K. Ito, K. Harada, K. Toko, H. Akinaga, T. Suemasu, J. Cryst. Growth 336 (2011) 40.
- 136 [8] K. Ito, G. H. Lee, K. Harada, M. Suzuno, T. Suemasu, Y. Takeda, Y. Saitoh, M. Ye, A
- 137 Kimura, H. Akinaga, Appl. Phys. Lett. 98 (2011) 102507.
- 138 [9] K. Ito, K. Harada, K. Toko, M.Ye, A. Kimura, Y. Takeda, Y. Saitoh, T. Suemasu, Appl.
- 139 Phys. Lett. 99 (2011) 252501.
- 140 [10] K. Ito, K. Okamoto, K. Harada, T. Sanai, K. Toko, S. Ueda, Y. Imai, T. Okuda, K.
- 141 Miyamoto, A. Kimura, T. Suemasu, J. Appl. Phys. 112 (2012) 013911.
- [11] S. Kokado, N. Fujima, K. Harigaya, H. Shimizu, A. Sakuma, Phys. Rev. B 73 (2006)
 143 172410.

- 144 [12] Y. Komasaki, M. Tsunoda, S. Isogami, M. Takahashi, J. Appl. Phys. 105 (2009) 07C928.
- 145 [13] M. Tsunoda, Y. Komasaki, S. Kokado, S. Isogami, C. C. Chen, M. Takahashi, Appl. Phys.
- 146 Express 2 (2009) 083001.
- 147 [14] M. Tsunoda, H. Takahashi, S. Kokado, Y. Komasaki, A. Sakuma, M. Takahashi, Appl.
- 148 Phys. Express 3 (2010) 113003.
- 149 [15] K. Ito, K. Kabara, H. Takahashi, T. Sanai, K. Toko, T. Suemasu, M. Tsunoda, Jpn. J. Appl.
- 150 Phys. 51 (2012) 068001.
- 151 [16] Y. Imai, Y. Takahashi, T. Kumagai, J. Magn. Magn. Mater. 322 (2010) 2665.
- 152 [17] Y. Takahashi, Y. Imai, T. Kumagai, J. Magn. Magn. Mater. 323 (2011) 2941.
- 153 [18] T. Sanai, K. Ito, K. Toko, T. Suemasu, J. Cryst. Growth 357 (2012) 53.
- 154 [19] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T.
- 155 Yonezawa, M. Yoshimoto, H. Koinuma, Science 266 (1994) 1540.
- 156 [20] S. Atiq, H. S. Ko, S. A. Siddiqi, S. C. Shin, Appl. Phys. Lett. 92 (2008) 222507.
- 157
- 158
- 159
- 160
- 161
- 162

163

164	Fig. 1 RHEED patterns of samples A (a), B (b), C (c), D (d), and E (e), observed along the
165	STO[100] azimuth.
166	

167 Fig. 2. Out-of-plane θ -2 θ XRD patterns of samples A (a), B (b), C (c), D (d), and E (e).

169 Fig. 3. AFM images of samples C (a) and E (b).

- 171 Fig. 4. Incident H angle dependence of M_r/M_s for samples A (a), B (b), C (c), D (d), and E
- 172 (e), measured at RT. External H was applied between the [100] and [1-10] azimuths of
- $Co_x Fe_{4-x}N$ parallel to the sample surface.

Table 1.	Sample	preparation:	grown la	yer thi	cknesses,	and c	omposition	ratios	of (Co/Fe
in Co _x Fe	e_{4-x} N are	shown.								

Sample	Thickness	$\mathrm{Co}_{x}\mathrm{Fe}_{4-x}\mathrm{N}$	
	(nm)		
A	10	Fe ₄ N	
В	33	Co _{0.4} Fe _{3.6} N	
С	29	Co _{1.2} Fe _{2.8} N	
D	22	Co _{2.4} Fe _{1.6} N	
Е	21	Co _{2.9} Fe _{1.1} N	

Fig. 1

Fig. 2

Fig. 3

Fig. 4