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In order to understand the radiation observed from the intrinsic Josephson junctions in triangular
Bi2Sr2CaCu2O8+δ mesas, we calculate the transverse magnetic (TM) electromagnetic modes for thin
equilateral cavities. A new set of distinct but degenerate TM modes coexists with the known modes
of Helszajn and James, but are expected to lead to distinct radiation angular distribution patterns.
Although we have been unable to solve for the exact TM modes of a thin cavity of general acute
isosceles triangular shape, we solved exactly the closely related problems of the TM cavity modes
of two thin circumscribing “pie-shaped” wedges, which provide highly accurate approximations to
very acute isosceles triangular cavities.

PACS numbers:

INTRODUCTION

There has long been a gap in the electromagnetic
(EM) spectrum for continuous-wave coherent sources, es-
pecially those that can be held in one hand by an or-
dinary person.[1, 2] This gap could be filled using the
Josephson effect in a layered superconductor.[3] Long af-
ter the discovery that the high transition temperature
Tc superconductor, Bi2Sr2CaCu2O8+δ (Bi2212), behaves
as a stack of intrinsic Josephson junctions (IJJs), [4] ap-
plication of a dc voltage V across the IJJs led to the
emission of intense, coherent, and continuous-wave radi-
ation in the terahertz (THz) frequency regime.[5, 6] In
most experiments, the samples were rectangular mesas
prepared by either Ar or focussed ion bean (FIB) milling
of a small underdoped single crystal of Bi2212.[5–18] In
some cases, the mesas had circular or nearly square cross-
sections. [11, 13, 16, 18] In all cases, the coherent radia-
tion emitted satisfied the Josephson frequency f relation,
f = 2eV/(Nh), where e is the electronic charge, N is the
effective number of active junctions, and h is Planck’s
constant.[5–20] In addition, the insulating nature of the
Bi2212 mesas for electric polarization normal to the junc-
tions causes the mesas to behave as EM cavities. The
overall radiation has usually been found to be enhanced
when f is locked onto a resonant frequency f c

n,m of the
transverse magnetic (TM) EM cavity mode appropri-
ate to the particular mesa shape. Although stand-alone
mesas prepared by coating the top and bottom of the
mesa with Au and placing it on a non-superconducting
substrate appear to give rise to large enhancements of
the radiation at certain f c

n,m frequencies, FIB milling



FIG. 1: Scanning ion microscope image of two triangular
Bi2212 mesas.[21]

processes appear to give rise to more complex boundary
conditions, leading to a reduced importance of the cav-
ity mode frequencies, as was also found for the radiation
emitted from the internal current-voltage characteristic
(IVC) branches.[18]

An important feature of the radiation is that under var-
ious conditions, it can be made quite tunable.[10, 17, 18]
The conditions studied to date are the removal of the
precise TM boundary conditions by FIB milling, which
creates a mesa by forming a groove about a central re-
gion, variation of the bath temperature T and the applied
V , and observation of the radiation from the internal IVC
branches.[10, 17, 18]

Recently, another method of achieving tunability has
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FIG. 2: Sketch of an equilateral triangle of side a, with the
center of gravity at the origin O.

been studied.[21] In this method, the thin mesas were
chosen to have either equilateral or acute isosceles trian-
gular shapes, as shown in Fig. 1. Although the TM mode
frequencies for equilateral triangular mesas (or patch an-
tennas) are well known,[22] the angular distribution of
the radiation from such cavities has not been carefully
calculated. Here we show that the wave functions origi-
nally obtained by Helszajn and James,[22] while correct,
comprise only part of the full solution, which also in-
cludes a degenerate set of different wave functions.
However, thin acute isosceles triangular cavities are

intrinsically more interesting due to their large density
of cavity mode states. Unfortunately, an exact solution
of the mode frequencies and wave functions for general
acute isosceles triangular mesas has not yet been pre-
sented. Nevertheless, highly accurate formulas for the
frequencies and wave functions for very acute isosceles
triangular mesas are easy to obtain, as shown in the fol-
lowing.

EQUILATERAL TRIANGULAR MESAS

A sketch of a thin equilateral triangular mesa of side a
is shown in Fig. 2. The origin is taken to be the center
of gravity O, and hence the corners are at A =

(
− a√

3
, 0
)
,

B =
(

a
2
√
3
, a
2

)
, C =

(
a

2
√
3
,−a

2

)
.

Equilateral triangular mesa wave functions

Following Helszajn and James,[22] we take one con-

tribution Ψ
e,(1)
ℓ,m,n(x, y) to the magnetic vector potential

Az(x, y) (i. e., the wave function) to have the form

Ψ
e,(1)
ℓ,m,n(x, y) = cos

[( 2πx√
3a

+
2π

3

)
ℓ
]
cos

[2π(m− n)y

3a

]
+cos

[( 2πx√
3a

+
2π

3

)
m
]
cos

[2π(n− ℓ)y

3a

]
+cos

[( 2πx√
3a

+
2π

3

)
n
]
cos

[2π(ℓ−m)y

3a

]
,

(1)

where ℓ,m, and n are integers. This form exhibiting el-
ementary separation of the variables x and y is an even
function about the line passing between the origin and
the corner at A.

In addition to Ψ
e,(1)
ℓ,m,n(x, y), there is another form ex-

hibiting elementary separation of spatial variables,

Ψ
o,(1)
ℓ,m,n(x, y) = cos

[( 2πx√
3a

+
2π

3

)
ℓ
]
sin

[2π(m− n)y

3a

]
+cos

[( 2πx√
3a

+
2π

3

)
m
]
sin

[2π(n− ℓ)y

3a

]
+cos

[( 2πx√
3a

+
2π

3

)
n
]
sin

[2π(ℓ−m)y

3a

]
,

(2)

which is odd about OA, but was not discussed by Hel-
szajn and James.[22] We note that the second and third
terms in Eqs. (1) and (2) are obtained from the first
terms by counterclockwise cyclic permutations of the in-
dices: (ℓ,m, n) → (m,n, ℓ) → (n, ℓ,m).

We first note that requiring Ψ
e,(1)
ℓ,m,n and Ψ

o,(1)
ℓ,m,n to sat-

isfy the wave equation leads to

k2ℓ,m,n =
(2π
3a

)2

[(m− n)2 + 3ℓ2] (3)

=
(2π
3a

)2

[(n− ℓ)2 + 3m2] (4)

=
(2π
3a

)2

[(ℓ−m)2 + 3n2]. (5)

Setting ℓ = −n−m satisfies all three of these equations

for both Ψ
e,(1)
ℓ,m,n and Ψ

o,(1)
ℓ,m,n, leading to

km,n =
4π

3a

√
n2 +mn+m2. (6)

Next, we note that symmetry allows for two additional
even and two additional odd degenerate wave function
forms obtained by ±120◦ rotations of the axes about the
origin, which wave functions may be written as

Ψ
e,(2,3)
ℓ,m,n (x, y) = Ψ

e,(1)
ℓ,m,n

(
−x

2
± y

√
3

2
,−y

2
∓ x

√
3

2

)
,(7)

Ψ
o,(2,3)
ℓ,m,n (x, y) = Ψ

o,(1)
ℓ,m,n

(
−x

2
± y

√
3

2
,−y

2
∓ x

√
3

2

)
,(8)

respectively, where again ℓ + m + n = 0. These wave
functions are respectively even and odd functions about
the lines passing through the origin and the corners at B
and C in Fig. 2, respectively. Hence, a full description of
the modes requires inclusion of the six degenerate wave
functions for each mode indexed by (n,m),

Az(x, y) =
∑
n,m

3∑
i=1

∑
α=e,o

Cα,(i)
n,m Ψ

α,(i)
−n−m,m,n(x, y), (9)

where the C
α,(i)
n,m are constants. To the extent that the

cavity is invariant under 120◦ rotations, the odd C
o,(i)
n,m are
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FIG. 3: Sketches of the equilateral triangle in Fig. 2 rotated
about the origin by 30◦ clockwise (left) and counterclockwise
(right), with the new respective coordinates (x′

±, y
′
±), and

the positions of the corners in the rotated configurations are
labeled A′

±, B
′
±, and C′

±, respectively.

all equivalent for i = 1, 2, 3, as are the even C
e,(i)
n,m , but the

odd and even constants are generally independent, and
must be treated as arbitrary parameters. Local hot spots
or some other imperfections could break this rotational

symmetry, giving rise to six distinct C
α,(i)
n,m .[8, 10, 11]

Equation (9) of course assumes that both the even and
odd functions satisfy the TM boundary conditions. Since

Ψ
α,(2,3)
ℓ,m,n (x, y) are merely rotations by ±120◦ about the

origin of Ψ
α,(1)
ℓ,m,n(x, y), it suffices to study Ψ

α,(1)
ℓ,m,n(x, y) for

α = e, o.

TM boundary conditions

For the TM modes, the component of the magnetic
field parallel to the boundaries must vanish on the bound-
aries. From the Maxwell equations B = ∇ × A and
E = −∂A

∂t , on the right boundary (BC) parallel to the

y axis in Fig. 2, Hy is proportional to ∂E
∂x . The TMz

modes for the odd wave function Ψ
o,(1)
ℓ,m,n(x, y) must then

satisfy

∂Ψ
o,(1)
ℓ,m,n(x, y)

∂x

∣∣∣
x=a/(2

√
3)

= 0, (10)

0 = − 2π√
3a

(
ℓ sin(πℓ) sin

[2π(m− n)y

3a

]
+(ℓ,m, n) → (m,n, ℓ) + (ℓ,m, n) → (n, ℓ,m)

)
,

(11)

which is trivially satisfied for arbitrary y, since sin(πℓ) =
sin(πm) = sin(πn) = 0 for integral (ℓ,m, n). A simi-

lar requirement for Ψ
e,(1)
ℓ,m,n(x, y) is obtained by replacing

sin[2π(m − n)y/(3a)] with cos[2π(m − n)y/(3a)] in Eq.
(11).

To test whether Ψ
α,(1)
ℓ,m,n(x, y) satisfies the TM boundary

conditions on the AB and AC sides, it is useful to rotate
the equilateral triangle by 30◦ clockwise (+) and counter-
clockwise (-) about the origin, as indicated in Fig. 3. In

these two cases, the coordinate systems may be written
in terms of (x, y) as

x = x′
±
√
3/2∓ y′±/2, (12)

y = y′±
√
3/2± x′

±/2. (13)

In order to satisfy the TM boundary conditions on the
AB and AC sides, we therefore require

∂Ψ
α,(1)
ℓ,m,n(x

′
±, y

′
±)

∂y′±

∣∣∣
y′
±=±a/(2

√
3)

= 0 (14)

for α = e, o. It is then straightforward to obtain for α = o
that

0 = ℓ
(
sin(πℓx̃±) sin[πx̃±(m− n)/3]

− cos(πx̃±m) cos[πx̃±(n− ℓ)/3]

+ cos(πx̃±n) cos[πx̃±(ℓ−m)/3]
)

+(ℓ,m, n) → (m,n, ℓ)

+(ℓ,m, n) → (n, ℓ,m), (15)

where

x̃± = x′
±/a+ 1/2. (16)

Using sin(a) sin(b) = [cos(a − b) − cos(a + b)]/2,
cos(a) cos(b) = [cos(a + b) + cos(a − b)]/2, and setting
ℓ = −m − n in order to satisfy the wave equation, the
term proportional to ℓ = −m− n reduces to

0 = (m+ n)
(
cos[πx̃±(4m+ 2n)/3]− cos[πx̃±(4n+ 2m)/3]

− cos[πx̃±(4m+ 2n)/3]− cos[πx̃±(2m− 2n)/3]

+ cos[πx̃±(2n− 2m)/3] + cos[πx̃±(4n+ 2m)/3]
)
,

(17)

which is satisfied for arbitrary x̃±. Similarly, it is easy
to show that the terms in Eq. (15) proportional to
m and n alone also vanish for arbitrary x̃±. Hence,
the TM boundary conditions are precisely satisfied for

Ψ
o,(1)
−m−n,m,n(x, y). A similar procedure confirms that they

are also satisfied for Ψ
e,(1)
−m−n,m,n(x, y). Hence, for each

(n,m), the wave function is six-fold degenerate, and is
given by Eq. (9). This form for fixed (n,m) can then
be used to calculate the radiation patterns obtained by
exciting the TMz(n,m) mode by use of the Love equiva-
lence principle.[19, 20] Calculations of the radiation pat-
terns will be presented elsewhere.

However, it is elementary to demonstrate that the spa-
tial dependencies of the odd and even wave functions
are distinct. For example, the ground state contains the

odd functions Ψ
o,(1)
−1,1,0 = −Ψ

o,(1)
−1,0,1 and the even functions

Ψ
o,(1)
−1,1,0 = Ψ

o,(1)
−1,0,1. These functions have distinctly dif-

ferent nodal curves, as shown in Fig. 4. Note that since

C
o,(1)
1,0 ̸= C

o,(1)
0,1 , the odd function can provide a substan-

tial contribution to the output radiation.
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FIG. 5: Sketch of an acute isosceles triangle of long sides a
and short side b, with ℓ =

√
a2 − (b/2)2. The green and red

arcs of respective radii a and ℓ when combined with the sides
of respective lengths a and ℓ, represent the wedge approxima-
tions to the shape of the acute isosceles triangle.

ACUTE ISOSCELES TRIANGLES

To date, no exact solution of the modes and wave func-
tions of a general isosceles triangle has been published.
We have studied this problem in detail, and have also
concluded that an exact solution of that problem is still
elusive. However, for the case of a very acute isosceles
triangle, an exact solution to an accurate approximation
of the general, highly acute isosceles triangle is possible.
The closely related exactly solvable problem is that of a
“piece of pie”, or a “pie-shaped” wedge. We choose two
such wedges to circumscribe the acute isosceles triangle,
as sketched in Fig. 5. In this model, ϕ0 = tan−1(b/2a)
and ℓ =

√
a2 − (b/2)2. The main point is that the exact

acute triangle fits between the two circumscribing wedges
of radii a and ℓ, respectively. Thus, in the limit b → 0,
a → ℓ, the two models are equal, and thus represent
an exact solution to the problem of an infinitely acute
isosceles triangle.

Solution of the wedge cavity with TM boundaries

It is rather elementary to obtain the exact solution of
the wave function of a general “pie-shaped” wedge cavity
with TM boundary conditions. We first write the wave
equation in polar (ρ, ϕ) coordinates,

∂2Ψ

∂ρ2
+

1

ρ

∂Ψ

∂ρ
+

1

ρ2
∂2Ψ

∂ϕ2
= −k2Ψ, (18)

where Ψ(ρ, ϕ). Using separation of variables, we write

Ψ(ρ, ϕ) =
∑
ν

Rν(ρ)Φν(ϕ), (19)

Φν(ϕ) = Aν cos(νϕ) +Bν sin(νϕ). (20)

Note that both odd and even functions of ϕ are allowed
by symmetry. We then obtain the Bessel equation for
Rν(ρ),

ρ2R′′(ρ) + ρR′(ρ)− ν2R(ρ) + k2ρ2R(ρ) = 0, (21)

where R′ = dR/dρ, etc. Letting x = kρ, this reduces to

x2R′′(x) + xR′(x)− ν2R(x) + x2R(x) = 0. (22)

This has the solution of the Bessel function of the first
kind,

Rν(x) = Jν(x) = Jν(kρ). (23)

For the TM boundary conditions, the component of the
derivative of the wave function normal to the boundaries
must vanish. This condition implies

dΦν(ϕ)

dϕ

∣∣∣
ϕ=±ϕ0

= 0, (24)

dRν(ϕ)

dρ

∣∣∣
ρ=a,ℓ

= 0, (25)

where Eq. (24) implies that parity is an important quan-
tity. For solutions with even parity,

Φ(e)
ν (θ) = cos(ν(e)n ϕ), (26)

ν(e)n =
nπ

ϕ0
, (27)

for integral n.
Solutions with odd parity have the forms

Φ(o)
ν (ϕ) = sin(ν(o)n (θ), (28)

νon(ϕ) =
(2n+ 1)π

2ϕ0
, (29)

where n is also an integer. From Eq. (25), we then have

J ′
ν
(o,e)
n

[k(o,e)max (m)ℓ] = 0, (30)

J ′
ν
(o,e)
n

[k
(o,e)
min (m)a] = 0, (31)

for the short (ℓ) and long (a) paths, respectively, where
m denotes themth zero of the first derivative of J

ν
(o,e)
n

(x),

where Jν(x) is a Bessel function of the first kind with the
non-integral subscript ν that is regular at the origin. We
finally obtain that the solutions are given by

J ′
ν
(o,e)
n

[χ(m, ν(o,e)n )] = 0, (32)

f =
c0χ(m, ν

(o,e)
n )

2πnr(ℓ, a)
, (33)
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) The bath temperature dependence of the measured emission frequencies from the 
FIG. 6: Intensity versus frequency in THz spectrum measured
by a Fourier transform infrared spectrometer from an acute
isosceles triangle with a = 340 µm, b = 90 µm. [21]

m χ(m, ν
(e)
0 ) f (THz) χ(m, ν

(o)
0 ) f (THz) χ(m, ν

(e)
1 ) f (THz)

1 3.8317 0.128 13.7037 0.458 26.0115 0.870
2 7.0156 0.234 18.5548 0.620 31.7446 1.06
3 10.1713 0.340 22.4302 0.750 40.1713
4 13.3237 0.445 26.0405 0.871 47.6492
5 16.4706 0.551 29.5184 0.987
6 19.6159 0.656 32.9167 1.10
7 22.7601 0.761
8 25.9037 0.866
9 32.1897 1.076

TABLE I: Table of the lowest TM resonance frequencies for
a thin isosceles triangular mesa with a = 340µm and b =

90µm, for which ℓ = 337µm, ν
(e)
0 = 0, ν

(o)
0 = 11.8334 and

ν
(e)
1 = 23.6668.

where (ℓ, a) implies either ℓ or a, corresponding to the two

wedge radii. The quantity χ(m, ν
(o,e)
n ) represents themth

zero of the first derivative of J
ν
(o,e)
n

(x), nr is the index

of refraction, which for Bi2212 along the c-axis direction
is 4.2,[12] and c0 is the speed of light in vacuum. The

set of lowest χ(m, ν
(o,e)
n ) values and the predicted cavity

mode frequencies for an acute triangular Bi2212 mesa
with a = 340 µm and b = 90 µm are presented in Table
1.

In Fig. 6, the frequency spectrum of an acute triangu-
lar mesa with a = 340µm and b = 90µm is shown.[21] We
note that the largest peak in the spectrum is for f ≈ 0.62
THz, which is very close to that predicted for the second
odd wave function of our wedge model, as listed in Ta-
ble 1. Additional peaks are also in close agreement with
those predicted for additional odd and even modes. Note
that for the shape parameters of the mesa, ℓ and a differ
by less than 1%, so this model is highly accurate for such
acute isosceles triangles, and is in remarkable agreement

with the observed intensity of the radiation.[21] Thus,
we anticipate that both types of solutions, odd and even
about the line connecting an acute triangular vertex and
its center of mass, will be important.

More details and the angular distributions obtained
by exciting the various acute isosceles triangular cavity
modes will be presented elsewhere.

CONCLUSIONS

We studied the transverse magnetic electromagnetic
modes of very thin equilateral and acute isosceles trian-
gular cavities. For equilateral triangular cavities, each
cavity frequency is six-fold degenerate, with one-half of
the degenerate modes being odd functions about the line
passing between the center of gravity and a corner. These
new wave-function components could lead to modifica-
tions of the angular distribution of the output radiation
from those which could have been predicted previously.
In addition, we found an exact solution to a wedge model
that closely approximates the shape of a highly acute
isosceles triangle. The predicted modes are in excellent
agreement with experiment.
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[8] H. B. Wang, S. Guénon, J. Yuan, A. Iishi, S. Arisawa, T.
Hatano, T. Yamashita, D. Koelle, and R. Kleiner, Phys.
Rev. Lett. 102, 017006 (2009).

[9] L. Ozyuzer, Y. Simsek, H. Koseoglu, F. Turkoglu, C.
Kurter, U. Welp, A. E. Koshelev, K. E. Gray, W.-K.
Kwok, T. Yamamoto, K. Kadowaki, H. B. Wang, and P.
Müller, Supercond. Sci. Technol. 22, 114009 (2009).
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