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Abstract

The importance of dimension reduction has been increasing according to the growth of the
size of available data in many fields. An appropriate dimension reduction method of raw data
helps to reduce computational time and to expose the intrinsic structure of complex data. Sliced
inverse regression is a well-known dimension reduction method for regression, which assumes
an elliptical distribution for the explanatory variable, and ingeniously reduces the problem of
dimension reduction to a simple eigenvalue problem. Sliced inverse regression is based on the
strong assumptions on the data distribution and the form of regression function, and there are a
number of methods to relax or remove these assumptions to extend applicability of the inverse
regression method. However, each method is known to have its drawbacks in either theoretically
or empirically. To alleviate drawbacks in existing methods, a dimension reduction method for
regression based on the notion of conditional entropy minimization is proposed. Using entropy
as a measure of dispersion of data, a low dimensional subspace is estimated without assuming
any specific distribution nor any regression function. The proposed method is shown to perform
comparable or superior to conventional methods through experiments using artificial and real-
world datasets.

1 Introduction

Dimension reduction is an important task in statistics, machine learning and data mining (Hastie
et al., 2009; Bishop, 2006). During the past few decades, the importance of dimension reduction
has grown as dimensions of available data have increased. When we deal with high dimensional
data, an appropriate dimension reduction method of raw data helps to reduce computational time
and storage resources. It also allows us to capture the intrinsic structure of target data (Roweis
and Saul, 2000; Tenenbaum et al., 2000). Standard statistical methods often become unreliable
for high dimensional data. This problem is usually referred to as the “curse of dimensional-
ity” (Hastie et al., 2001), and it is of interest in many applications to reduce the dimension of
the original data before constructing statistical models.

Dimension reduction methods can be divided into two categories: unsupervised and super-
vised methods. Typical unsupervised methods are principal component analysis (Jolliffe, 2002)
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and independent component analysis (Hyvärinen et al., 2001). On the other hand, Fisher’s dis-
criminant analysis (Fisher, 1936) and, for regression problems, sliced inverse regression (SIR, Li,
1991; Chen and Li, 1998) are used as supervised methods. In this paper, we consider a linear
dimension reduction method for regression problems based on SIR, which aims at reducing the
dimension of a vector-valued explanatory variable X while preserving its regression relation
with a real-valued response variable Y . Li (1991) reduced the problem of dimension reduc-
tion to a simple eigenvalue problem, assuming that the distribution of the explanatory variable
is elliptical (Owen and Rabinovitch, 1983) and the regression function is not symmetric. Un-
der these assumptions, distributions of the data within any slices are summarized only by the
within-slice means, and the dimension reduction subspace is identified by an eigenvalue prob-
lem. SIR is used in various literature, and for interesting applications of SIR, see, e.g., Wu and
Lu (2004) and Wu and Lu (2007). However, it may happen that the data follow a non-elliptical
distribution or the underlying regression function is symmetric, and in such cases, SIR fail to
find dimension reduction subspaces (see section 4, model 1, for example). In order to avoid
these problems, SAVE (Cook and S.Weisberg, 1991), DR (Li and Wang, 2007), and IRE (Cook
and Ni, 2005) are developed by taking account of second order statistics. However, SAVE is not
efficient in estimating monotone trends, and effectiveness of DR decays when the distribution
of explanatory variable X deviates from a Gaussian distribution. IRE is a generalization of SIR
and SAVE, however, in our experiments, it does not show satisfying performance (see section 4).
To overcome limitations of these conventional methods, some dimension reduction methods for
regression were recently proposed, e.g., Model-based SIR (MSIR) by Scrucca (2011), Least
Square Dimension Reduction (LSDR) by Suzuki and Sugiyama (2010), Kernel Dimension Re-
duction (KDR) by Fukumizu et al. (2009), and dimension reduction for regression is still an
area of active research. Among these recent studies, MSIR is a natural extension of SIR, which
uses conditional distribution of the explanatory variable estimated using the sliced samples,
while other two methods, LSDR and KDR, do not slice the samples. In this paper, we focus
on slice-based methods, and propose a natural extension of SIR from a different perspective of
MSIR. We propose a method based on the notion of conditional entropy minimization (Hino
and Murata, 2010). Using entropy, which is estimated in non-parametric manner, as a measure
of dispersion of data, a subspace on which the explanatory variables are projected is estimated
without assuming the data distribution nor the form of regression function unlike other SIR-
inspired methods. The proposed method is experimentally shown to perform comparable or
superior to conventional methods.

The rest of this paper is organized as follows. Section 2 formulates the problem of dimension
reduction for regression analysis. In section 3, a novel dimension reduction method based on
the notion of conditional entropy minimization is proposed. Experimental results with artificial
datasets and with various real-world datasets are given in section 4. The last section is devoted
to concluding remarks.

2 Problem Formulation

Let X be a p-dimensional random explanatory variable and Y be a response variable. Real-
izations of X and Y are denoted by x and y, respectively. Linear dimension reduction seeks a
set of linear combinations of X as B⊤X , where B ∈ Rp×q (q ≤ p) is a dimension reduction
matrix with column vectors βi ∈ Rp, i = 1, . . . , q, such that Y depends on X only through
linear combinations of {β⊤

1 X, · · · , β⊤
q X}. This can be formulated as Y ⊥ X|B⊤X , that is, Y

and X are independent conditioned by B⊤X . When B satisfies this relation, its column space
is called a dimension reduction space. Since we are interested in the column space of B, we
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assume B is an element of the Stiefel manifold Sp
q(R) = {B ∈ Rp×q|B⊤B = Iq}, where Iq is

the q × q unit matrix. Under mild assumptions, the intersection of dimension reduction spaces
is itself a dimension reduction space (Cook, 1998), and the intersection of all the dimension
reduction spaces is called the central space. The main objective of dimension reduction is the
statistical inference of the central space. More specifically, we assume a regression model

y = r(B⊤x) + ε, (1)

where r is an unknown regression function and ε ∼ N (0, σ2) is a Gaussian noise term with
variance σ2. In many dimension reduction methods for regression including the one proposed
in this paper, we neither specify nor estimate the regression function r, and our problem is to
estimate B using a set of observed data D = {(xi, yi)}i=1,...,n.

A notable feature of the inverse regression method is introduction of the distribution to the
explanatory variable X . SIR estimation is based on the information provided by the inverse
regression mean function E(X|Y ). In practice, for a continuous response variable, the range
of Y is sliced into L non-overlapping slices so that the numbers of observations in individual
slices are approximately equal. See figure 1 for an illustrative example of the slicing. Assume

x

y

slice 1

slice 2

slice 3

{xi} {xi} {xi} {xi}{xi}
i ∈ S1 i ∈ S2 i ∈ S3 i ∈ S3i ∈ S2

Figure 1: Sliced region of response variable and corresponding explanatory variables.

the observed explanatory variables are standardized by x̃i = Σ−1/2
xx (xi − µ), where Σxx and µ

are the sample covariance matrix and the sample mean of x, respectively. We represent these
slices by index sets Sl, l = 1, . . . , L where ∪L

l=1Sl = {1, . . . , n}, and Sl ∩ Sh = ∅, l ̸= h.
We note that we use Sl to indicate both the index set and the corresponding subset of data. The
cardinality of a set S is denoted by |S|. Then, variation on slice means, µl = 1

|Sl|
∑

i∈Sl
x̃i, l =

1, . . . , L, yields the weighted covariance matrix M = 1
L

∑L
l=1 |Sl|µlµ

⊤
l . Intuitively, since the

observed data are transformed to have its center at the origin and have a unit covariance matrix,
leading eigenvectors of M give intrinsic directions of the distribution of explanatory variable
for accounting relationship between Y and X . Assuming the dimension q of the subspace is
known and the distribution of x̃i is spherical, it is shown in Li (1991) that the space spanned by
leading q eigenvectors of M is a consistent estimate of the dimension reduction subspace. Thus,
the dimension reduction matrix B is obtained from the eigen-decomposition of M followed by
multiplication of Σ−1/2

xx .
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3 Entropy-Based Sliced Inverse Regression

We propose an extension of SIR based on the notion of conditional entropy minimization (Hino
and Murata, 2010), which is a supervised dimension reduction framework. When we refer to
the term entropy in this paper, we mean the Shannon differential entropy (Cover and Thomas,
1991) for a random variable X defined as

H(X) = −
∫

f(x) log f(x)dx, (2)

where f is the probability density function of X . The essential point of the extension is the
fact that differential entropy can be seen as a generalization of variance. For example, the
differential entropy of a Gaussian random variable with variance σ2 is easily calculated as
H(X) = 1

2 log 2πσ2 + 1
2 , where the variance and entropy are connected by the logarithmic

function, which is a monotonically increasing function. By measuring the dispersion by differ-
ential entropy, which can be estimated in a non-parametric manner, we can take higher order
statistics into account and we can estimate the dimension reduction subspace without assuming
any specific distribution for X .

Example 1 (Figure 2) This example illustrates the case that we can find a meaningful direction
by conditional entropy minimization criterion.

Suppose X in figure 1 is a two-dimensional explanatory variable. In figure 2, the explana-
tory variable follows the uniform distribution along with a directional vector β∗ = (1/

√
2, 1/

√
2)⊤,

and follows the Gaussian distribution with variance σ2 = 0.25 along with the perpendicular
direction β̂ = (1/

√
2,−1/

√
2)⊤. Consider the projections of the data in the second slice S2

by β∗ and by β̂ onto one-dimensional axes. Then, data projected by β∗ follow the uniform
distribution

p1(β∗⊤x) =
{

1, β∗⊤x ∈ [2/3, 1] ∪ [8/3, 10/3]
0, otherwise

, (3)

where the variance of this distribution is V (β∗⊤X) = 1.07. On the other hand, data projected
by β̂ follow the Gaussian distribution

p2(β̂⊤x) =
1√

2πσ2
exp

(
−(β̂⊤x − µ)2

2σ2

)
, (4)

where V (β̂⊤X) = σ2 = 0.25 and µ is the mean on the axis.
The entropy of β∗⊤X and β̂⊤X are calculated as

H(β∗⊤X) = Ep1

(
− log p1(β∗⊤X)

)
= −

∫
t∈[2/3,1]∪[8/3,10/3]

log(1)dt = 0,

H(β̂⊤X) = Ep2

(
− log p2(β̂⊤X)

)
=

1
2

log 2π · 0.25 +
1
2

= 0.73,

where t is introduced for integrating β∗⊤x. Since H(β∗⊤X) < H(β̂⊤X) and V (β∗⊤X) >
V (β̂⊤X), when we find a dimension reduction subspace by minimizing the variance on the
projected axis, we obtain β̂, while when we find it by minimizing the entropy, we obtain β∗,
which is the ground truth direction in this case.

The proposed algorithm minimizes the sum of conditional entropy of all sliced data {xi}i∈Sl
, l =

1, . . . , L. To minimize the entropy, we estimate the entropy of the projected data in a non-
parametric manner. In this paper, we adopt the MeanNN entropy estimator Ĥ({xi}i=1,...,n)
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Figure 2: Projections on two axes by β∗ and β̂ (Example 1).

proposed in Faivishevsky and Goldberger (2009) because of its stability, computational effi-
ciency, and implementation simplicity:

Ĥ({xi}i=1,...,n) = log(cp) + ψ(n) +
1

n − 1

n−1∑
k=1

−ψ(k) +
p

n

∑
i̸=j

log ||xi − xj ||

 , (5)

where cp = πp/2

Γ(1+p/2) is the volume of the q-dimensional unit ball, and ψ is the digamma
function. Using this estimator, we estimate the entropy of projected data subsets in slices as
Ĥ({B⊤xi}i∈Sl

), which approximates conditional entropies of projected data H(B⊤X|X ∈
Sl). Then, setting the prior distribution for each slice Sl be p(Sl) = |Sl|/n, we define the mini-
mization objective function J(B) by the weighted sum of estimated entropies of projected data
in each slice:

H(B⊤X|Y ) ≅
L∑

l=1

p(Sl)H(B⊤X|X ∈ Sl) (6)

≅
L∑

l=1

|Sl|
n

Ĥ({B⊤xi}i∈Sl
) = J(B). (7)

We minimize the objective function by the gradient descent method. The gradient matrix of
the estimated conditional entropy is given by

∂Ĥ({B⊤xi}i∈Sl
)

∂B⊤ =
q

|Sl|(|Sl| − 1)

∑
i,j∈Sl,

i̸=j

B⊤(xi − xj)(xi − xj)⊤

∥B⊤(xi − xj)∥2
, (8)

and the gradient matrix of the objective function is given by

∂J(B)
∂B⊤ =

L∑
l=1

|Sl|
n

∂Ĥ({B⊤xi}i∈Sl
)

∂B⊤ . (9)

By updating B in the direction of ∂J(B)
∂B⊤ , B could deviate from the Stiefel manifold Sp

q(R). In
the literature of independent component analysis, it is known that a matrix B is mapped to Sp

q(R)
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by a simple iterative algorithm, quasi-orthogonalization (Hyvärinen et al., 2001). We note that
instead of projecting B after gradient steps, it is also possible to develop an algorithm that keeps
B lay in the Stiefel manifold (Nishimori and Akaho, 2005; Fiori, 2005). We applied the latter
approach in our preliminary study, but the simple gradient and projection method adopted in this
paper showed better results in our case. The detail of the quasi-orthogonalization algorithm is
shown in Appendix A. In Algorithm 1, we summarize the proposed entropy-based sliced inverse
regression (ESIR) algorithm. In practice, we have to set the gradient parameter η > 0 appropri-
ately. There are a lot of possibilities in finding an appropriate value of η. In this paper, we adopt
a golden section search along the steepest descent direction. We set the stopping criterion be
|J(Bt)−J(Bt−1)| < 10−8, where Bt and Bt−1 are the estimated dimension reduction matrices
at the t-th and t−1-th iterations, respectively.

Algorithm 1 ESIR: Entropy-based sliced inverse regression
input: a dataset D = {(xi, yi)}i=1,...,n, gradient parameter η > 0, and reduced dimension q.
initialize: choose an initial matrix B ∈ Rp×q.
while : stopping criterion not met, do

update B by

B ← B − η
∂J(B)
∂B⊤ . (10)

map B to the Stiefel manifold Sp
q(R) by quasi-orthogonalization algorithm (Algorithm 2).

end while

4 Experimental Results

In this section, we show experimental results both on artificial and real-world data. We compare
the proposed method to SIR, IRE, SAVE, DR, and MSIR, all of which have implementations
openly available. In the experiments, we used R language (R Development Core Team, 2011)
and its package dr for SIR, IRE, SAVE, DR, and package msir for MSIR. We also imple-
mented the proposed ESIR algorithm using R.

4.1 Artificial Data

We show simulation results on the estimation of the ground truth projection matrix B∗ of four
models used in previous studies on SIR-based methods. In the same manner as Scrucca (2011),
we evaluate the difference between the ground truth matrix B∗ and estimated matrix B̂ by the
following measure:

∠(B̂, B∗) = arcsin
(
∥B̂(B̂⊤B̂)−1B̂⊤ − B∗(B∗⊤B∗)−1B∗⊤∥S

)
,

which can be regarded as an angle between column spaces of B∗ and B̂. Here, the spectral norm
∥A∥S is calculated by the maximum singular value of the matrix A.

In the following four models, an additive noise ε follows N (0, 0.12).

4.1.1 Model 1

We first consider the following single-index model with a symmetric regression function:

Y = (0.5 · β⊤X)2 + ε, (11)
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where β = (1,−1, 0, . . . , 0)⊤ ∈ R10. This model is a famous example in which the original SIR
method cannot identify the ground truth matrix (vector). The explanatory variable X follows
N (0, I10), where 0 ∈ R10.

4.1.2 Model 2

We consider the following two-dimensional model with polynomial regression function:

Y = β⊤
1 X + (β⊤

2 X)2 + ε, (12)

where B = (β1, β2), β1 = (1, 0, · · · , 0)⊤ ∈ R10 and β2 = (0, 1, 0, · · · , 0)⊤ ∈ R10. Theo-
retically, SIR can identify the first direction β1, but fail to identify β2. SAVE and DR take into
account the second moment, and they can identify both β1 and β2. The explanatory variable X
follows N (0, I10), where 0 ∈ R10.

4.1.3 Model 3

We consider the following two-dimensional model with rational regression function:

Y =
β⊤

1 X

0.5 + (1.5 + β⊤
2 X)2

+ ε, (13)

where B = (β1, β2), β1 = (1, 0, . . . , 0)⊤, β2 = (0, 1, 0, . . . , 0)⊤. This model is known as
an example in which SAVE can not identify the ground truth dimension reduction matrix. The
explanatory variable X follows N (0, I10), where 0 ∈ R10.

4.1.4 Model 4

Finally, we consider a model in which the explanatory variable has correlation. That is, X
follows a 10-dimensional zero mean Gaussian distribution with correlation between Xi and Xj

given by cor(Xi, Xj) = ρ|i−j|, i, j = 1, . . . , 10, and ρ is set to 0.05. The regression function is
of the form

Y = 2β⊤X + (β⊤X)2 + ε, (14)

where B = β = (1, 1, 1, 0, · · · , 0)⊤ ∈ R10.

4.1.5 Results and Discussion on the Artificial Data Experiments

Angles between the ground truth and estimated dimension reduction matrices are plotted in
figures 3 (1-a), (2-a), (3-a) and (4-a), with increasing numbers of samples. The dimension
reduction matrices are estimated using n = 200, 300, . . . , 1000 samples. In every setting, 100
sets of i.i.d. samples are used to evaluate average performances of the dimension reduction
methods.

From figures 3 (1-a),(2-a),(3-a), and (4-a), we see that ESIR performs better than the other
methods in many cases. Figures 3 (1-b),(2-b),(3-b), and (4-b) show the averaged conditional
estimated entropy in all slices, after projected onto estimated dimension reduction subspaces.
From this result, we see that the performances of dimension reduction methods for regression
are highly correlated with the magnitude of conditional entropy, which supports the validity of
our proposed method.

For the sake of legibility, we did not show standard deviations of angles ∠(B̂, B∗) and
entropies J(B̂) in figure 3. Instead, in cases of n = 200 and n = 1000, we show averages
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of ∠(B̂, B∗) and entropies with standard deviations in parentheses in table 1 to table 4. The
best methods that achieve the smallest ∠(B̂, B∗) are shown in boldface type when they are
statistically significant via a t-test at significance level α = 0.05.

Table 1: Model 1: Angles ∠(B̂, B∗) and estimated ones. Entropies of projected data by esti-
mated are also listed.

angle ∠(B̂, B∗) Conditional Entropy J(B̂)
Sample Size 200 1000 200 1000
SIR 71.12 (16.64) 64.84(19.91) 1.29(0.07) 1.35(0.08)
IRE 76.25(11.75) 75.39 (15.84) 1.33(0.07) 1.38(0.05)
SAVE 18.44(5.21) 6.48(1.44) 0.99(0.10) 0.78(0.03)
DR 17.27 (4.82) 6.67(1.55) 0.97(0.10) 0.78 (0.03)
MSIR 10.77 (5.07) 2.88(0.89) 0.85(0.08) 0.71(0.02)
ESIR 6.45 (2.29) 2.00(0.52) 0.69(0.07) 0.69(0.02)

Table 2: Model 2: Angles ∠(B̂, B∗) and estimated ones. Entropies of projected data by esti-
mated are also listed.

angle ∠(B̂, B∗) Conditional Entropy J(B̂)
Sample Size 200 1000 200 1000
SIR 67.07 (18.12) 66.29(18.88) 2.26(0.06) 2.29(0.05)
IRE 72.60(12.76) 72.61(16.74) 2.28(0.05) 2.31(0.04)
SAVE 70.17 (15.37) 9.01(2.15) 2.42(0.06) 2.11(0.03)
DR 21.42(5.91) 8.62(1.85) 2.17(0.06) 2.10(0.02)
MSIR 23.97 (21.55) 4.01(0.90) 2.17(0.08) 2.08(0.02)
ESIR 21.89(18.91) 3.65(0.72) 2.10(0.06) 2.07(0.02)

8



Table 3: Model 3: Angles ∠(B̂, B∗) and estimated ones. Entropies of projected data by esti-
mated are also listed.

angle ∠(B̂, B∗) Conditional Entropy J(B̂)
Sample Size 200 1000 200 1000
SIR 32.54 (12.91) 12.65(3.52) 2.09(0.07) 2.04(0.03)
IRE 40.96(14.90) 13.26(3.98) 2.13(0.08) 2.04(0.03)
SAVE 75.77(11.08) 16.03(4.85) 2.40(0.09) 2.05(0.03)
DR 35.37 (14.07) 12.33(2.97) 2.11(0.07) 2.05(0.03)
MSIR 24.23 (7.45) 6.26(1.67) 2.08(0.06) 2.02(0.02)
ESIR 28.17(11.25) 6.81(2.09) 1.99(0.06) 2.01(0.02)

Table 4: Model 4: Angles ∠(B̂, B∗) and estimated ones. Entropies of projected data by esti-
mated are also listed.

angle ∠(B̂, B∗) Conditional Entropy J(B̂)
Sample Size 200 1000 200 1000
SIR 18.91 (6.02) 7.53(1.93) 0.86(0.15) 0.66(0.06)
IRE 34.81(16.80) 8.58(2.17) 1.04(0.19) 0.68(0.06)
SAVE 55.40(21.15) 8.30(2.72) 1.23(0.14) 0.68(0.06)
DR 19.98 (6.14) 8.08(2.08) 0.89(0.13) 0.67(0.05)
MSIR 12.74(4.62) 3.08(0.77) 0.75(0.11) 0.58(0.04)
ESIR 6.35(1.98) 2.22(0.57) 0.56(0.09) 0.57(0.04)
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Finally, asymptotic behaviours of statistical methods are important both theoretically and
practically. Some SIR based methods are, based on their assumption on the distribution of the
explanatory variable X , shown to have

√
n-consistency as estimators of the dimension reduction

space. Since the propose method do not assume any distribution of X , it requires a different
approach for investigating statistical properties, and we leave the theoretical investigation for
our future work. In this paper, we show in figure 4 the averaged angles between the true and
estimated subspaces by ESIR as functions of 1/

√
n for the four models. The averages are

taken over 100 independent sample sets. Approximately linear relationships between angles
and 1/

√
n are seen in these plots, and they suggest nearly

√
n-consistency of the proposed

method.
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Figure 4: Angles ∠(B̂, B∗) and 1/
√

n.

4.2 Real-world Data

In this section, we apply dimension reduction methods based on SIR for 8 datasets. Datasets
“airquality”, “auto-mpg”, “concrete”, and ”computer hardware” are obtained from the UCI ma-
chine learning repository (Murphy and Aha, 1994). Datasets “body fat” and “space ga” are
obtained from StatLib system (StatLib, 2012). Dataset “divorce rate” is obtained from the Vital
Statistics of Japan yearly survey by the Ministry of Health, Labour and Welfare (Vital Statistics,
2012). The last dataset, “solar panel”, is a set of electricity data generated by solar panels in
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houses in Japan. All of the datasets are publicly available except the last one. In table 5, we
show specifications of these datasets. In real-world data cases, there is no ground truth dimen-

Table 5: Dimensions of explanatory variables and numbers of samples of datasets.
data name dimension # of samples
airquality 5 111
auto-mpg 7 398
concrete 8 1030

computer hardware 9 209
body fat 14 252
space ga 6 3107

divorce rate 12 97
solar panel 15 641

sion reduction matrix. To evaluate the performance of dimension reduction methods, we fix a
regression model to a simple linear regression of the form

f(B⊤x) = a0 + a1β
⊤
1 x + · · · + aqβ

⊤
q x, (15)

and trained the model using a training set {B̂⊤xi, yi}i=1,...,ntr , where B̂ = (β̂1, . . . , β̂q) is
obtained by individual dimension reduction methods. Then, we compare the mean-squared
error (MSE)

MSE =

√√√√ 1
n

nte∑
j=1

(yj − f(B̂⊤xj))2, (16)

which is evaluated using a set of test data {xj , yj}j=1,...,nte . We report the averages of MSE
estimated by 10-fold cross validation.

We note that for some datasets, IRE did not work because of numerical singularity. It is also
noted that IRE and MSIR automatically limits the highest dimension of explanatory variables,
hence the reduced dimension by IRE and MSIR for some datasets do not reach the maximum
dimensions.

4.2.1 Results and Discussion on Real-world Datasets

There is no single best method that consistently outperforms the others, however, we can see
that ESIR performs well for (3): “concrete”, (4): “computer hardware”, (5): “body fat”, and
(7): “divorce rate”. Particularly, for “body fat” and “divorce rate” datasets, ESIR achieves the
lowest MSE at only two- or three-dimensional subspaces. In the “body fat” dataset, we are
supposed to predict the percentage of body fat using body density, age, weight, and so on. The
estimation formula for the percentage of the body fat mainly depends on the body density, and
other variables (e.g., age, weight, and chest circumference) seem to have minor contribution to
the percentage of the body fat so much. In the “divorce rate” dataset, we are supposed to predict
the divorce rate in a year using 12 observations such as the number of live births, number of
deaths, number of infant deaths, number of divorces, number of marriages and so on, from
1898 to 1998 in Japan. It contains the number of divorces as one of the explanatory variables,
hence it would be sufficient with only one or two dimensions for predicting the divorce rate.
The proposed ESIR seems to be able to find these intrinsic low-dimensional subspaces from the
given datasets.

12



On the other hand, ESIR does not perform well for “solar panel” dataset. Among 15 dimen-
sions of explanatory variables of this dataset, 14 dimensions are categorical, and half of them
(i.e., 7 dimensions) are binary variables. Because the Shannon differential entropy is defined
for continuous probability distributions, it is understandable that the proposed method does not
work well for this dataset.
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5 Conclusion

In this paper, an extension of SIR is proposed based on the notion of conditional entropy mini-
mization, which is a different perspective of model-based SIR (MSIR) by Scrucca (2011). The
proposed dimension reduction method is based on non-parametric entropy estimation, hence it
does not assume any specific distribution nor any regression function. It is shown to perform
well for both artificial and real-world datasets.

A drawback of the proposed method would be possible sensitivity to the initial estimate
of the dimension reduction matrix B, because the objective function of the method is non-
convex in general. We adopted the result of SIR as an initial estimate of B for the proposed
method. Indeed, we do not intend to replace the conventional methods. Instead, we propose to
tune the estimated matrix B obtained through other methods by applying conditional entropy
minimization. From our experimental results, we see that there is a strong correlation between
the accuracy of estimation of the dimension reduction matrix and the value of the estimated
conditional entropy.

In the experiment, we adopted the same heuristics as used in SIR for the choice of slices.
It is also an open problem how to slice the range of response variable for the proposed method.
In this paper, we only considered univariate response Y . SIR and related methods including
our proposed method face with the curse of dimensionality when applied to regressions with
multivariate responses. There are some works on how to slice multivariate responses to ex-
tend SIR based method for multivariate response regressions (Aragon, 1997; Setodji and Cook,
2004). Combining such methods with ESIR would further broaden the applicability of SIR
based methods. In practice, we usually do not have any prior knowledge about q, the dimension
of the dimension reduction subspace. Some prior works on inverse regression entail statistical
tests for determining appropriate dimensions. At this moment, we suggest using the same q
determined by such methods in practical circumstances. A method for determining an appropri-
ate dimension based on the notion of entropy should be explored. Statistical properties of the
proposed method seeing as an estimator for dimension reduction subspaces are yet to be stud-
ied. Most of statistical properties such as consistency, unbiasedness, and identifiability must
be closely connected to both properties of the entropy estimator and the way to slice the given
dataset, and one of our important future works is investigation of these properties.
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Appendix A: Quasi-orthogonalization

The quasi-orthogonalization of a matrix B is realized by iterating the three steps shown in
algorithm 2 until convergence.

This procedure for quasi-orthogonalization is validated as follows (Hyvärinen et al., 2001).
Let B⊤B = EDE⊤ be the eigenvalue decomposition of the symmetric matrix B⊤B, where
E ∈ Rp×p is an orthogonal matrix and D is a diagonal matrix with eigenvalues {di}p

i=1 of
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Algorithm 2 quasi-orthogonalization of matrix B

while :stopping criterion not met, do
step 1: divide B by square root of the largest eigenvalue of B⊤B.
step 2: B ← 3

2B − 1
2BB⊤B.

step 3: normalize the norm of each column of B to 1.
end while

B⊤B. Then, by step 2 of the above procedure, B⊤B is modified as

B⊤B 7→ 1
4
(3B − BB⊤B)⊤(3B − BB⊤B)

=
1
4
E

(
9D − 6D2 + D3

)
E⊤.

Noting that di ∈ [0, 1] because the maximum eigenvalue of the matrix B⊤B is normalized to
one in step 1, the eigenvalues of B⊤B after this transformation become

h(di) =
1
4
(9di − 6d2

i + d3
i ), i = 1, . . . , p.

Because h(di) − di = di
4 {(di − 3)2 − 4} ≥ 0, eigenvalues of B⊤B converge to 1 by iterating

those three steps. In actual experiments, we iterate these three steps 2 × p times to obtain an
approximately orthogonalized matrix.
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