1 Large photoresponsivity in semiconducting BaSi₂ epitaxial films grown

2 on Si(001) substrates by molecular beam epitaxy

- 3 S. Koike^a, K. Toh^a, M. Baba^a, K. Toko^a, K. O. Hara^b, N. Usami^{b,c}, N. Saito^d,
- 4 N. Yoshizawa^d, T. Suemasu^{a,c}
- ^aInstitute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- 6 ^bInstitute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577,
- 7 Japan
- ⁸ ^cJapan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075, Japan
- 9 ^dNational Institute of Advanced Industrial Science and Technology, Tsukuba,
- 10 Ibaraki 305-8568, Japan

11

- 12 **Corresponding author:** T. Suemasu
- 13 Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573,
- 14 Japan
- 15 TEL/FAX: +81-29-853-5111, Email: <u>suemasu@bk.tsukuba.ac.jp</u>

16

17	Approximately 900- and 400-nm-thick BaSi ₂ epitaxial films were grown on Si(111)
18	and Si(001) substrates, respectively, by molecular beam epitaxy, and their
19	photoresponse properties were compared at room temperature. When the bias
20	voltage V_{bias} applied between the 1.5-mm-spacing stripe-shaped electrodes on the
21	BaSi ₂ surfaces increased, photocurrents were clearly observed for photon energies
22	greater than the band gap for both samples. However, the photoresponsivity for
23	$BaSi_2$ on Si(001) was more than 8 times larger than that for $BaSi_2$ on Si(111);
24	reaching approximately 50 and 5 mA/W at 1.6 eV, respectively, when V_{bias} was 1.0
25	V. This is attributed to the difference in the grain size of $BaSi_2$ films confirmed by
26	plan-view transmission electron microscopy.
27	
28	
29	PACS: 78.40.Fy
30	Keywords: B1. Semiconducting silicides; B2. BaSi ₂ ; B3. Solar cell; A3. MBE; A1.
31	Large grain
32	

34 **1. Introduction**

It is important for solar cell materials to have a large absorption coefficient 35 and a suitable band gap that matches the solar spectrum to yield high conversion 36 efficiency. Among such materials, we have focused on semiconducting 37 orthorhombic BaSi₂. The band gap of BaSi₂ is approximately 1.3 eV and can be 38 increased up to 1.4 eV in $Ba_{1-x}Sr_xSi_2$ [1,2], which matches the ideal solar spectrum 39 much better than crystalline Si. In addition, BaSi₂ has a very large absorption coefficient 40 α of approximately 3×10⁴ cm⁻¹ at 1.5 eV [2]. A large value of α and expansion of the 41 42 band gap in $Ba_{1-x}Sr_xSi_2$ were theoretically expected [3,4]. $BaSi_2$ can be grown epitaxially on a Si(111) substrate with the orientation 43 alignment of BaSi₂(100)//Si(111), with a small lattice mismatch of 1.0% for BaSi₂[010]//Si[112] 44 [5]. Therefore, lots of studies have been done on BaSi₂ epitaxial films grown on 45 Si(111) by molecular beam epitaxy (MBE). Recently, we have achieved large 46 photoresponsivity in undoped n-type BaSi₂ epitaxial layers on Si(111) and 47 polycrystalline BaSi₂ layers on (111)-oriented polycrystalline Si layers on SiO₂ 48 [6-8]. With respect to the lattice mismatch, we have considered that the (111) facet 49 50 of a Si substrate is best for BaSi₂ growth, although the grain size of BaSi₂ is as 51 small as approximately 0.2 µm [9]. This is because of three epitaxial variants, due

52	to the sixfold symmetry of Si(111) [10], rotating around each other by 120° in the
53	surface normal. Many grain boundaries and other defects in a film would deteriorate
54	the optical and electrical properties. Thus, it is important to increase the grain size
55	of BaSi ₂ films. Note that <i>a</i> -axis oriented BaSi ₂ was surprisingly grown on the
56	Si(001) substrate, despite the large lattice mismatch of 0.1% for
57	BaSi ₂ [001]//Si[110] and 12.5% for BaSi ₂ [010]//Si[110] [5]. Very recently, we
58	found that the grain size of <i>a</i> -axis-oriented $BaSi_2$ epitaxial layers on Si(001) is more
59	than 1 μ m, much larger than that on Si(111) [11]. However, we have not yet
60	measured photoresponse properties of $BaSi_2$ epitaxial films on Si(001). In this paper,
61	we aimed to compare the photoresponsivity of $BaSi_2$ grown on Si(001) with that on
62	Si(001), already reported in Ref. [7].

63

64 **2. Experimental**

An ion-pumped MBE system equipped with standard Knudsen cells for Ba and Sb, and an electron-beam evaporation source for Si was used. After cleaning Czochralski n-Si(111) (ρ =0.015 Ω ·cm) and n-Si(001) (ρ =0.07 Ω ·cm) substrates at 850 °C for 30 min in ultrahigh vacuum, approximately 850- and 350-nm-thick undoped *n*-BaSi₂ epitaxial films were grown on Si(111) and Si(001) substrates,

70	respectively, by reactive deposition epitaxy (RDE; Ba deposition on hot Si) for
71	$BaSi_2$ template layers, and subsequent MBE (codeposition of Ba and Si on Si) to
72	form thick $BaSi_2$ films. Details of the growth procedure have been previously
73	described [7,11]. Finally, approximately 50-nm-thick Sb-doped n^+ -BaSi ₂ (~10 ²⁰
74	cm ⁻³) layer was formed for ohmic contacts [12]. For photoresponse measurements,
75	Cr and Au were evaporated on the surface to form 1.5-mm-spacing stripe-shaped
76	electrodes. The photocurrent flowing in the lateral direction between the electrodes was
77	evaluated by a lock-in technique using a 150 W Xenon lamp (5 mW/cm^2 at 470 nm)
78	with a 25-cm focal-length single monochromator (Bunkoukeiki SM-1700A). The light
79	intensity was calibrated by a pyroelectric sensor (MELLES GRIOT 13PEM001/J). The
80	crystalline quality of the grown films was characterized by reflection high-energy
81	electron diffraction (RHEED), X-ray diffraction (XRD), and transmission electron
82	microscopy (TEM).

83

84 **3. Results and discussion**

Figure 1 show the RHEED patterns of BaSi₂ films after (a) RDE at 550 °C and (a') MBE at 600 °C on Si(111), and after (b) RDE at 530 °C and (b') MBE at 580 °C on Si(001) substrates. The RHEED patters were observed along the Si[11-2]

and Si[110], respectively. We can see clear streaky RHEED patterns for BaSi₂ films 88 on Si(111), which is typical for a-axis-oriented BaSi₂ epitaxial films [13]. On the 89 other hand, two clear sets of streaky patterns with different spacings are seen for 90 BaSi₂ on Si(001), in Figs. 1(b) and 1(b'). The ratio of wide streaky spacing to 91 narrow spacing is approximately 1.7, which is explained by the ratio of 1/b to 1/c. 92 93 Taking into account that the electron beam was incident along the Si[110] azimuth, 94 these two streaky patterns with different spacings indicate the existence of two epitaxial variants rotating 90° to each other in the surface normal; BaSi₂(100)//Si(001) with 95 96 BaSi₂[010]//Si[110] and BaSi₂[001]//Si[110] [11].

Figures 2(a) and 2(b) present the θ -2 θ XRD patterns of BaSi₂ films on Si(111) and Si(001) substrates, respectively. The diffraction peaks at 2θ = 20°, 41°, 63° correspond to BaSi₂(200), (400), and (600) planes, respectively, indicating that highly *a*-axis-oriented BaSi₂ films were grown.

Figures 3(a) and 3(b) shows the plan-view bright-field (BF) TEM images of
BaSi₂ films on (a) Si(111) and (b) Si(001) substrates. The incident electron beam was
almost parallel to the BaSi₂[100] zone axis, but was slightly tilted for the grain
boundaries (GBs) to be seen clearly. We can easily see that the grain size of the BaSi₂
film on Si(111) is approximately 0.2 µm. In contrast, theg grains of more than 1 µm in

diameters exist in the BaSi₂ film on Si(001) in Fig. 3(b). We speculate that the large grain of BaSi₂ on Si(001) is partly due to the reduced number of epitaxial variants from three for BaSi₂ on Si(111) to two for BaSi₂ on Si(001). However, the difference in grain size is significantly larger than expected. Thus, further studies are required to clarify the mechanism that explains this difference.

Figures 4(a) and 4(b) show the photoresponse spectra measured at RT under 111 112 various bias voltages applied between the 1.5-mm-spacing stripe-shaped Au/Cr electrodes on the surface of $BaSi_2$ films on (a) Si(111) and (b) Si(001) substrates. In 113 114 both samples, photocurrents increased sharply with increasing bias voltages V_{bias} for photon energies greater than the band gap. However, the magnitude of 115 116 photoresponsivity differed significantly between them. The photoresponsivity reached 13 mA/W at 1.6 eV for BaSi₂ on Si(111) when V_{bias} was 2.5 V on Si(111), 117 while it marked approximately 100 mA/W for BaSi₂ on Si(001). This difference is 118 119 attributed to the difference in the grain size of BaSi₂ films. It should be noted that in the photoresponse spectra, peaks become pronounced at 1.46 eV. This is due to the 120 non-linear property of the photocurrent caused by the intense line-shaped spectrum 121 122 of the Xenon light at this photon energy. On the basis of these results, we concluded that the further improvement of photoresponsivity in BaSi₂ epitaxial films is 123

124 expected with much larger grains. In this sense, a Si(001) face is more preferable 125 for $BaSi_2$ than a Si(111) surface. 126 4. Summary 127 Approximately 900- and 400-nm-thick BaSi₂ epitaxial films were grown on 128 Si(111) and Si(001) substrates, respectively, by MBE. Plan-view BF TEM images 129 revealed that the grain size of BaSi₂ on Si(001) was more than 1 µm, while that on 130 Si(111) was approximately 0.2 μ m. When the bias voltage V_{bias} was 2.5 V, the 131 photoresponsivity reached 100 mA/W for BaSi₂ on Si(001) at 1.6 eV. On the other 132 hand, it was only 13 mA/W for $BaSi_2$ on Si(111). 133 134

135 **Reference**

- 136 [1] K. Morita, M. Kobayashi, T. Suemasu, Jpn. J. Appl. Phys.45 (2006) L390.
- 137 [2] K. Toh, T. Saito, T. Suemasu, Jpn. J. Appl. Phys. 50 (2011) 068001.
- [3] D. B. Migas, V. L. Shaposhnikov, V. E. Borisenko, Phys. Status Solidi B 244 (2007)
 2611.
- 140 [4] Y. Imai, A. Watanabe, Thin Solid Films 515 (2007) 8219.
- 141 [5] R. A. Mckee, F. J. Walker, Appl. Phys. Lett. 63 (1993) 2818.
- 142 [6] W. Du, M. Suzuno, M. A Khan, K. Toh, M. Baba, K. Nakamura, K. Toko, N. Usami,
- 143 T. Suemasu, Appl. Phys. Lett. 100 (2012) 152114.
- 144 [7] Y. Matsumoto, D. Tsukada, R. Sasaki, M. Takeishi, T. Suemasu, Appl. Phys. Express

145 2 (2009) 021101.

- 146 [8] D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, T. Suemasu,
- 147 Appl. Phys. Express 2 (2009) 051601.
- 148 [9] M. Baba, K. Toh, K. Toko, N. Saito, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K.
- 149 O. Hara, N. Usami, T. Suemasu, J. Cryst. Growth 348 (2012) 75.
- 150 [10] Y. Inomata, T. Nakamura, T. Suemasu, F. Hasegawa, Jpn. J. Appl. Phys. 43
- 151 (2004) L478.
- 152 [11] K. Toh, K. O. Hara, N. Usami, N. Saito, N. Yoshizawa, K. Toko, T. Suemasu, J.

- 153 Cryst. Growth 345 (2012) 16.
- 154 [12] M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada, T. Suemasu, Appl.
- 155 Phys. Express 1 (2008) 051403.
- 156 [13] T. Suemasu, M. Sasase, Y. Ichikawa, M. Kobayashi, D. Tsukada, J. Cryst.
- 157 Growth 310 (2008) 1250.

Fig. 1 RHEED patterns of BaSi₂ films after (a) RDE at 550 °C and (a') MBE at 600 °C on Si(111), and after (b) RDE at 530 °C and (b') MBE at 580 °C on Si(001) substrates, observed along Si [110] and Si[11-2], respectively. The arrows show the existence of two sets of streaky patterns with different spacings for BaSi₂ on Si(001).

Fig. 2 θ -2 θ XRD patterns of BaSi₂ films on (a) Si(111) and (b) Si(001) substrates. The forbidden diffraction peaks caused by the Si substrates are indicated by asterisks.

Fig. 3 Plan-view BF TEM images of BaSi₂ films on (a) Si(111) and (b) Si(001) substrates. The incident electron beam was almost parallel to the BaSi₂[100] zone axis, but was slightly tilted for the GBs to be seen clearly.

Fig. 4 Photoresponse spectra measured at RT under various bias voltages applied between the 1.5-mm-spacing stripe-shaped Au/Cr electrodes on the surface of BaSi₂ films on (a) Si(111) and (b) Si(001) substrate

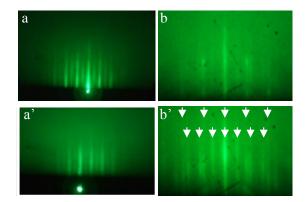


Fig. 1

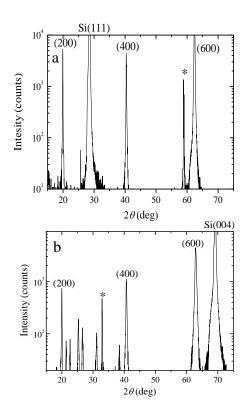
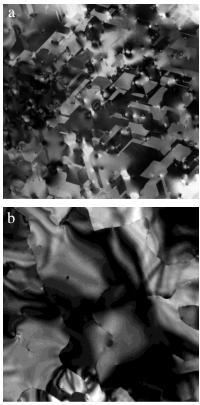



Fig. 2

-0.5 μm

Fig. 3

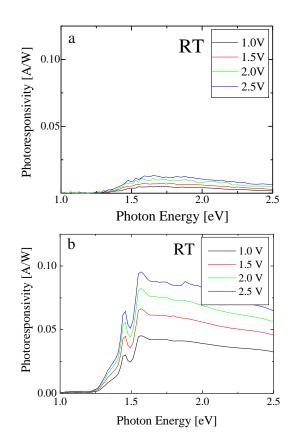


Fig. 4