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Abstract  1 

A simultaneous pretreatment and acidogenesis process was developed by 2 

recirculating methanogenic leachate and adding andesite porphyry (WRS) powder to a 3 

rotational drum fermentation system to enhance the anaerobic digestion of solid food 4 

wastes. In the continuous operations, methanogenic leachate recirculation 5 

significantly increased hydrolysis rates and volatile solids (VS) degradation. The VS 6 

degradation ratio and the hydrolysis rate constant at a higher leachate recirculation 7 

ratio (2:1 weight ratio of methanogenic leachate to substrate) were increased by 2.1- 8 

and 1.4-fold, respectively, compared to those of the lower ratio (1:1 leachate 9 

recirculation ratio). A 10% (weight ratio of WRS to substrate solid content) WRS 10 

addition assisted the biochemical reactions in the process at the higher leachate 11 

recirculation ratio was employed. The hydrolysis rate constant and VS degradation 12 

were elevated by 54.7% and 63.9%, respectively, with the WRS addition. Besides, the 13 

WRS addition enhanced the VA formation and its conversion to biogas. 14 

Highlights 15 

 A simultaneous pretreatment and acidogenesis process for solid wastes was 16 

developed.  17 

 The methanogenic leachate considerably enhanced the hydrolysis of solid food 18 

wastes.  19 
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 The biochemical reactions significantly happened due to the mineral clay 1 

addition. 2 

Key words: 3 

Leachate recirculation, andesite porphyry, simultaneous pretreatment and 4 

acidogenesis, solid food waste, rotational drum fermentation system 5 
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1. Introduction 1 

Bioenergy from solid organic wastes is an excellent alternative to traditional fossil 2 

fuels when considering greenhouse gas emission control. Solid food wastes, 3 

comprising large fractions of municipal solid wastes, are amenable to bioenergy 4 

recovery by anaerobic conversion due to their large biodegradable fractions and 5 

moisture. The anaerobic conversion of solid food wastes to the end products CH4 and 6 

CO2 proceeds in a series of complex biochemical steps due to the lignin content of the 7 

solid food wastes (Converti et al., 1999). Hydrolysis is the rate-limiting step in the 8 

overall anaerobic conversion of solid substrates (Fdez-Guelfo et al., 2011). The 9 

hydrolysis rate mainly depends on the biodegradability of the substrate and the 10 

availability of microbes/enzymes (Veeken and Hamelers, 1999), and influenced by 11 

many other factors such as rheological properties (Kedziora et al., 2006).  12 

Pretreatments by mechanical, chemical, thermal and combined treatments have 13 

been used for decades in the food industry and for biofuel production. Pretreatment 14 

contributes to both the reduction of particle size and the rearranging/breaking of some 15 

chemical bonds (McIntosh and Vancov, 2011; Seehra et al., 2012). Ball milling is 16 

traditionally applied as a mechanical pretreatment for its ability to rapidly reduce 17 

particle sizes and m Among the different ball milling pretreatments, wet milling is 18 

preferred to dry milling due to the higher pulverization efficiency (Charkhi et al., 19 

2010) and lower energy consumption (Fuerstenau and Abouzeid, 2002) of wet ball 20 
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milling. In the wet ball milling process, the pulverization is usually enhanced by 1 

increasing the moisture of the feedstock or by adding extra water (Fuerstenau and 2 

Abouzeid, 2002). Wet ball milling also meets the requirements for pretreating solid 3 

food wastes for anaerobic digestion. 4 

In the anaerobic digestion process, the addition of a methanogenic process 5 

leachate instead of extra water during the wet ball milling process is conducive to 6 

water conservation (Shahriari et al., 2012). Using leachate recirculation to enhance the 7 

anaerobic digestion of solid food wastes (Chen et al., 2008) resulted in a similar VA 8 

yield (0.13 g-VA/g-VS) to that (0.11 g-VA/g-VS) of water flushing (Gan et al., 2008). 9 

Leachate recirculation improves the rheological properties of substrates and supplies 10 

enzymes and microbes to the pretreatment process. The enzymes and microbes also 11 

biochemically pretreat the solid substrates. Recycled leachate lowers the acidogenic 12 

product concentrations and buffers its inhibition to the hydrolysis and acidogenesis 13 

processes as the biochemical pretreatment occurs (Sponza and Agdag, 2004). 14 

Pretreatment using leachate recirculation (Zhang et al., 2009) and wet ball milling has 15 

been reviewed recently (Chen et al., 2007). 16 

Although wet ball milling with leachate recirculation enforces the stabilization of 17 

food waste, the acidogenic products are prone to accumulation when low recirculation 18 

ratios are used. The accumulated acidogenic products caused the pH decrease and the 19 

increase of unionized volatile acid (UVA) . The extremely low pH and UVA inhibited 20 

the activity of methanogens and acidogens and may even lead to a failure of the entire 21 
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anaerobic process (Wang et al., 1999). Many experimental efforts have aimed to 1 

alleviate this inhibition, including lowering the product concentrations (Gan et al., 2 

2008), electrodialysis (Yi et al., 2008), pervaporation (Cui et al., 2004) and removal of 3 

the products in situ (Cheng et al., 2010). Adsorptions by porous media such as zeolite 4 

(Wang et al., 2011), activated carbon (Pyrzynska and Bystrzejewski, 2010) and resin 5 

(Lin and Juang, 2009) are an interesting method for in-situ removal. In recent years, 6 

andesite porphyry (known as wheat-rice-stone, WRS, in Asia), a kind of natural clay 7 

mineral, has been applied as a candidate to remove the acidogenic products in situ and 8 

thereby assist hydrolysis and acidogenesis (Cheng et al., 2010). WRS not only 9 

adsorbs the accumulated acidogenic products due to its unique tetrahedral structure 10 

with micro- and nano-channels, but also dissociates and releases cations, including 11 

Ca
2+

, Mg
2+

 and Na
+
, during the acidogenesis of solid food wastes (Li et al., 2009; 12 

Cheng et al., 2010). The dissociated cations provide nutrition required by the 13 

microbes (Cheng et al., 2010). The acidogenic product adsorption and cation 14 

dissociation contribute positively to the anaerobic digestion of solid food wastes.  15 

In this study, a rotational drum fermentation (RDF) system with methanogenic 16 

leachate recirculation has been developed. The objectives of the work were to (1) 17 

pretreat and simultaneously acidify solid food wastes as part of anaerobic digestion by 18 

an RDF system with methanogenic leachate recirculation and (2) enhance 19 

pretreatment and acidogenesis of solid food wastes by methanogenic leachate 20 

recirculation and WRS addition.  21 
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2. Materials and methods 1 

2.1. Materials 2 

2.1.1 Substrate and seeding sludge 3 

Fresh soybean meal (approximately 24.1% total solids, TS) was collected from a 4 

dining hall of the China Agricultural University (Beijing, China) to be used as the 5 

substrate. The composition of the dry soybean meal was as follows: protein (22.6%), 6 

lipid (19.6%), sugar (37.0%), cellulose (14.5%), ash (6.1%) and other constituents 7 

(0.2%). The initial mean particle size of the raw material was 673 μm.  8 

Anaerobic digestion sludge was taken from a municipal wastewater treatment 9 

plant (Beijing, China) for use as the seeding sludge. The TS, VS and of the sludge 10 

were 2.6%, 1.4% and 7.8, respectively. The initial volatile fatty acids of the substrate 11 

and the sludge were 0 and 0.04 g/L, respectively.  12 

2.2.2. Andesite porphyry 13 

Andesite porphyry (WRS) was collected from the Changping Mine (Beijing, 14 

China) for use as an additive during the hydrolysis and acidogenesis of the solid food 15 

wastes. The chemical composition of the WRS used was as in Li et al (Li et al., 2009). 16 

The WRS was washed 2-3 times with distilled water and then dried in an oven at 105 17 

ºC to constant weight. 18 
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2.1.3. Methanogenic leachate 1 

The methanogenic leachate was obtained from a sound mesophilic (35-37 ºC) 2 

methanogenic process. The methanogenic process was fed daily with acetic acid and 3 

synthetic wastewater (Chang et al., 1982) and run well for over 2 years. The 4 

methanogenic effluent was centrifuged at 3000 rpm for 3 min, and the supernatant 5 

was recycled into the acidogenic process as the methanogenic leachate. The average 6 

pH of the leachate was 7.2. 7 

2.2. Experimental apparatus 8 

The RDF system developed by Jiang et al (Jiang et al., 2005) was employed to 9 

perform the simultaneous pretreatment and acidogenesis of the solid food wastes. The 10 

RDF system consisted of six drum fermentors, and each fermentor’s working volume 11 

was 3.6 L. The mechanical pretreatment was mainly performed by rotating the 12 

fermentor with 26 aluminum oxide milling balls (diameter=30 mm), taking up 10% of 13 

each fermentor (in volume). Each fermentor was rotated automatically for 15 min 14 

every 45 min at 12 rpm and 35 ± 1 ºC during the experimental period. 15 

2.3. Experimental procedure 16 

2.3.1. Batch operation 17 

In batch operation, two fermentors, LB1 and LB2, were used to evaluate the effect 18 

of leachate recirculation on the simultaneous pretreatment and acidogenesis of solid 19 
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food wastes, while the other four fermentors, B11, B12, B21 and B22, were used to 1 

evaluate the effect of leachate recirculation with the addition of WRS. The seeding 2 

sludge was considered as the methanogenic leachate in the batch operation. The 3 

leachate recirculation ratio (the weight ratio of methanogenic leachate to substrate) 4 

was 1:1 for LB1, B11 and B12 and 2:1 for LB2, B21 and B22. Five percent WRS (the 5 

weight ratio of WRS to substrate solid content) was added to B11 and B21, and 10% 6 

to B12 and B22. The detailed feeding conditions were shown in Table 1 7 

The batch operations lasted for 10 days. Samples were withdrawn for the analysis 8 

of pH, TS (total solids), TDS (total dissolved solids), VS (volatile solids), TVA (total 9 

volatile acids), volatile acids (VA) spectra, mean diameter (MD), cation concentration 10 

(CC) and ATP concentration on alternate days. 11 

2.3.2. Continuous operation 12 

Fermentors LC1, LC2, C11, C12, C21 and C22 were used for continuous 13 

operation. Their detailed feeding conditions are shown in Table 2. 14 

Table 2 Daily operation conditions for the continuous operation experiment 15 

The hydraulic retention time (HRT) of the continuous operation was 10 days. The 16 

continuous operation was maintained with daily feedings and withdrawals for at least 17 

3 HRTs before reaching pseudo-steady state. The pH was tested every day, while other 18 

parameters were measured on alternate days during the pseudo-steady state as for the 19 

batch operation. 20 
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2.4. Measurements and analyses 1 

The pH, TS, TDS, VS and VA levels were measured using the sewage test 2 

procedure (APHA, 2005). MDs were measured using a laser particle size analyzer 3 

(LS230, COULTER). ATP concentrations, used to quantify the microbe populations, 4 

were determined using an ATP analyzer (AF-100, DKK-TOA). The sample was 5 

centrifuged at 6000 rpm for 5 min, and then the supernatant was filtered through a 6 

0.45 μm membrane filter to assess VA spectra by a high-performance liquid 7 

chromatograph (LC-10AVP, SHIMADZU) with an Atlantic dC column (18.5μm, 8 

4.6×150mm, WATERS) at 30 ºC.  9 

2.5. Parameter calculations for the degradation of anaerobic solid waste  10 

2.5.1. Hydrolysis rate constant 11 

The hydrolysis of a solid substrate can be represented by the surface based 12 

kinetics (SBK) model (Sanders et al, 2000). The hydrolysis rate constant can be 13 

expressed as follows: 14 

 
t

RR
ρK t0

sbk


  (0) 15 

where ρ (kg/m
3
) is the density of the substrate, R0 (m) is the mean size of the substrate 16 

particle at time 0, and Rt (m) is the mean size of the substrate particle at time t. 17 

2.5.2. Total dissolved solids generated (TDSG) 18 

The TDSG can be calculated using equation (2) 19 
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 t00tG VSVSTDSTDSTDS   (0) 1 

where TDSt (g/L) and TDS0 (g/L) are the total dissolved solids at time t and time 0, 2 

respectively and VS0 (g/L) and VSt (g/L) are the VS contents of the broth at time 0 and 3 

time t, respectively (Cheng et al., 2010). 4 

2.5.3. Unionized VA concentration 5 

UVA concentration can be determined using following equation: 6 

 
pH)(pKa

pH)(pKa

101

10
VAUVA






  (0) 7 

where pKa is the dissociation constant of the acid in water; the pKa of acetic acid is 8 

4.762 at 35 ºC (Weast, 1981). 9 

2.5.4. Specific growth rates of TDSG, VA, and ATP 10 

The specific growth rates of ATP or the other parameters can be calculated using 11 

equation (4): 12 

 )/Xln(X
t

1
μ 1tt   (0) 13 

where μ (d
-1

) is the specific growth rate of TDSG, VA or ATP; Xt is the value of TDSG, 14 

VA or ATP at time t; Xt-1 is the value of TDSG, VA or ATP at time t-1 and t is the 15 

sampling interval. 16 

2.5.5. VS degradation ratio (RVS) 17 

The RVS can be calculated using equation (5): 18 
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where RVS (%) is the VS degradation ratio; VS0 (g/L) is the initial concentration and 2 

VSt (g/L) is the concentration of a sample taken from the fermentor at time t. 3 

2.5.6. Particle size distribution  4 

The particle size distribution is characterized by the MD and the relative span (SL) 5 

(Igathinathane et al., 2009; Resch et al., 2011). The relative span is determined using 6 

equation (6):  7 

50

1090
L

D

DD
S


        (0) 8 

where SL is the relative span; D10, D50 and D90 are the diameters as the cumulative 9 

volumes reached 10%, 50% and 90%, respectively. 10 

2.5.7. VA yield 11 

The VA yield is expressed by the equation as follow: 12 

 0

0

-
=

-

t

t

VA VA
η

VS VS
  (1) 13 

where VAt (g/L) and VA0 (g/L) are the VA concentration of the sample at time t and 14 

time 0, respectively; VS0 (g/L) is the initial concentration and VSt (g/L) is the 15 

concentration of a sample taken from the fermentor at time t. 16 
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3. Results and discussion 1 

3.1. Effect of leachate recirculation on simultaneous pretreatment and acidogenesis of 2 

solid food wastes 3 

3.1.1 Batch operation 4 

The PSDs of broths in LB1 and LB2 are shown in Fig.1 (a and b). The curve of 5 

the particle size distribution changed from one dominated by large particles to one 6 

dominated by smaller ones (from right to left in the figure) over the operation time. 7 

The SLs obtained using equation (0) for LB1 and LB2 peaked at 2.70 and 3.16, 8 

respectively, much higher than that of the original feedstock (1.53). The increases in 9 

SL suggest that substrate flocs were ground into finer particles. The calculated MDs of 10 

substrate particles in the batch operations are shown in Fig. 2 (a). The MDs decreased 11 

linearly in LB1 and LB2 from 673 to 567 and 96 μm, respectively. According to the 12 

linear regression of Fig. 2 and equation (0), the calculated Ksbk values for LB1 and 13 

LB2 were 11.4 and 50.0 ×10
-3

 kg m
-2

 d
-1

, respectively. The Ksbk of LB2 was 4.4-fold 14 

higher than that of LB1. The dramatically higher Ksbk of LB2 was ascribed to the 15 

higher humidity that resulted from the increased leachate recirculation ratio. The 16 

higher humidity reinforced the impact of the milling balls onto the substrate flocs, the 17 

dispersion of flocs and the shear flow in the rheology (Izumi et al., 2010). Both the 18 

higher impact and higher shear flow enhanced splitting of the substrate agglomerates 19 

and broke crystal structures. 20 
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Fig. 1 Particle size distributions in the batch operations 1 

Fig. 2 Time courses for particle MDs in the batch experiments 2 

Enrichment with the enzymes and microbes in the leachate caused biodegradation 3 

occur during the mechanical pretreatment. The VS degradation rate was determined 4 

using a regression (Fig. 3 (a)). The VS degradation rates for LB1 and LB2 were 6.2 5 

and 4.5 g L
-1

 d
-1

, respectively. The TDSG grew logarithmically during the batch 6 

operation. The specific growth rate of the TDSG (μTDSG) was calculated using equation 7 

(0) as 0.16 and 0.17 d
-1

 for LB1 and LB2, respectively. The higher TDSG and the VS 8 

degradation rate in LB1 were caused by the lower leachate recirculation ratio. Similar 9 

results were obtained by Zhou et al (Zhou et al., 2011). In the lower leachate 10 

recirculation ratio fermentor (LC1), the presence of more readily biodegradable 11 

substrate (the initial total dissolved solids TDS0, 14.0 g/L) ensured the anaerobes’ 12 

growth during the initial period.  13 

Fig. 3 Time courses for TDSG and VS contents 14 

The specific growth rates of the anaerobes (represented by the ATP concentration 15 

μATP (APHA, 2005) in LB1 and LB2 were 5.40 and 5.04 d
-1

, respectively. The growth 16 

of the anaerobes not only accelerated VS degradation, but also enhanced the 17 

formation of VAs. The specific growth rates (μVAs) for the TVAs in LB1 and LB2 18 

were similar, with values of 0.29 and 0.28 d
-1

, respectively. The yields of VA and 19 

ionized VA (IVA) for LB1 and LB2 tended similar to the μVAs. The VA yields for LB1 20 
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and LB2 were 0.16 and 0.15 g-VA/g-VS, respectively. The IVA ratio of LB2 was 1 

higher than that of LB1 during the batch operation, despite the finding that the IVAs 2 

for both LB1 and LB2 were no more than 30% of the TVAs. Apparently, more 3 

leachate recirculation had a greater effect on the mechanical than the biochemical 4 

aspect of the in this work.  5 

3.1.2. Continuous operation 6 

Fig. 4 Particle size distributions in the continuous operations 7 

The parameters in the continuous operation trials were obtained by averaging the 8 

data obtained under steady state. The particle size distributions of LC1 and LC2 are 9 

shown in Fig. 4. The particles spanned broader ranges in LC1 and LC2 than in the 10 

feedstock. The SLs of LC1 and LC2 were higher by 31.9% and 35.2% than that of the 11 

feedstock (1.53), respectively. The higher SL of LC2 indicated that substrates were 12 

ground into finer particles in this fermentor. The pretreatment characteristics of the 13 

continuous operations are summarized in Table 3. The MDs for LC1 and LC2 were 14 

reduced from 744 μm in the feedstock to 662 and 491 μm, respectively. The 15 

calculated Ksbk of LC2 was higher by 2.1-fold than that of LC1. Higher Ksbk and lower 16 

MD were obtained at the higher moisture content (LC2), which coincided with the 17 

results in the batch operation. The substrate particles were stressed mechanically by 18 

the compression, impact and the friction of the milling balls in this work. The 19 

breakage of substrate particles depended on the yield stress of itself and the stressing 20 
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intensity. The yield stress dropped at certain higher moisture content (Müller et al., 1 

2013), meaning particles were apt to be broken mechanically. In addition, the particles 2 

were softened in the structure, thus the accessibility of the substrate was enhanced. 3 

This was evidenced by the results and RVS and TDSG.  4 

The RVS of LC2 was 2.4-fold higher than that of LC1. Similar to the VS 5 

degradation, the TDSG for LC2 was more than 2-fold greater than that of LC1. The 6 

finer particles presented larger surface area, and available for the microorganisms, 7 

resulting a higher RVS and TDSG. The solubility of substrate were also enhanced by 8 

the wet ball milling pretreatment (Izumi et al., 2010). In another word, these favorable 9 

TDSGs were generated by the combination of mechanical pretreatment with 10 

biochemical reactions.  11 

Table 3 Pretreatment characteristics of the continuous operations under steady 12 

state 13 

As shown in Table 4, the apparent VA yield of LC1 was 2.5-fold above that of 14 

LC2 despite their similar TVAs. The IVAs predominated in both LC1 and LC2. The 15 

IVA values were elevated significantly compared to those under continuous operation 16 

without leachate recirculation (Chen et al., 2008). The higher IVAs favored higher 17 

rates of methanogenesis.  18 

The VA spectra appeared to be influenced by the leachate recirculation. The acetic 19 

acid contents of LC1 and LC2 were 31.1% and 14.6%, respectively, while the 20 

propionic acid contents were 20.7% and 36.5%, respectively. The ratio of propionic 21 
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acid to acetic acid (P/A) of LC2 greater than 1.4 or the was possibly considered as an 1 

indicator of failure (Hill et al., 1987), however, the lower amount of acetic acid in 2 

LC2 was caused by its conversion to biogas (methane and carbon dioxide) in this 3 

work. The biogas emission was observed during daily operations, during which 70% 4 

methane was generated from acetic acid. On the contrary, little biogas was observed 5 

in LC1. The rich leachate in LC2 introduced more microbes and enzymes and favored 6 

degradation of the acetate. 7 

Table 4 Acidogenesis characteristics of the continuous operations under steady 8 

state 9 

3.2. Effects of leachate recirculation and WRS addition on simultaneous pretreatment 10 

and acidogenesis of solid food wastes 11 

3.2.1. Batch operation 12 

Time courses for particle size distributions during the batch operations are shown 13 

in Fig. 1 (c-f). The calculated SLs for B11, B12, B21 and B22 were 3.0, 2.49, 3.44 and 14 

2.98, respectively. The SL for each run increased over the course of the reaction. The 15 

time courses for MDs during batch operation are shown in Fig. 2 (b). The MDs for 16 

B11, B12, B21 and B22 were 494, 294, 158 and 61 μm, respectively. The MDs for 17 

B11 and B12 were lower by 12.8% and 48.1% than that of LB1, respectively. The MD 18 

for B21 was higher than that of LB2, while the MD for B22 was 63.5% of LB2’s. 19 

Correspondingly, the Ksbks obtained for B11 and B12 were 16.0 and 29.8 ×10
-3

 kg 20 
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m
-2

 d
-1

, and 50.0 and 65.0×10
-3

 kg m
-2

 d
-1

 for B21 and B22, respectively. The Ksbks 1 

for B11 and B12 were 1.4 and 2.6-fold higher than that of LB1 respectively. The Ksbk 2 

for B21 was close to that of LB2 (50.0 10
-3

 kg m
-2

 d
-1

), while the Ksbk for B22 was 3 

1.3-fold higher than that of LB2. Compared to LB1 and LB2, the WRS addition 4 

significantly enhanced the substrate particle size reduction (except B21). Moreover, 5 

the WRS addition led to a faster substrate particle size reduction in the case of the 6 

higher leachate recirculation ratio. The WRS particles were much harder than the 7 

substrate particles. The elasticities of the WRS and substrate mixtures were lower than 8 

that of the substrate alone. With WRS addition, the substrate particles were more 9 

easily broken when they were impacted by the milling balls. In addition, the large 10 

amounts of cations such as Ca
2+

, Na
+
 and Al

3+
 in the WRS are prone to dissociation 11 

and formation of compounds such as CaCl2 and CH3COONa in acidic broth. In the 12 

experiment, the compounds may have arranged their dipoles to reduce the flocs’ 13 

surface energies and thereby aided the fragmentation of the solid substrates.  14 

The time course of VS degradation and TDSG is shown in Fig. 3. The VS 15 

degradation rates for B11, B12, B21 and B22 were 7.0, 6.5, 4.6 and 5.5 g L
-1

 d
-1

, 16 

respectively. The VS degradation rates for B11 and B12 were higher by 11.7% and 4.8% 17 

than that of LB1, respectively. The VS degradation rate for B21 was similar to that of 18 

LB2, while that of B22 was higher by 22.2% than that of LB2. The TDSG grew 19 

logarithmically during the batch operation. The μTDSGs for B11, B12, B21 and B22 20 

were 0.15, 0.09, 0.07 and 0.13 d
-1

, respectively. Higher leachate recirculation and 21 
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more WRS addition were therefore favorable to the VS degradation.  1 

The apparent VA yields for B11, B12, B21 and B22 were 0.09, 0.26, 0.16 and 0.31 2 

g-VA/g-VS, respectively. Compared to LB1 and LB2, more WRS addition favored 3 

more VA production (Li et al., 2009; Cheng et al., 2010). Formic acid predominated in 4 

fermentor B11 and B21, while succinic acid did in fermentor B12 and B22 during the 5 

initial period. Acetic acid predominated beginning on the 4
th

 day in all the fermentors. 6 

The specific growth rates for acetic acid in B11, B12, B21 and B22 were 0.31, 0.30, 7 

0.24 and 0.31 d
-1

, respectively. The occupation of acetic acid was elevated by the 8 

WRS addition compared with LB1 and LB2. These results suggest that the WRS 9 

addition promoted the conversion of long-chain VAs to short ones. Among the short 10 

chain VAs, propionic acid is difficult to be converted to acetic acid by the 11 

microorganisms compared to butyric acid. On the contrary, acetic acid was prone to 12 

consumed by the methanogens. The higher acetic acid occupation implied a potential 13 

for the biogas production.  14 

The data for VS degradation and VA production demonstrate that the WRS 15 

addition enhanced the biochemical reactions. These results were consistent with the 16 

anaerobes’ growth as the μATPs for B11, B12, B21 and B22 increased by 5.9%, 24.5%, 17 

21.0% and 2.4% compared to LB1 and LB2. 18 

3.2.2. Continuous operations 19 

The parameters of the continuous operations were obtained by averaging data 20 

obtained under steady state. The particle size distributions are shown in Fig. 4. 21 
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Substrate particles smaller than 100 μm were 5.7%, 11.7%, 16.4% and 32.6% of the 1 

totals, respectively, in comparison to those of LC1 (6.2%) and LC2 (8.7%). Aldin’s 2 

work (Aldin, 2010) suggested that most biodegradable matter ranged from 0.001-100 3 

μm. In our work, the WRS addition contributed to the conversion from raw materials 4 

to materials with high proportions of biodegradable constituents. The SLs calculated 5 

using equation (0) for C11, C12, C21 and C22 were 1.99, 2.36, 2.64 and 3.02, 6 

respectively. The SL of C11 was slightly lower than that of LC1, while the SL of C12 7 

was higher by 16.8% than that of LC1. The SLs of C21 and C22 were higher by 27.5% 8 

and 45.9% than that of LC2, respectively. These results suggest that more fine 9 

particles were produced due to the WRS addition.  10 

Characteristics of the pretreatments are shown in Table 2. The MDs of fermentors 11 

C11, C12, C21 and C22 decreased from 673 μm to 656, 628, 518 and 351 μm, 12 

respectively. The MDs of C11 and C12 were slightly lower than that of LC1. The MD 13 

of C21 was slightly higher than that of LC1, while the MD of C22 was lower by 39.8% 14 

than that of LC2. Correspondingly, the Ksbks for C11 and C12 were higher by 7.3% 15 

and 41.5% than that of LC1, respectively. The Ksbk for C21 was close to that of LC2, 16 

while the Ksbk for C22 was higher by 54.7% than that of LC2. The higher leachate 17 

recirculation and WRS addition ratio led to the substrate particle shift from the large 18 

to the micro range. 19 

The RVSs and the TDSGs are shown in Table 3. The RVSs of C11 and C12 were 20 

close to that of LC1, whereas those of C21 and C22 were much higher than that of 21 
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LC2. The RVSs of C21 and C22 were higher by 35.8% and 63.9% than that of LC2, 1 

respectively. The WRS was prone to dissociate cations, including Fe
2+

/Fe
3+

, Ca
2+

 and 2 

Mg
2+

, and accelerated the oxidation/reduction reaction under the high leachate 3 

recirculation ratio. On the contrary, the WRS dissociation and cation transfers were 4 

perturbed in case of the lower leachate recirculation ratio. The leachate recirculation 5 

contributed 64.8% and 64.5% to the VS degradation, while WRS addition contributed 6 

35.2% and 35.5% to that in C11 and C12, respectively. The values for TDSG showed 7 

similar trends to those for the VS degradation ratio. The highest TDSG achieved was 8 

in C22, which was higher by 56.2% than that of LC2.  9 

The TVA of C11 was higher by 8.7% than that of LC1, while the TVA of C12 was 10 

lower by 2.9% than that of LC1. The VA formation seemed to be little enhanced by 11 

WRS addition in the case of the lower leachate recirculation ratio, even though the 12 

TVAs for C21 and C22 were supposed to increase. Interestingly, the TVAs of C21 and 13 

C22 were lower by 14.4% and 28.8% than that of LC2, respectively. The decreased 14 

VAs were converted to biogas. In our work, biogas emission was observed in C21 and 15 

C22 during daily operations. The biogas emission should not only be ascribed to the 16 

reduction of particle size (Zhang and Banks, 2013), but also resulted from the WRS 17 

addition. As mentioned above, the cations dissociated from WRS had the enzyme and 18 

microorganisms sparked and promoted the acidogenesis and even the methanogenesis 19 

potentially.  20 

Similar results were obtained for the distributions of the IVAs and UVAs and for 21 
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the VA spectra. The IVAs predominated in all the fermentors, which was possibly 1 

conducive to biogas formation. Compared to LC2, the acetic acid occupation 2 

decreased with the increased addition of WRS in C22. The decreased acetic acid was 3 

possibly converted to biogas. Notably, the occupation of propionic acid varied in the 4 

range of 29.2-58.5%. The TDSs were prone to conversion to propionate rather than to 5 

other VAs (such as butyrate, acetate and lactate) by lower energy demand during the 6 

biochemical reaction. However, propionate is more difficult to convert to acetate than 7 

to butyrate and lactate (Azbar et al., 2001).  8 

4. Conclusion 9 

Methanogenic leachate recirculation and WRS addition were used to enhance 10 

pretreatment and acidogenesis of solid food wastes in batch and continuous operations. 11 

A higher leachate recirculation ratio from the methanogenesis to RDF system 12 

improved the mechanical pretreatment such as particle size reduction and TDS 13 

generation in anaerobic process. The 10% WRS addition at higher leachate 14 

recirculation ratio considerably enhanced the VS degradation, particle size reduction, 15 

VA formation and conversion to biogas.  16 
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Figure captions 1 

Fig. 1 Particle size distributions in the batch operations 2 

Fig. 2 Time courses for particle MDs in the batch experiments 3 

Fig. 3 Time courses for TDSG and VS contents 4 

Fig. 4 Particle size distributions in the continuous operations 5 
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Fig. 1 Particle size distributions in the batch operations 
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Fig. 2  

 

 

 

Fig. 2 Time courses for particle MDs in the batch experiments 
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Fig. 3 

 

 

Fig. 3 Time courses for TDSG and VS contents 
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Fig. 4 

 

Fig. 4 Particle size distributions in the continuous operations 
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Table 1 

Table 1 Operation conditions for the batch operation experiments 

Fermentor 

Substrate and methanogenic leachate WRS addition 

Weight of 

methanogenic leachate 

(g) 

Weight of Soybean 

meal 

(g) 

Weight ratio of 

methanogenic 

leachate to 

substrate 

Weight 

(g) 

 

Proportion 

(in substrate 

TS, %) 

LB1 1200 1200 1:1 0 0 

LB2 1600 800 2:1 0 0 

B11 1200 1200 1:1 12 5 

B12 1200 1200 1:1 24 10 

B21 1600 800 2:1 8 5 

B22 1600 800 2:1 16 10 
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Table 2 

Table 2 Daily operation conditions for the continuous operation experiments 

Fermentor 

Substrate and methanogenic leachate WRS addition 

Weight of 

methanogenic leachate 

(g) 

Weight of soybean 

meal 

(g) 

Weight ratio of 

methanogenic leachate to 

substrate 

Weight (g) 

Proportion 

(in substrate 

TS, %) 

LC1 90 90 1:1 0 0 

LC2 120 60 2:1 0 0 

C11 90 90 1:1 0.9 5 

C12 120 120 1:1 2.4 10 

C21 120 60 2:1 0.6 5 

C22 140 70 2:1 1.4 10 
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Table 3 

Table 3 Pretreatment characteristics of the continuous operations under steady state 

Fermenter No. 

PSD Ksbk RVS TDSG SL 

(μm) (10
-3

 kg/m
2
·d) (%) (g/L) - 

LC1 662±12 8.2 17.1 20.8 ±0.2 2.02 ±0.01 

LC2 491±11 25.4 41.6 42.9 ±0.1 2.07±0.02 

C11 656±9 8.8 11.1 13.6 ± 0.0 1.99±0.02 

C12 628±15 11.6 16.2 21.4 ± 0.1 2.36±0.03 

C21 518±6 22.6 56.5 45.5 ± 0.0 2.64±0.03 

C22 351±15 39.3 68.2 67.0 ± 0.0 3.02±0.03 
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Table 4 

 

Table 4 Acidogenesis characteristics of the continuous operations under steady state 

Fermenter No. 

pH(-) VA Apparent YVA VA distribution VA spectra (%) 

In Out (g/L) g-VA/ g-VS UVA (%) IVA (%) Acetic acid Propionic acid Butyric acid Succinic acid 

LC1 7.5 5.2 10.9 0.58 26.7 73.3 31.1 20.7 24.6 23.6 

LC2 7.5 5.0 10.4 0.23 36.6 63.4 14.6 36.5 26.4 22.5 

C11 7.4 5.1 11.7 0.97 31.5 68.5 - - - - 

C12 7.5 5.1 10.1 0.73 31.5 68.5 37.9 29.2 25.1 7.8 

C21 7.4 5.0 8.9 0.21 36.6 63.4 17.3 58.5 23.1 1.1 

C22 7.5 4.9 7.4 0.12 42.1 57.9 9.0 29.3 27.1 34.6 
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