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ABSTRACT. A complex number � is said to satisfy the height reducing
property if there is a �nite subset, say F; of the ring Z of the rational in-
tegers such that Z[�] = F [�]: This property has been considered by several
authors, especially in contexts related to self a¢ ne tilings, and expansions of
real numbers in non-integer bases. We prove, in this paper, that a number
satisfying the height reducing property, is an algebraic number whose conju-
gates, over the �eld of the rationals, are all of modulus one, or all of modulus
greater than one. Expecting the converse of the last statement, we also show
some theoretical and experimental results, which support this conjecture.

1. Introduction

For a subset F of the complex �eld C; and for � 2 C; we denote by F [�]
the set of polynomials with coe¢ cients in F; evaluated at �; i. e.,

F [�] = f
nX
j=0

"j�
j j ("0; :::; "n) 2 F n+1; n 2 Ng;

where N is the set of non-negative rational integers. In particular, when F
is the ring Z of the rational integers, the set F [�] is the Z�module generated
by the integral powers of �: It is well known that there is N 2 N such that
Z[�] = f"0+ � � �+"N�N j ("0; :::; "N) 2 ZN+1g if, and only if, � is an algebraic
integer; moreover, the smallest possible value forN; in this case, is deg(�)�1;
where deg(�) is the degree of � [12].
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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Following [1], we say that � satis�es the height reducing property, in short
HRP, if there is a �nite subset, say again F , of Z such that F [�] = Z[�]: The
height reducing problem can be compared with canonical number systems
and �niteness property of beta-expansions, where the set F has more speci�c
shape. These two problems, uni�ed into a problem of shift radix system, are
extensively studied. Readers may consult [2, 3] and the references therein.
A result of Lagarias and Wang, cited in [1, 7], implies that an expanding

algebraic integer �; that is an algebraic integer whose conjugates are of mod-
ulus greater than one, satis�es HRP with F = f0;�1; :::;�(jNorm(�)j�1)g:
Recently, Akiyama, Drungilas and Jankauskas obtained a direct proof of this
last mentioned result, but with a greater �nite set F [1]. It is worth noting
that Proposition 3.1 of [8] yields to the same conclusion. Also, Lemma 1 of
[1] asserts that an algebraic integer, with modulus greater than 1, satisfying
HRP, is an expanding algebraic integer. Next we continue the description of
the numbers which satisfy this property.

Theorem 1 Let � 2 C. Then, the following propositions are true.

(i) If � satis�es the height reducing property , then � is an algebraic num-
ber whose conjugates are all of modulus 1; or all of modulus greater
than 1.

(ii) If � is a root of unity, or an algebraic number whose conjugates are of
modulus greater than 1; then � satis�es the height reducing property.

It is clear, by Kronecker�s theorem (see for instance [12]), that an algebraic
integer whose conjugates belong to the unit circle is a root of unity. To
obtain a characterization of the numbers which satisfy HRP, it remains to
consider the case where all conjugates of the algebraic number � belong to
the unit circle, and are not roots of unity. In this last situation the minimal
polynomial M� of � is reciprocal, i. e., M�(x) = x

deg(M�)M�(1=x); deg(M�)
(which is equal to deg(�)) is even, and the greatest number, say m(�); of
conjugates of � which are multiplicatively independent (see the de�nition in
Lemma 1 below) satis�es the relation 1 � m(�) � deg(�)=2; since the roots
of M� are pairwise complex conjugates and arg(�)=� =2 Q (i.e., � is not a
root of unity), where Q is the �eld of the rational numbers.
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Theorem 2 Let � be an algebraic number whose all conjugates lie on the
unit circle. If m(�) � deg(�)=2� 1; or m(�) = 1; then � satis�es the height
reducing property.

Remark 1 It follows immediately from Theorem 2 that � satis�es HRP
when deg(�) � 6. We expect that this property holds for any algebraic �
whose conjugates lie on the unit circle. However we �nd, in the Appendix,
two examples of degree 12 that none of our methods apply.

Remark 2 There is an algorithm to determine m(�). In fact if �1; : : : �m
are multiplicatively dependent, then Lemma 4.1 in Waldschmidt [14] gives an
explicit upper bound B so that the equation

Qm
i=1 �

ki
i = 1 has a non-trivial

solution (k1; :::; km) 2 (Z \ [�B;B])m: However the bound B is too large to
examine. We employ Lemma 3.7 of de Weger [6] to reduce this bound by
LLL algorithm. Details and numerical results will be shown in the Appendix.

In these pages when we speak about conjugates, norm, minimal polyno-
mial and degree of an algebraic number we mean over the �eld Q: A unit is an
algebraic integer whose norm is �1:The proofs of the theorems above appear
in the last section. Lemmas 5 and 6 of [7], and some parts of the proofs of
Lemmas 1 and 6 of [1] are used to show Theorem 1; these results, together
with some auxiliary ones, we need to prove Theorem 2, are exhibited in the
next section.

2. Some lemmas

The following result is the main tool of the �rst part of the proof of
Theorem 2.

Lemma 1 Let �1; : : : ; �m be conjugates, with modulus one, of an algebraic
number �: Assume that �1; : : : ; �m are multiplicatively independent, i.e.,
each equation of the form

Qm
j=1 �

kj
j = 1 where (k1; : : : ; km) 2 Zm; implies

(k1; : : : ; km) = (0; : : : ; 0): Then for every " > 0; there is a positive rational
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integer K = K(�;m; ") such that for each (�1; : : : ; �m) 2 Cm; with
mY
j=1

�j 6= 0;

there is a non-negative rational integer l � K satisfying j arg(�j�lj)j � "; 8
j 2 f1; : : : ;mg:

Proof. The existence of the constant K; satisfying the above mentioned
condition, is a corollary of a quantitative version of Kronecker�s approxi-
mation theorem due to Mahler [10] (c.f. Vorselen [13]). The necessary as-
sumption of the lower bound follows from Baker�s theory of linear forms in
logarithms (see [4, 5]). �

To simplify the computation in the proof of Theorem 2, let us show the
following lemma.

Lemma 2 Let z and w be complex numbers satisfying z 6= 0; jarg(z)j � 2�=5
and jwj � 1: Then for all real numbers r 2 (0; 4 jzj =145); we have

jz + r(w � 5)j < jzj :

Proof. Set z := � exp(i�); w := � exp(i�) and (z+ r(w� 5)) exp(�i�) :=
a + ib; where i2 = �1; f�; �; �; �; a; bg � R and R is the real �eld. Then
a = � + r� cos(�� �)� 5r cos(�); b = r� sin(�� �) + 5r sin(�); 0 < � � 6r �
a � � � (5 cos(2�=5)� 1)r � � � r=2; jbj � 6r and so

jz + r(w � 5)j �
p
(� � r=2)2 + 36r2 < �. �

Lemma 3 Let � be an algebraic number of degree d: Then Z[�] \ Z[1=�]
is an order, i.e., a subring of the ring of the integers of Q(�); sharing the
identity as well as a free Z-submodule of rank d:

4



Proof. Put O = Z[�]\Z[1=�]. If � is an algebraic integer, then we have
Z[�] � Z[1=�] and the statement is trivial. Assume that � is not an algebraic
integer, and take an ideal p which divides the denominator of the fractional
ideal (�). Then the denominator of the principal ideal (x) for x 2 O is not
divisible by p. This shows that every element of O is an algebraic integer
and O is a Z-module of rank not greater than d. Denote by

Pd
n=0 cnx

n the
minimal polynomial of �. Then from the relation

cd� = �
d�1X
n=0

cn�
n�d+1 2 Z[1=�];

and the fact that cd� is an algebraic integer, we see that

Z[cd�] � Z[�] \ Z[1=�]:

This shows that the rank of O is not less than d. �

Lemma 4 Let � be an algebraic number of degree 2d whose all conjugates are
of modulus one. Let �j (j = 1; : : : ; d) be the conjugates of � lying in the upper
half plane. If m(�) = d � 1; then there is a vector (a1; : : : ; ad) 2 f�1; 1gd
and a root of unity � such that

Qd
j=1 �

aj
j = �:

Proof. If m(�) = 0 then � = �i and � is a root of unity. Suppose
m(�) � 1: Then d � 2; and by m(�) = d � 1, there is (b1; : : : ; bd) 2 Zd n
f(0; : : : ; 0)g such that

Qd
j=1 �

bj
j = 1. It su¢ ces to show that there is b 2

N� := N n f0g satisfying jbjj = b for all j. If not, then we may assume that
jb1j > jb2j = mindj=1 jbjj. Applying the embedding � of Q(�2) into C; which
sends �2 to �1; we obtain

Qd
j=1 �

cj
j = 1; with c1 = b2, and so

dY
i=2

�b1ci�b2bii = 1:

Since jcjj = jb1j for some j, this last multiplicative relation is non trivial, and
yields, together with the equation

Qd
j=1 �

bj
j = 1; the inequality m(�) < d�1.

�
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Lemma 5 Let � be an algebraic number of degree 2d � 6 whose all conju-
gates are of modulus one. Let �j (j = 1; : : : ; d) be the conjugates of � lying
in the upper half plane. If m(�) = d � 1 then there is a positive integer

K = K(�) such that for every (�1; : : : ; �d) 2 Cd; with
dY
j=1

�j 6= 0; there is a

non-negative integer ` � K such that j arg(�j�`j)j � 2�=5 for j = 1; : : : ; d:

Proof. Lemma 4 asserts that there is a positive rational integer b such
that

�b1 = �
�b
2 : : : ��bd

for a �xed choice of ��s, and �b2; : : : ; �bd are multiplicatively independent. So
substituting ��bj to �j for each j; we may assume that

�1 = �2 : : : �d:

This implies

�1�
`
1 = �1(

dY
j=2

�j�
`
j)=(

dY
j=2

�j) (1)

for any `. Fix a small 0 < " < �=15 and apply Kronecker�s approximation
theorem as in Lemma 1 to the following three sets of (d� 1) inequalities:

�
��arg(�2�`2)� �

3

�� < "; ��arg(�3�`3)� �
3

�� < "; ��arg(�j�`j)�� < " (j � 4);
�
��arg(�2�`2) + �

3

�� < "; ��arg(�3�`3)� �
3

�� < "; ��arg(�j�`j)�� < " (j � 4);
�
��arg(�2�`2) + �

3

�� < "; ��arg(�3�`3) + �
3

�� < "; ��arg(�j�`j)�� < " (j � 4):
Then we can �nd a common K = K(�) such that these three systems

are solvable. Denote the three respective solutions by `j (j = 1; 2; 3); with
`j � K. If

��arg(�1�`21 )�� < 2�=5 then `2 is the required solution. Otherwise,
from (1), one of the inequalities

��arg(�1�`11 )�� < 2�=5 and ��arg(�1�`31 )�� < 2�=5;
is true, for a su¢ ciently small ". Thus, there is l 2 fl1; l2; l3g such that
j arg(�j�`j)j � 2�=5; 8 j = 1; : : : ; d. �
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Lemma 6 Let �1; �2 be two conjugates of an algebraic number �: Assume
that � is not a unit and there is (a; b) 2 Z2 n f(0; 0)g with �a1�b2 = 1. Then
jaj = jbj:

Proof. By the prime ideal decomposition of the fractional ideals (�1)
and (�2) in the minimum decomposition �eld of �; we have

(

sY
j=1

p
aej
j )(

sY
j=1

p
be0j
j ) = (1);

and so aej + be0j = 0 for each j. If jaj < jbj, then jejj > je0jj for all j, and
we claim that this is impossible. Indeed, consider an index l with jelj =
max1�j�s jejj. As there is an embedding of Q(�1) into C; which sends (�1) to
(�2), there exists an index k such that e0k = el; and the inequality jekj > je0kj
leads immediately to a contradiction. �

Following [7], we say that a non-zero polynomial P = P (x) = c0 + � � �+
cdeg(P )x

deg(P ) 2 C[x] has a dominant term (resp., has a dominant constant

term) if there is k 2 f0; :::; deg(P )g such that jckj �
X
j 6=k

jcjj (resp., such that

jc0j �
X
1�j

jcjj): In connection with a property studied by Frougny and Steiner

[8], about minimal weight expansions, Dubickas obtained recently [7], some
characterizations of complex numbers which are roots of integer polynomials
(i. e., polynomials with rational integer coe¢ cients) having a dominant term.

Lemma A ([7]) Let � 2 C: Then, the following assertions are true.
(i) The number � is a root of an integer polynomial with dominant term

if, and only if, � is a root of unity, or � is an algebraic number without
conjugates of modulus 1:
(ii) The number � is a root of an integer polynomial with dominant con-

stant term if, and only if, � is a root of unity, or � is an algebraic number
all of whose conjugates are of modulus greater than 1:

The result below, we need to show Theorem 1, gives two simple gener-
alizations of Lemma A. The �rst one is an integral version of Lemma A (i).
To state the second one, let us introduce the following "de�nition-precision":
We say that the non-zero polynomial P; de�ned above, has a k�th dominant
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term, (resp., has a k�th strictly dominant term), where k 2 f0; :::; deg(P )g;
if jckj �

X
j 6=k

jcjj (resp., if jckj >
X
j 6=k

jcjj): The polynomial P has a strictly

dominant term, when it has some k�th strictly dominant term.

Lemma 7 Let � 2 C: Then, the following propositions are true.

(i) The number � is a root of an (resp., of a monic) integer polynomial
with k-th dominant term if, and only if, � is a root of unity, or � is an
algebraic number (resp., algebraic integer) having at most k conjugates
inside the unit disk and no conjugates on the unit circle.

(ii) The number � is a root of an (resp., of a monic) integer polynomial with
k-th strictly dominant term if, and only if, � is an algebraic number
(resp., algebraic integer) having at most k conjugates inside the unit
disk and no conjugates on the unit circle.

Proof. A direct application of Rouché�s theorem gives that a polynomial
P 2 C[x]; with k�th strictly dominant term, has exactly k roots with mod-
ulus less than 1. The same argument applied, in this case, to the polynomial
xdeg(P )P (1=x) shows that P has (deg(P ) � k) roots outside the closed unit
disk (see also [11, p. 225]); thus P has no roots on the unit circle. Now,
suppose that � is a root of a non-zero (resp., of a monic) integer polynomial,
say again P (x) = c0 + c1x+ � � �+ cdeg(P )xdeg(P ); such that

jckj �
X
j 6=k

jcjj ;

for some k 2 f0; :::; deg(P )g: Then, � is an algebraic number (resp., an
algebraic integer), and by the above we have that the direct implication in
Lemma 7 (ii) is true, since the conjugates of � are among the roots of P:
To show the direct implication of Lemma 7 (i), notice �rst, by Lemma 5 of
[7], that � is root of unity, when it has a conjugate lying on the unit circle.
Assume that � is not a root of unity (so � has no conjugates on the unit
circle) and consider the polynomial

Pn(x) = P (x) + ("=n)x
k;
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where n 2 N� and " = sgn(ck): Also, by the above the polynomial Pn has ex-
actly k roots inside the unit disk. Let �1;n; :::; �deg(P );n be the roots of Pn; and
let � be a root of P with modulus less than 1. Then, jPn(�)j =

���k=n�� < 1=n
and so limn!1 Pn(�) = 0: It follows by the equation limn!1

Y
1�j�deg(P )

(� �

�j;n) = 0; that there is a subsequence of some sequence (�j0;n)n�1; where j0 is
�xed in f1; :::; deg(P )g; which converges to �: Hence, P has at most k distinct
roots with modulus less than 1, and so � has at most k conjugates inside
the unit disk, since its minimal polynomial is separable. To prove the other
implications in Lemma 7, consider an algebraic number (resp., an algebraic
integer), say again �; having l � 0 conjugates with modulus less than 1 and
no conjugates on the unit circle. Then, from the proof of Lemma 6 of [7], we
see that there is N 2 N� such that the polynomial Q(x) :=

Y
1�j�d

(x � �Nj );

where �1; :::; �d are the conjugates of �; has an l�th strictly dominant term.
Moreover, since Q(x) 2 Q[x]; there is v 2 N� such that vQ(x) 2 Z[x];
and so � is a root of the integer polynomial R(x) = vQ(xN) (resp., since
Q(x) 2 Z[x]; � is a root of the monic integer polynomial R(x) = Q(xN))
with an l�th strictly dominant term. Now, let k 2 N \ [l;1[: Then, � has
at most k conjugates inside the unit disk, and is a root of the polynomial

k�l�1X
j=0

c0jx
j + xk�lR(x);

where c0j = 0 for all j 2 f0; :::; k � l� 1g; with k�th strictly dominant term;
this ends the proof of Lemma 7 (ii). Notice �nally, if � is an N�th root
of unity, then � is a root of the monic integer polynomial x2N+k + (B �
1)xN+k � Bxk; where B 2 N� and k 2 N; with k�th dominant term, and
this completes the proof of Lemma 7 (i). �

It is worth noting that Lemma A (ii) is a corollary of Lemma 7 (i) (with
k = 0) and Lemma 7 (i) implies Lemma A (i), too. It follows also from
Lemma 7 (ii) that a complex number is a root of some (resp., some monic)
integer polynomial with strictly dominant term if, and only if, it is an alge-
braic number (resp., algebraic integer) without conjugates on the unit circle.
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3. The proofs

Proof of Theorem 1. (i) With the notation above, assume that �
satis�es HRP with some �nite set F: Let m = maxfj"j ; " 2 Fg and choose
N 2 N \ (m;1): By N 2 F [�] = Z[�] it follows immediately that � is an
algebraic number. Let � be a conjugate of �: Then j�j � 1; since otherwise
any element of the set N \ ( m

1�j�j ;1) does not belong to F [�]: Now, suppose
that j�j = 1; we have to show that the conjugates of � lie on the unit
circle. If deg(�) = 1; then � = �1 and the result is true. Assume that
deg(�) � 2: Then, the complex conjugate � of � is also a conjugate of �: Let
 be a conjugate of �, and let � be an embedding of Q(�) into C such that
�(�) = : Then, 1= = 1=�(�) = �(1=�) = �(�) and so 1= is a conjugate of
�. Thus jj = 1; since otherwise one of the numbers  and 1= has modulus
less than 1, and by the above this leads to a contradiction.
(ii) It is clear when � is an N�th root of unity, where N 2 N� that any

sum of the form
sX
j=0

aj�
j; where aj 2 Z and s 2 N; may be written

sX
j=0

"j(

jaj jX
k=1

�kN)�

(j+

j�1X
l=0

jaljN)

;

where "j = sgn(aj); and so f0;�1g[�] = Z[�]:
Now suppose that � is an algebraic number whose conjugates are of mod-

ulus greater than 1. Then Lemma 7 (ii) shows that � is a root of some
polynomial C(x) = c0 + c1x+ � � �+ cdxd 2 Z[x]; with cd 6= 0 and

jc0j >
dX
j=1

jcjj :

Let R 2 Z[x]: To prove the relation R(�) 2 F [�]; where

F := f0;�1; :::;�(jc0j � 1)g;

suppose �rst that deg(R) 2 f0; :::; d� 1g: Then, R(x) = A0+ � � �+Ad�1xd�1;
for some (A0; :::; Ad�1) 2 Zd; and similarly as in the proof of Theorem 4 of
[1], it su¢ ces to show, when A0 =2 F; that

R(�) = "+ �(a0 + � � �+ ad�1�d�1); (2)
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where " 2 F; (a0; :::; ad�1) 2 Zd and
d�1X
j=0

jajj <
d�1X
j=0

jAjj : Since jA0j � jc0j ; we

see that jA0j = q jc0j + "; for some q 2 N� and " 2 N \ F: It follows by the
equation c0 = �c1�� � � � � cd�d; that

A0sgn(A0) = qc0sgn(c0) + " = "� (qc1�+ � � �+ qcd�d)sgn(c0);

and so

A0 + � � �+ Ad�1�d�1 = sgn(A0)"+ �(a0 + � � �+ ad�1�d�1);
where ad�1 = �sgn(c0)sgn(A0)qcd and aj = Aj+1 � sgn(c0)sgn(A0)qcj+1 for
all j 2 f0; :::; d� 2g: Moreover, we have sgn(A0)" 2 F = �F; and

d�1X
j=0

jajj � q(
dX
j=1

jcjj) +
d�1X
j=1

jAjj < q jc0j+
d�1X
j=1

jAjj �
d�1X
j=0

jAjj :

This also ends the proof of Theorem 1 (ii), when � is an algebraic integer,
because by Lemma 7 (ii) we may choose the polynomial C so that cd = 1;
and the Euclidean division of any element Q 2 Z[x] by C gives that Q(�) =
A0 + � � �+ Ad�1�d�1 for some (A0; :::; Ad�1) 2 Zd:
Now, we use a simple induction on deg(R) to complete the proof of The-

orem 1. By the above, we have R(�) 2 F [�]; when deg(R) � d� 1: Let

R(x) = A0 + A1x+ � � �+ ADxD 2 Z[x];

where D � d; and suppose that P (�) 2 F [�] for all P 2 Z[x]; with deg(P ) <
D: Since deg(A0) = 0 � d� 1; the relation (2) implies that

A0 = "+ �(a0 + � � �+ ad�1�d�1);

for some " 2 F and aj 2 Z: Hence,

R(�) = "+ �((a0 + A1) + � � �+ (aD�1 + AD)�D�1);

where ad = ::: = aD�1 = 0; and the induction hypothesis, applied to the
polynomial (a0 + A1) + � � � + (aD�1 + AD)xD�1 2 Z[x]; leads to the desired
result: �

Proof of Theorem 2. Let � be an algebraic number, whose conjugates
�(1); :::; �(deg(�)) lie on the unit circle. Since Theorem 2 is true when � is
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a root of unity, suppose that � is not an algebraic integer and the leading
coe¢ cient c of its minimal polynomial M� satis�es c � 2:
Case m(�) = deg(�)=2: Set m := m(�) and let �(1); : : : ; �(m) be m

conjugates of � which are multiplicatively independent. Without loss of
generality, we may assume that Im(�(j)) > 0 for all j 2 f1; :::;mg: Then, the
map � de�ned, from the �eld Q(�) into the ring Cm; by the relation

�(�) = (�(1); : : : ; �(m));

where �(j) is the image of � by the embedding of Q(�) into C; which sends �
to �(j); 8j 2 f1; :::;mg; is also an embedding. It su¢ ces to show that there
exist two positive real numbers B = B(�) and R = R(�); such that for any
�0 2 Z[�] there are N = N(�; �0) elements s1; :::; sN of set [0; B] \ N; and a
number  2 O := Z[�] \ Z[1=�] satisfying

�0 = (
NX
j=1

sj�
j�1) + �N and k�()k � R; (3)

where k:k is the sup norm on the vector space Cm: Indeed, de�ne the integer

h := maxfh() j  2 Eg;

where h() is the greatest modulus of the coe¢ cients of a �xed representation
of  in Z[�]; and the set

E := f 2 O j k�()k � Rg;

which is �nite by Lemma 3. Then, by the above, � satis�es HRP with a
�nite subset of Z \ [�maxfB; hg;maxfB; hg].
If

� = a0 + � � �+ an�n (4)

for some n 2 N and fa0; :::; ang � Z; then the Euclidean division of a0
by c gives that there is d 2 f0; 1; :::; c � 1g such that � � dmod�; i. e.,
(� � d)=� 2 Z[�]: Moreover, since M�(0) = c; the number d is unique.
Hence, the map

T : � 7! (� � d)=�;
is well de�ned from Z[�] into itself. Now, �x �0 2 Z[�]; and set

�k := ��k+1 + dk+1;
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where k 2 N; �k+1 = T (�k) and dk+1 2 f0; 1; :::; c� 1g: Then

�k+1 =
�0
�k+1

� d1
�k+1

� � � � � dk+1
�1

:

With the notation of Lemma 1, set R := (43K(�;m; 2�=5)+10)c: By Lemma

1, there is l 2 N\ [0; K] such that
���arg(�(j)0 =(�(j))l)��� � 2�=5 for j = 1; : : : ;m:

Select d�l+1 such that 5Kc � d�l+1 < (5K + 1)c; and �l � d�l+1mod�. Let
��l+1 := (�l � d�l+1)=�. Putting r := d�l+1=5 and z := �

(j)
0 =(�

(j))l in Lemma 2,
we obtain�����(j)l+1

��� = ����� �(j)0(�(j))l
�

lX
v=1

dv
(�(j))l�v+1

� d�l+1

����� < j�(j)0 j � k�(�0)k;
when (37K + 8)c � j�(j)0 j: On the other hand, if j�

(j)
0 j < (37K + 8)c; then�����(j)l+1

��� � (43K + 9)c < R:

This implies
k�(��l+1)k < maxfR; k�(�0)kg

and

�0 = (
lX

j=1

dj�
j�1) + d�l+1�

l + ��l+1�
l+1:

So we have
��l+1 2 �0=�l+1 + Z[1=�] � �uZ[1=�]

with u = maxf0; n � l � 1g, where n is de�ned by the expression (4): Iter-
ating this procedure, we obtain a sequence (��l(j)+1)j=1;2;::: with l = l(1) and
��l(j)+1 2 Z[1=�] \ Z[�] for su¢ ciently large j. From Lemma 3, �(O) has no
accumulation points in Cm; and we see that �0 can be written

�0 = (
NX
j=1

sj�
j�1) + �N ;

where N 2 N�; sj 2 [0; B]\N; B := (5K +1)c and  2 E: Hence, (3) is true
and this completes the proof of the �rst implication in Theorem 2.

13



It follows immediately, from the case above, that � satis�es HRP, when
deg(�) = 2; asm(�) = deg(�)=2 (in this case the constant K is much smaller
and one can make explicit the height given by the above proof).
Case m(�) = deg(�)=2 � 1: The proof is almost the same but we use

Lemma 5 instead of Lemma 1.
We are left to show the case m(�) = 1: From Lemma 6, any two distinct

conjugates �l and �j; of �; in the upper half plane, satisfy �bl�
b
j = 1 or

�bl�j
b = 1 for some positive rational integer b. In both cases, �b has less

number of conjugates than �. We can iterate this discussion until we �nd an
integer, say again b; such that the only other conjugate of �b is �b. Then �b

is quadratic and so by the case m(�b) = deg(�b)=2; there is a �nite subset F
of Z such that Z[�b] = F [�b]; thus Z[�] = F [ f0g [�]; since any sum of the

form
sX
j=0

cj�
j; where cj 2 Z; may be written

sX
j=0

cjb�
jb + �

sX
j=0

c1+jb�
jb + � � �+ �b�1

sX
j=0

cb�1+jb�
jb;

with cj = 0 when j � s+ 1. �

Appendix.

Continuing Remark 2, we describe brie�y a practical method to study
multiplicative dependence of �i�s, by using Lemma 3.7 of [6]. Set �m+1 = 2�
and �j = log�j, 8 j = 1; : : : ;m, choose a large constant C (we may set
C := Bm+2 where B is the maximum of constants appearing in Lemma 4.1
of [14]), and apply LLL algorithm for the lattice generated by the following
m+ 1 vectors:

(1; 0; : : : ; 0; 0; bC�1c)
(0; 1; 0; : : : ; 0; bC�2c)

...

(0; 0; 0; : : : ; 1; bC�mc)
(0; 0; : : : ; 0; bC�m+1c)
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where the notation b:c designates the integer part function. Using Proposi-
tion 1.11 of [9], if the �rst vector v; found by LLL algorithm, satis�es

kvk > B2m=2
p
(m2 + 5m+ 4); (5)

then, �1; : : : ; �m are multiplicatively independent, since we can choose � in
Lemma 3.7 of de Weger [6] as large as possible. If the inequality (5) is not
true, then the �rst vector v = (k1; : : : ; km+1) becomes small and it is highly
possible that it gives a multiplicative dependence

Qm
j=1 �

kj
j = 1. We check

the validity by rigorous symbolic computation.
Hereafter we present some numerical results on the multiplicative depen-

dency of �. It suggests that m(�) < deg(�)=2 rarely happens.
Let us �x an even degree d and a leading coe¢ cient c � 2. We are

interested in the number of primitive irreducible reciprocal polynomials of
degree d; with leading coe¢ cient c; whose all roots have modulus one. Further
if there is a positive rational integer b such that deg(�b) < deg(�), then we
can reduce the problem to lower degree. By Lemma 6, this occurs when
and only when there are two distinct multiplicatively dependent conjugates
of � which are not complex conjugates. We call this � power-reducible. For
e.g., � is power-reducible if the minimal polynomial M� of � has the form
g(xm) for some rational integer m � 2 and some polynomial g. We wish to
exclude power-reducible cases to obtain non trivial examples. If deg(�) � 4
and m(�) = 1 then � is certainly power-reducible by Lemma 6. The �rst
non trivial case holds when d = 6 and m(�) = 2.
Put

T �n(y) =

(
2Tn(y=2) n = 1; 2; : : :

1 n = 0

where Tn(x) is the n-th Chebyshev polynomial of the 1-st kind. Fix a positive
rational integer h. To produce polynomials whose all roots are of modulus
one, we search integer polynomials

g(y) =

d=2X
j=0

cjT
�
d=2�j(y)

with c0 = c and jcjj � h for all j. The reciprocal polynomial

cd=2x
d=2 +

d=2�1X
j=0

cj(x
j + xd�j)
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has d roots on the unit circle if and only if g(y) = 0 has d=2 real roots in
[�2; 2]. We pick out such polynomials and check multiplicative dependence
by the method in Remark 2. The result is shown in Table 1 for c = 2 and
c = 3.
We explain Table 1 by examples. Hereafter the index of complex roots in

the upper half plane is sorted by real parts. For (d; c; h) = (6; 2; 50), among
1030301 polynomials there are 287 polynomials whose all roots are of modulus
one. Within them there are 62 primitive irreducible ones. There remain 58
polynomials which do not have the form g(xm) withm � 2. Finally using the
method of Remark 2, we �nd 8 polynomials with m(�) < deg(�)=2. All of
them satis�esm(�) = deg(�)=2�1. For e.g., 2�2x+3x2�2x3+3x4�2x5+2x6
gives �1��12 �3 =

p
�1: For (d; c; h) = (8; 2; 12), the above sieving process

does not su¢ ce, because there are 16� 10 = 6 power-reducible polynomials
which does not have the form g(xm) with m � 2. For e.g, let � be a root of

2 + 4x+ 2x2 � 4x3 � 7x4 � 4x5 + 2x6 + 4x7 + 2x8:

Then �8 is a root of 16+8x+x2+8x3+16x4. The remaining 10 polynomials
satisfy m(�) = deg(�)=2� 1.
We did not �nd any example which is not covered by Theorem 2 for

degree not greater than 10. Thus height reducing property is valid in this
search range of c and h.
However in degrees 12 and 16, we �nd cases with

m(�) = deg(�)=2� 2 or m(�) = deg(�)=2� 3:

Such cases form pairs �� and we shall present one representative in each
pair.
Case m(�) = deg(�)=2� 2.

2 + 4x+ 4x2 + 2x3 + x4 + x8 + 2x9 + 4x10 + 4x11 + 2x12

whose dependencies are generated by �1 = �4��15 and �2 = �3��16 .

3� 3x+ x2 + x3 � 2x4 + 2x5 � x6 + 2x7 � 2x8 + x9 + x10 � 3x11 + 3x12

gives �1�6=�2 = �3�5=�4 =
1+
p
�3
2
.

3 + 3x2 � x4 � 2x5 � 3x6 � 2x7 � x8 + 3x10 + 3x12
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gives �1�3=�4 = �2�5=�6 = �1. For degree 16,

2�2x�x2+x3+x4�2x6+x7+x8+x9�2x10+x12+x13�x14�2x15+2x16

gives generating dependencies: �1�3=(�4�8) = �2�5�7=�6 = �1. Adapting
the idea of Lemma 5 simultaneously to two multiplicative dependences, we
can prove height reducing property for these 4 polynomials, by solving 9
systems of inequalities.
Case m(�) = deg(�)=2� 3.

2 + 4x+ 4x2 + 3x3 + 3x4 + 2x5 + x6 + 2x7 + 3x8 + 3x9 + 4x10 + 4x11 + 2x12

gives �2�3�4 = �1�3�5 = 1 and �4 = �5�6.

3� 3x2 + 2x3 + 3x4 � x6 + 3x8 + 2x9 � 3x10 + 3x12

gives �3�4=�1 = �3�5=�2 = �2�6=�1 = 1. We are not able to show height
reducing property for these last two polynomials so far.

d c h poly circle irred prim non xm dep npr �1 �2 -3
6 2 50 1030301 287 71 62 58 8 8 8 0 0
6 3 50 1030301 805 325 318 310 22 22 22 0 0
8 2 12 390625 1069 210 200 182 16 10 10 0 0
8 3 12 390625 3991 1565 1558 1502 42 40 40 0 0
10 2 6 371293 2931 518 516 512 8 8 8 0 0
10 3 6 372193 13244 5640 5638 5630 72 72 72 0 0
12 2 4 531441 6557 1386 1380 1310 32 24 20 2 2
12 3 4 531441 33202 15858 15852 15620 98 90 84 4 2
14 2 3 823543 12185 2510 2510 2506 12 12 12 0 0
14 3 3 823543 70951 37548 37548 37544 120 120 120 0 0
16 2 2 390625 15143 3940 3934 3828 34 32 30 2 0

Table 1: Multiplicative Dependency

� d: the degree of �

� c: the leading coe¢ cient of the minimal polynomial M� of �:

� h: the maximum modulus of the coe¢ cients of M�.
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� poly: the number of polynomials.

� circle: the number of polynomials whose all roots have modulus one.

� irred: the number of irreducible polynomials in circle.

� prim: the number of primitive polynomials in irred.

� non xm: the number of polynomials satisfyingM�(x) 6= g(xm) in prim.

� dep: the number of multiplicatively dependent cases among non xm.

� npr: the number of non-power reducible polynomials in dep.

� �1: the number of polynomials with m(�) = deg(�)=2� 1 in npr.

� �2: the number of polynomials with m(�) = deg(�)=2� 2 in npr.

� �3: the number of polynomials with m(�) = deg(�)=2� 3 in npr.
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