## Title page

Title
Impact of Obesity on Incident Hypertension Independent of Weight Gain among
Non-hypertensive Japanese: The Ibaraki Prefectural Health Study (IPHS)

## Authors

Takehiko TSUJIMOTO (MS) ${ }^{\text {a, }}$, Toshimi SAIRENCHI (Ph.D.) ${ }^{\text {a, } \mathrm{c}}$, Hiroyasu ISO (MD, Ph.D., MPH) ${ }^{\text {d }}$, Fujiko IRIE (MD, Ph.D.) ${ }^{\mathrm{e}}$, Kazumasa YAMAGISHI (MD, Ph.D.) ${ }^{\text {a, b }}$, Kiyoji
TANAKA (Ph.D.) ${ }^{\text {b }}$, Takashi MUTO (MD, Ph.D.) ${ }^{\text {c }}$, Hitoshi OTA (MD, Ph.D.) ${ }^{\text {a }}$
a. Ibaraki Health Plaza, Ibaraki Health Service Association, Ibaraki, Japan
b. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
c. Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
d. Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
e. Department of Health and Welfare, Ibaraki Prefectural Office, Ibaraki, Japan

Running title: Stable obesity and incident hypertension
Word counts: 2720 (text), 248 (abstract), 2 tables, 1 figure, 35 references

## Corresponding author

Toshimi SAIRENCHI, Ph.D.
Department of Public Health, Dokkyo Medical University School of Medicine
Adress: 880 Kita-kobayashi, Mibu, Tochigi 321-0293, Japan
Phone: +81-282-87-2133, Fax: +81-282-86-2935
E-mail: tossair@dokkyomed.ac.jp


#### Abstract

Objective: The aim of this study was to examine the association between body mass index (BMI) and risk of incident hypertension among Japanese men and women who are middle-aged and older.

Design: Prospective, population-based cohort study. Subjects: A total of 68205 non-hypertensive adults (18 336 men and 49869 women) aged 40-79 years who completed health check-ups in the Ibaraki prefecture, Japan, in 1993 were followed-up through 2006. To exclude the impact of BMI change during the follow-up period, a time-dependent covariate Cox proportional hazards model was used to compute the hazard ratios (HRs) of incident hypertension according to BMI categories. Incident hypertension was defined as a systolic blood pressure (BP) of $\geq 140 \mathrm{mmHg}$, a diastolic BP of $\geq 90 \mathrm{mmHg}$, and/or hypertensive medication use.

Results: A total of 30982 adults (45.4\%) developed hypertension (9 331 men and 21651 women) during a mean of 3.9 years of follow-up. Compared with a BMI of $<19.0$, time-dependent covariates adjusted HRs (95\% confidence interval [CI]) for hypertension among participants with a BMI of $\geq 25.0$ were 1.42 (1.17-1.73) for men aged 40 to 59 years, 1.34 (1.19-1.51) for men aged 60 to 79 years, 1.47 (1.33-1.62) for women aged 40 to 59 years, and 1.29 (1.18-1.41) for women aged 60 to 79 years. Conclusion: The baseline BMI is associated with future risk for incident hypertension even after accounting for weight change during the follow-up period. Weight loss may be recommended to non-hypertensive obese adults to prevent the development of hypertension.


## Introduction

Hypertension is a major cause of cardiovascular disease [1]. Currently, approximately $45 \%$ of Japanese adults are considered hypertensive [2], defined as systolic blood pressure (SBP) $\geq$ 140 mmHg , diastolic blood pressure (DBP) $\geq 90 \mathrm{mmHg}$ or treatment with an antihypertensive drug. Many prospective cohort studies have consistently shown that the higher the BMI, the greater the likelihood of developing hypertension [3-11]. Some prospective cohort studies have reported that long-term weight gain was associated with a risk of hypertension among hypotensive or high-normal blood pressure patients [12-15]. Moreover, many intervention studies have also shown that weight loss reduced blood pressure [16-18]. These results could lead to a hypothesis that the association between baseline BMI and the risk of hypertension are due to weight gain during the follow-up period. If this hypothesis were true, non-hypertensive obese individuals would not be required to lose weight to prevent incident hypertension. To clarify whether weight loss should be recommended for non-hypertensive obese people to prevent incident hypertension, a large cohort study that accounts for weight change is warranted. The purpose of this study was to clarify the association between long-term weight stability and the risk of incident hypertension in a large community-based cohort of men and women who are middle-aged and older.

## Methods

## Study population

The study population comprised 194333 individuals ( 63865 men and 130468 women) aged 40-79 years living in the Ibaraki Prefecture, Japan. The population participated in community-based annual health checkups beginning in 1993 (Ibaraki Prefectural Health Study). These health checkups were conducted by local governments in accordance with the Japan Health Laws. Data were collected by the Ibaraki prefectural government from local governments after depersonalizing them to ensure anonymity. We excluded 3080 individuals (738 men and 2342 women) with incomplete data and 94153 individuals ( 35647 men and 58506 women) with a SBP of $\geq 140 \mathrm{mmHg}$ and/or a DBP of $\geq 90 \mathrm{mmHg}$ or antihypertensive medication use. We further excluded 28895 individuals ( 9144 men and 19751 women) who did not participate in the 1994 survey, thereby ensuring that the participants were followed for at least one year.

Ultimately, the study subjects consisted of 68205 individuals (18 336 men and 49869 women). These participants were followed up by annual examinations until hypertension had been diagnosed or until the end of 2006. Blood pressure was measured at annual follow-up examinations. Participants who did not undergo annual checkups during the follow-up periods were censored on the date of their latest checkup. The protocol for this cohort study was approved by the Ibaraki Epidemiology Study Union Ethics Review Committee.

## Assessment of body mass index, blood pressure, and other covariates

Height in stockinged feet and weight in light clothing were measured at baseline. BMI was calculated as weight in kilograms divided by the height in meters squared. BP was measured from the right arm of seated participants who had rested for more than 5 minutes by trained observers using standard mercury sphygmomanometers during examinations that occurred
between 1993 and 2004 and by an automated sphygmomanometer between 2005 and 2006. When the SBP was greater than 150 mmHg or DBP was greater than 90 mmHg , a second measurement was performed after several deep breaths, and the lower values, which were almost always observed after the second measurement, were used for analyses.

Blood samples were drawn from seated participants into two polyethylene terephthalate tubes: one with an accelerator and the other with sodium fluoride and ethylenediaminetetraacetic acid. Overnight fasting ( $\geq 8$ hours) was not required. The blood glucose level was measured by the glucose oxidase electrode method with a GA1140 device (Kyoto Daiichi Kagaku, Kyoto, Japan) during examinations that occurred between 1993 and 1996, by the enzyme method with a H7170 device (Hitachi, Tokyo, Japan) between 1997 and 2003, and with a H7700 device (Hitachi, Tokyo, Japan) between 1994 and 2006. Participants were considered diabetic if they had a fasting plasma glucose level of at least $6.1 \mathrm{mmol} / \mathrm{L}$ or a non-fasting glucose level of at least $7.8 \mathrm{mmol} / \mathrm{L}$, or if they were being treated for diabetes mellitus. Serum total cholesterol and serum triglyceride levels were measured by the enzyme method with a RX-30 device (Nihon Denshi, Tokyo, Japan) between 1993 and 1995, with a H7350 device (Hitachi, Tokyo, Japan) between 1996 and 2003, and with a H7700 device between 2004 and 2006. High-density lipoprotein (HDL) cholesterol levels were measured by the phosphotungstic acid magnesium method with a MTP-32 device (Corona Electric, Ibaraki, Japan) between 1993 and 1995, by the selective inhibition method with a H7350 device between 1996 and 2003, and with a H7700 device between 2004 and 2006. The laboratory participated in external standardization and successfully met the criteria for precision accuracy for the measurement of blood samples by the Japan Medical Association, the Japanese Association of Medical Technologists, and the Japan Society of Health Evaluation and Promotion. An interview was conducted to ascertain medical history, smoking status (never, ex-, current $<20$ cigarettes/day, and $\geq 20$ cigarettes/day), and alcohol intake (non-,
sometimes, $<66 \mathrm{~g} /$ day, and $\geq 66 \mathrm{~g} /$ day $)$.

## Endpoint determination

Incident hypertension was defined as SBP of $\geq 140 \mathrm{mmHg}$, DBP of $\geq 90 \mathrm{mmHg}$, and/or when treatment for hypertension was initiated.

## Statistical analysis

Participants were classified into the following 7 categories with regard to their BMI: $<19.0$, 19.0-20.9, 21.0-22.9, 23.0-24.9, 25.0-26.9, 27.0-29.9, or $\geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}$. Baseline participant characteristics were compared according to BMI categories using chi-squared tests for categorical variables and analysis of variance for continuous variables. Hazard ratios (HRs) with 95\% confidence intervals (CIs) for incident hypertension relative to BMI categories were calculated with a reference of $<19.0 \mathrm{~kg} / \mathrm{m}^{2}$ using a Cox proportional hazards regression model [19]. The analyses were stratified by sex and age groups (40-59 and 60-79 years).

Three multivariable-adjusted models were used. In Model 1, covariates included age (years), SBP (mmHg), DBP (mmHg), fasting status (yes or no), total cholesterol level ( $\mathrm{mmol} / \mathrm{L}$ ), HDL cholesterol level ( $\mathrm{mmol} / \mathrm{L}$ ), log-transformed triglyceride level ( $\mathrm{mmol} / \mathrm{L}$ ), lipid medication use (yes or no), blood glucose status (normal: $<6.1 \mathrm{mmol} / \mathrm{L}$ during fasting or $<7.8 \mathrm{mmol} / \mathrm{L}$ during non-fasting; border: $6.1-7.0 \mathrm{mmol} / \mathrm{L}$ during fasting or 7.8-11.1 $\mathrm{mmol} / \mathrm{L}$ during non-fasting; hyperglycemia: $\geq 7.0 \mathrm{mmol} / \mathrm{L}$ during fasting or $\geq 11.1 \mathrm{mmol} / \mathrm{L}$ during non-fasting), smoking status (never, ex-, current $<20$ cigarettes/day, or $\geq 20$ cigarettes/day), and alcohol intake (non-, sometimes, $<66 \mathrm{~g} /$ day, or $\geq 66 \mathrm{~g} /$ day $)$. In Model 2, the changes in BMI, total cholesterol level (mmol/L), HDL cholesterol level (mmol/L), and log-transformed triglyceride level ( $\mathrm{mmol} / \mathrm{L}$ ) from baseline to the end of follow-up were added as covariates to Model 1. In Model 3, time-dependent variables of BMI and covariates
in Model 1 were used with a time-dependent Cox hazard model, which was used for adjusting the change in the variable from the baseline to the final year of follow-up [20]. For the secondary analysis, we excluded 34190 participants with incomplete data and 16,370 participants with a SBP of $\geq 140 \mathrm{mmHg}$ and/or a DBP of $\geq 90 \mathrm{mmHg}$ or antihypertensive medication use at a 5-year follow-up. The remaining 17645 qualified participants were classified into the following 4 categories with regard to their baseline BMI and BMI 5 years later: (a) BMI of less than $25 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and BMI of less than $25 \mathrm{~kg} / \mathrm{m}^{2}$ at a 5 -year follow-up (-/-); (b) BMI of $25 \mathrm{~kg} / \mathrm{m}^{2}$ or more at baseline and BMI of less than $25 \mathrm{~kg} / \mathrm{m}^{2}$ at a 5-year follow-up (+/-); (c) BMI of less than $25 \mathrm{~kg} / \mathrm{m}^{2}$ at baseline and BMI of $25 \mathrm{~kg} / \mathrm{m}^{2}$ or more at a 5-year follow-up (-/+); and (d) BMI of $25 \mathrm{~kg} / \mathrm{m}^{2}$ or more at baseline and BMI of 25 $\mathrm{kg} / \mathrm{m}^{2}$ or more at a 5-year follow-up (+/+). We calculated HRs for incident hypertension to consider long-term changes of their weights.

All statistical analyses were conducted using SAS, version 9.1 (SAS Institute, Inc., Cary, North Carolina).

## Results

Sex-stratified baseline characteristics according to BMI categories are shown in Table 1. All covariates, except for blood glucose status, diabetic medication use and smoking status in men and lipid medication use in women, were associated with BMI in both sexes. A higher BMI was linked with higher SBP and DBP at baseline in both sexes.

Of the 68205 adults (18 336 men and 49869 women), 30982 (45.4\%) developed hypertension (9 331 men and 21651 women) during a mean follow-up of 3.9 years (3.4 years for men and 4.1 years for women). Table 2 shows sex- and age-stratified HRs for hypertension according to the baseline BMI categories. In men aged 40-59 years, compared with a baseline BMI $<19.0 \mathrm{~kg} / \mathrm{m}^{2}$, the multivariate HRs of BMI $\geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 1 and Model 2. In men aged 60-79 years, compared with a baseline $\mathrm{BMI}<19.0 \mathrm{~kg} / \mathrm{m}^{2}$, the multivariate HRs of $\mathrm{BMI} \geq 19.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 1 and the multivariate HRs of $\mathrm{BMI} \geq 23.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 2. In both age groups among men, time-dependent covariates adjustment HRs (BMI $\geq$ $25.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.42, \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.77$ in aged $40-59$ years; $\mathrm{BMI} \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.34, \geq 30.0$ $\mathrm{kg} / \mathrm{m}^{2}: 1.68$ in aged 60-79 years) showed a trend similar to Model 1 and Model 2.

In women aged 40-59 years, compared with a baseline BMI $<19.0 \mathrm{~kg} / \mathrm{m}^{2}$, the multivariate HRs of $\mathrm{BMI} \geq 21.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 1 and of $\mathrm{BMI} \geq 23.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 2.

In women aged 60-79 years, compared with a baseline BMI $<19.0 \mathrm{~kg} / \mathrm{m}^{2}$, the multivariate HRs of BMI $\geq 21.0 \mathrm{~kg} / \mathrm{m}^{2}$ was significantly higher in Model 1 and $25.0-26.9 \mathrm{~kg} / \mathrm{m}^{2}$ of BMI was significantly higher in Model 2. In both age groups among women, time-dependent covariates adjustment HRs ( $\mathrm{BMI} \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.53, \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}: 2.07$ in age $40-59$ years; $\mathrm{BMI} \geq 25.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.47, \geq 30.0 \mathrm{~kg} / \mathrm{m}^{2}: 1.91$ in age $60-79$ years) showed a trend similar to Model 1 and Model 2.

Figure 1 represents HRs for hypertension according to the BMI categories at baseline and at a 5-year follow-up. Among all non-hypertensive participants at baseline and at a 5-year follow-up, compared with the -/- group, the age-adjusted HRs (95\% CI) of +/-, -/+, and +/+ were 1.12 (1.03-1.41), 1.69 (1.47-1.94), and 1.67 (1.53-1.82), respectively. The multivariate HRs of +/-, -/+, and +/+ were 1.12 (1.03-1.41), 1.69 (1.47-1.94), and 1.67 (1.53-1.82), respectively.

## Discussion

To the best of our knowledge, the results of the present large prospective study showed that stable obesity in non-hypertensive individuals was significantly associated with an increased risk of incident hypertension among men and women who are middle-aged and older.

Previous studies that examined the relationship between BMI and hypertension reported results consistent with the present study. Many cross-sectional studies showed a dose-dependent relationship between BMI and the prevalence of hypertension in Caucasian [5, 21] and Asian [3, 13, 22] populations. Kawada [3] reported that the odds ratios for hypertension against the lowest quartile of BMI (separated by 20, 25 and 28) were 1.7, 3.6, and 7.2, respectively, with $95 \%$ CIs of 1.2-2.3, 2.5-5.2 and 4.7-11.0, respectively, among middle-aged men and women (5 346 men and 11525 women, aged 40-59). Prospective studies [4, 12, 23] also showed similar results to the present study. The Physicians' Health Study (13 563 healthy and non-hypertensive men in U.S.) [4] showed that the HRs (95\% CIs) of developing hypertension for men with a BMI of 22.4-23.6, 23.7-24.7, 24.8-26.4, and $>26.4$ $\mathrm{kg} / \mathrm{m}^{2}$ were 1.20 (1.09-1.32), 1.31 (1.19-1.44), 1.56 (1.42-1.72), and 1.85 (1.69-2.03), respectively ( $P$ for the trend, $<0.001$ ), compared with participants who had the lowest BMI quintile ( $<22.4 \mathrm{~kg} / \mathrm{m}^{2}$ ). A cohort study of U.S. female nurses (82 473 women, aged 30-55) [12] showed that the multivariate HRs (95\% CIs) of developing hypertension for women with a BMI of 22.0-22.9, 24.0-24.9, 26.0-27.9, and $>31.0 \mathrm{~kg} / \mathrm{m}^{2}$ were 1.57 (1.44-1.72), 2.15 (1.97-2.35), 3.33 (3.06-3.62), and 6.31 (5.80-6.87), respectively ( $P$ for the trend, $<0.001$ ), compared with women who had the lowest BMI decile ( $<20.0 \mathrm{~kg} / \mathrm{m}^{2}$ ), and an increase in BMI of $1 \mathrm{~kg} / \mathrm{m}^{2}$ was associated with a $12 \%$ increased risk for incident hypertension. These results suggested a strong association between higher BMI and increased risk of incident hypertension in men and women.

We also examined the effect of 5-year changes in BMI category (BMI less than, or equal or
more than $25 \mathrm{~kg} / \mathrm{m}^{2}$ ) on incident hypertension. The HRs of non-obese people at a 5 -years follow-up, despite obesity at baseline, was not significant compared with non-obese people at both baseline and at a 5-years follow-up. In contrast, the HRs of obese individuals at a 5-year follow-up, despite non-obesity at baseline, was significantly higher compared with non-obese people at both baseline and at a 5 -years follow-up. The effect of change in BMI on blood pressure has already been examined in some studies [12-18]. A systematic review [24] of lifestyle intervention studies reported differences ranging from -11 to +4 kg for weight, -7 to +2.2 mmHg for DBP and -13 to +6.1 mmHg for SBP. It is suggested that SBP differences were equal to a ratio of 1 kg to every 1 mmHg . These studies suggest the efficacy of weight loss for the hypertensive obese population. The present study further represented the efficacy of weight loss for the non-hypertensive obese population to prevent incident hypertension. Williams [25] examined the relationship between long-term stable individuals' BMI (change less than $\pm 0.4 \mathrm{~kg} / \mathrm{m}^{2}$ ) and the cumulative incidence of hypertension and showed that the odds ratio of each $\mathrm{kg} / \mathrm{m}^{2}$ increment in baseline BMI was 1.19 (95\% CIs: 1.14-1.24) in men and 1.11 (95\% CIs: 1.02-1.20) in women. Matsuo et al [26] reported in a cohort study of 5201 Japanese middle-aged male employees using of a time-dependent Cox proportional hazard model for analysis that the HRs ( $95 \%$ CIs) of stable BMI of 25.0-26.9, 27.0-29.9, and $\geq 30.0$ $\mathrm{kg} / \mathrm{m}^{2}$ were 1.11 (0.93-1.32), 1.34 (1.09-1.65) and 1.49 (1.09-2.04), respectively, compared with men who had a BMI of $23.0-24.9 \mathrm{~kg} / \mathrm{m}^{2}$. These results are consistent with our results, although Williams calculated the BMI with a self-reported weight and cumulative incidence of hypertension at 2 points (baseline and 7 years later), and Matsuo et al. studied middle-aged male employees.

The exact mechanism by which stable adiposity raises BP is uncertain. However, a likely explanation is that obesity-associated hypertension appears to be due to inadequate vasodilatation in the setting of increased blood volume and cardiac output. A defect in control
of vascular resistance has been attributed to enhanced activity of the sympathetic nervous system, abnormal rennin-angiotensin-aldosterone relations, and insulin resistance [27-31]. The peripheral vascular resistance is increased by adipocytokines (e.g., leptin, TNF- $\alpha$, RBP4) [32-34].

The study has several strengths. First, the effect of weight change during the follow-up period was taken into account to investigate the association between long-term weight stability and future incident risk for hypertension, while many previous epidemiological studies did not account for these factors. Second, the present study had a large cohort for which gender, age and BMI stratification analysis was possible. In addition, all blood samples in each year were measured by the same device, reagents, and quality control programs [35].

However, there are several limitations. First, the participation rate for the follow-up examinations was approximately $40 \%$, but the mean SBP and DBP did not differ between individuals who were and were not followed up. In this context, the potential selection bias may have been small. Second, the instrument used to measure the blood pressure was switched from the standard mercury sphygmomanometer to an automatic sphygmomanometer following 2005. The BP determined by means of an automated sphygmomanometer method was compared with those determined by a standard mercury sphygmomanometer method, using 18859 samples (non-medication participants) in 2004 and 2005. Comparability between BP measured using the 2 sphygmomanometers was acceptable (SBP: $r=0.69$, DBP: $r=0.55, P<0.05$, respectively). Third, we could not assess the potential confounding variables such as fat distribution, physical activity, nutritional status (e.g., sodium intake), and family history of hypertension.

In conclusion, the baseline BMI is associated with a future incident risk for hypertension, even after accounting for weight change during the follow-up period. Weight loss may be recommended for obese non-hypertensive individuals to prevention incident hypertension

267 among men and women who are middle-aged and older.

268

## Acknowledgement

We thank all the participants in this study.

## Conflict of interest

The authors declare no conflict of interest.

## References

1. Kannel WB. Role of blood pressure in cardiovascular disease: the Framingham Study. Angiology 1975; 26: 1-14.
2. Japanese Ministry of Health and Welfare. National Health and Nutrition Survey. In: Tokyo, Japan: Japanese Ministry of Health and Welfare, 2006. (http://www.mhlw.go.jp/bunya/kenkou/eiyou08/dl/01-03.pdf). (Accessed March 20, 2011).
3. Kawada T. Body mass index is a good predictor of hypertension and hyperlipidemia in a rural Japanese population. Int J Obes Relat Metab Disord 2002; 26: 725-729.
4. Gelber RP, Gaziano JM, Manson JE, Buring JE, Sesso HD. A prospective study of body mass index and the risk of developing hypertension in men. Am J Hypertens 2007; 20: 370-377.
5. Williams PT, Hoffman K, La I. Weight-related increases in hypertension, hypercholesterolemia, and diabetes risk in normal weight male and female runners. Arterioscler Thromb Vasc Biol 2007; 27: 1811-1819.
6. Nemesure B, Wu SY, Hennis A, Leske MC. The relationship of body mass index and waist-hip ratio on the 9-year incidence of diabetes and hypertension in a predominantly African-origin population. Ann Epidemiol 2008; 18: 657-663.
7. Nguyen TT, Adair LS, He K, Popkin BM. Optimal cutoff values for overweight: using body mass index to predict incidence of hypertension in 18- to 65-year-old Chinese adults. J Nutr 2008; 138: 1377-1382.
8. Pang W, Sun Z, Zheng L, Li J, Zhang X, Liu S et al. Body mass index and the prevalence of prehypertension and hypertension in a Chinese rural population. Intern Med 2008; 47: 893-897.
9. Shuger SL, Sui X, Church TS, Meriwether RA, Blair SN. Body mass index as a
predictor of hypertension incidence among initially healthy normotensive women. Am J Hypertens 2008; 21: 613-619.
10. Willett WC, Dietz WH, Colditz GA. Guidelines for healthy weight. N Engl J Med 1999; 341: 427-434.
11. Chei CL, Iso H, Yamagishi K, Tanigawa T, Cui R, Imano H et al. Body fat distribution and the risk of hypertension and diabetes among Japanese men and women. Hypertens Res 2008; 31: 851-857.
12. Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE et al. Body weight, weight change, and risk for hypertension in women. Ann Intern Med 1998; 128: 81-88.
13. Ishikawa-Takata K, Ohta T, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr 2002; 56: 601-607.
14. Yang G, Xiang YB, Zheng W, Xu WH, Zhang X, Li HL et al. Body weight and weight change in relation to blood pressure in normotensive men. J Hum Hypertens 2007; 21: 45-52.
15. Chen PC, Sung FC, Su TC, Chien KL, Hsu HC, Lee YT. Two-year change in body mass index and subsequent risk of hypertension among men and women in a Taiwan community. J Hypertens 2009; 27: 1370-1376.
16. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension 2000; 35: 544-549.
17. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289: 2560-2572.
18. Moore LL, Visioni AJ, Qureshi MM, Bradlee ML, Ellison RC, D'Agostino R. Weight loss in overweight adults and the long-term risk of hypertension: the Framingham study. Arch Intern Med 2005; 165: 1298-1303.
19. Cox DR, Oakes D. Analysis of Survival Data. Chapman and Hall, New York 1984.
20. Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model. Annu Rev Public Health 1999; 20: 145-157.
21. Bays HE, Chapman RH, Grandy S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract 2007; 61: 737-747.
22. Liu L, Choudhury SR, Okayama A, Hayakawa T, Kita Y, Ueshima H. Changes in body mass index and its relationships to other cardiovascular risk factors among Japanese population: results from the 1980 and 1990 national cardiovascular surveys in Japan. J Epidemiol 1999; 9: 163-174.
23. Hu G, Barengo NC, Tuomilehto J, Lakka TA, Nissinen A, Jousilahti P. Relationship of physical activity and body mass index to the risk of hypertension: a prospective study in Finland. Hypertension 2004; 43: 25-30.
24. Aucott L, Rothnie H, McIntyre L, Thapa M, Waweru C, Gray D. Long-term weight loss from lifestyle intervention benefits blood pressure?: a systematic review. Hypertension 2009; 54: 756-762.
25. Williams PT. Increases in weight and body size increase the odds for hypertension during 7 years of follow-up. Obesity (Silver Spring) 2008; 16: 2541-2548.
26. Matsuo T, Sairenchi T, Suzuki K, Tanaka K, Muto T. Long-term stable obesity increases risk of hypertension. Int J Obes (Lond) 2011; 35: 1056-1062.
27. Julius S, Valentini M, Palatini P. Overweight and hypertension: a 2-way street? Hypertension 2000; 35: 807-813.
28. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens 2001; 14: 304S-309S.
29. Hall JE, Hildebrandt DA, Kuo J. Obesity hypertension: role of leptin and sympathetic nervous system. Am J Hypertens 2001; 14: 103S-115S.
30. Verdecchia P, Angeli F. Natural history of hypertension subtypes. Circulation 2005; 111: 1094-1096.
31. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 2006; 26: 968-976.
32. Dustan HP. Obesity and hypertension in blacks. Cardiovasc Drugs Ther 4 Suppl 1990; 2: 395-402.
33. Patel JV, Lim HS, Dubb K, Hughes EA, Lip GY. Circulating levels of adiponectin, leptin, and tumour necrosis factor alpha in hypertension. Ann Med 2009; 41: 291-300.
34. Chiba M, Saitoh S, Ohnishi H, Akasaka H, Mitsumata K, Furukawa T et al. Associations of metabolic factors, especially serum retinol-binding protein 4 (RBP4), with blood pressure in Japanese--the Tanno and Sobetsu study. Endocr J 2010; 57: 811-817.
35. Nakamura M, Sato S, Shimamoto T. Improvement in Japanese clinical laboratory measurements of total cholesterol and HDL-cholesterol by the US Cholesterol Reference Method Laboratory Network. J Atheroscler Thromb 2003; 10: 145-153.

Figure legend
Figure 1
Abbreviations: HRs, hazard ratios; CIs, confidence intervals. Age-adjusted HRs with 95\% confidence intervals were adjusted for age (years) in 1998 and sex. Multivariate HRs with 95\% confidence intervals were adjusted for possible confounders measured in 1998: age (years), sex, systolic blood pressure ( mmHg ), diastolic blood pressure ( mmHg ), fasting status (yes or no), total cholesterol level ( $\mathrm{mmol} /$ liter), high density lipoprotein cholesterol level ( $\mathrm{mmol} /$ liter), log-transformed triglyceride level ( $\mathrm{mmol} /$ liter), lipid medication use (yes or no), blood glucose status (normal, border, hyperglycemia), diabetic medication use (yes or no), smoking status (never, ex-, $<20$ cigarettes/day, or $\geq 20$ cigarettes/day), and alcohol intake (never, sometimes, $<66 \mathrm{~g} /$ day, or $\geq 66 \mathrm{~g} /$ day). Bold values showed statistical significance ( $P<0.05$ ).

Table 1. Baseline characteristics of participants by body mass index (BMI) categories


Table 1. Baseline characteristics of participants by body mass index (BMI) categories (continued)


HDL = high-density lipoprotein. The means (SD) are shown for continuous variables: age, fasting and non-fasting blood glucose, systolic and diastolic blood pressure, total cholesterol, HDL cholesterol, and triglycerides. SI conversion factors: blood glucose values were converted to mmol/L by multiply by 0.05551 ; cholesterols values were converted to mmol/L by multiply by 0.02586 ; triglycerides values were converted to $\mathrm{mmo} / \mathrm{L}$ by multiply by 0.01129 .

Table 2. The effect of hazard ratios on hypertension within each of seven BMI categories

|  | Baseline BMI categories (kg/cm ${ }^{2}$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | < 19.0 | 19.0-20.9 | 21.0-22.9 | 23.0-24.9 | 25.0-26.9 | 27.0-29.9 | > 30.0 |
| Men, age 40-59 years ( $\mathrm{n}=8540$ ) |  |  |  |  |  |  |  |
| No. of person-years | 1590 | 5713 | 9042 | 8267 | 4964 | 1952 | 285 |
| No. of hypertension cases | 127 | 434 | 882 | 1048 | 740 | 351 | 61 |
| Incidence rates per 1000 person-years | 80 | 76 | 98 | 127 | 149 | 180 | 214 |
| Age-adjusted HRs (95\% CIs) | 1.00 | 1.01 (0.83-1.23) | 1.26 (1.05-1.52) | 1.57 (1.31-1.89) | 1.81 (1.50-2.19) | 2.12 (1.73-2.60) | 2.48 (1.83-3.36) |
| Model $1 \dagger$ HRs (95\% CIs) | 1.00 | 0.90 (0.74-1.09) | 1.05 (0.87-1.27) | 1.19 (0.98-1.44) | 1.36 (1.16-1.66) | 1.52 (1.23-1.89) | 1.75 (1.28-2.40) |
| Model $2 \ddagger$ HRs (95\% CIs) | 1.00 | 1.01 (0.59-1.73) | 0.97 (0.58-1.65) | 1.10 (0.64-1.88) | 1.82 (1.04-3.16) | 1.83 (1.00-3.35) | 2.37 (0.91-6.17) |
| Model 3§ HRs (95\% CIs) | 1.00 | 0.95 (0.78-1.15) | 1.13 (0.94-1.36) | 1.24 (1.03-1.50) | 1.42 (1.17-1.73) | 1.60 (1.30-1.97) | 1.77 (1.29-2.41) |
| Men, age 60-79 years ( $\mathrm{n}=9796$ ) |  |  |  |  |  |  |  |
| No. of person-years | 3831 | 6982 | 8334 | 6582 | 2937 | 1075 | 101 |
| No. of hypertension cases | 517 | 1177 | 1566 | 1366 | 710 | 314 | 38 |
| Incidence rates per 1000 person-years | 135 | 169 | 188 | 208 | 242 | 292 | 376 |
| Age-adjusted HRs (95\% CIs) | 1.00 | 1.25 (1.13-1.38) | 1.38 (1.25-1.52) | 1.51 (1.36-1.67) | 1.67 (1.49-1.87) | 1.94 (1.69-2.24) | 2.24 (1.61-3.11) |
| Model $1 \dagger$ HRs (95\% CIs) | 1.00 | 1.15 (1.03-1.27) | 1.20 (1.09-1.33) | 1.26 (1.13-1.41) | 1.35 (1.20-1.53) | 1.54 (1.32-1.78) | 1.68 (1.20-2.35) |
| Model $2 \ddagger$ HRs (95\% CIs) | 1.00 | 1.01 (0.71-1.44) | 1.24 (0.88-1.75) | 1.48 (1.03-2.13) | 1.52 (0.98-2.37) | 2.01 (1.11-3.64) | N/A |
| Model 3§ HRs (95\% CIs) | 1.00 | 1.11 (1.00-1.22) | 1.17 (1.06-1.29) | 1.26 (1.14-1.40) | 1.34 (1.19-1.51) | 1.48 (1.28-1.72) | 1.68 (1.21-2.35) |
| Women, age 40-59 years ( $\mathrm{n}=32133$ ) |  |  |  |  |  |  |  |
| No. of person-years | 10877 | 32781 | 45716 | 34389 | 16754 | 7410 | 1402 |
| No. of hypertension cases | 496 | 1682 | 2975 | 2969 | 1940 | 1001 | 265 |
| Incidence rates per 1000 person-years | 46 | 51 | 65 | 86 | 116 | 135 | 189 |
| Age-adjusted HRs (95\% CIs) | 1.00 | 1.15 (1.04-1.27) | 1.40 (1.27-1.54) | 1.76 (1.60-1.94) | 2.25 (2.04-2.49) | 2.56 (2.30-2.86) | 3.32 (2.86-3.86) |
| Model $1 \dagger$ HRs (95\% CIs) | 1.00 | 1.04 (0.94-1.15) | 1.15 (1.05-1.27) | 1.33 (1.20-1.46) | 1.58 (1.43-1.75) | 1.65 (1.48-1.84) | 1.90 (1.63-2.22) |
| Model $2 \ddagger$ HRs (95\% CIs) | 1.00 | 1.12 (0.90-1.14) | 1.23 (0.99-1.53) | 1.59 (1.28-1.98) | 1.67 (1.32-2.11) | 1.99 (1.52-2.60) | 1.86 (1.16-2.98) |
| Model 3§ HRs (95\% CIs) | 1.00 | 0.98 (0.89-1.08) | 1.12 (1.02-1.23) | 1.27 (1.16-1.39) | 1.47 (1.33-1.62) | 1.55 (1.39-1.73) | 1.91 (1.66-2.21) |
| Women, age 60-79 years ( $\mathrm{n}=17736$ ) |  |  |  |  |  |  |  |
| No. of person-years | 5535 | 10525 | 15260 | 12907 | 7673 | 3611 | 598 |
| No. of hypertension cases | 790 | 1591 | 2580 | 2569 | 1663 | 940 | 190 |
| Incidence rates per 1000 person-years | 143 | 151 | 169 | 199 | 217 | 260 | 318 |
| Age-adjusted HRs (95\% CIs) | 1.00 | 1.11 (1.02-1.21) | 1.24 (1.14-1.34) | 1.42 (1.31-1.54) | 1.53 (1.40-1.66) | 1.77 (1.61-1.95) | 2.07 (1.77-2.43) |
| Model $1 \dagger$ HRs (95\% CIs) | 1.00 | 1.04 (0.95-1.13) | 1.09 (1.01-1.19) | 1.21 (1.11-1.31) | 1.25 (1.15-1.37) | 1.39 (1.26-1.54) | 1.61 (1.37-1.90) |
| Model $2 \ddagger$ HRs (95\% CIs) | 1.00 | 1.04 (0.80-1.35) | 1.16 (0.90-1.49) | 1.25 (0.96-1.62) | 1.35 (1.02-1.80) | 1.20 (0.84-1.70) | 1.66 (0.82-3.38) |
| Model 3§ HRs (95\% CIs) | 1.00 | 1.06 (0.98-1.16) | 1.10 (1.02-1.19) | 1.22 (1.12-1.32) | 1.29 (1.18-1.41) | 1.40 (1.27-1.54) | 1.72 (1.47-2.01) |

Abbreviations: HRs, hazard ratios; CIs, confidence intervals; N/A, data was not available.
†Adjusted for age (years), systolic blood pressure ( mmHg ), diastolic blood pressure ( mmHg ), fasting status (yes or no), total cholesterol level (mmol/liter), high density lipoprotein $\dagger$ Adjusted for age (years), systolic blood pressure ( mmHg ), diastolic blood pressure ( mmHg ), fasting status (yes or no), total cholesterol level (mmol/iter), high density lipoprotein
cholesterol level ( $\mathrm{mmol} /$ liter), log-transformed triglyceride level ( $\mathrm{mmol} /$ /iter), lipid medication use (yes or no), blood glucose status (normal, border, hyperglycemia), diabetic medication use (yes or no), smoking status (never, ex-, $<20$ cigarettes/day, or $\geq 20$ cigarettes/day), and alcohol intake (never, sometimes, $<66 \mathrm{~g} /$ day, or $\geq 66 \mathrm{~g} /$ day $)$.
$\ddagger$ Addition of BMI ( $\mathrm{kg} / \mathrm{m}^{2}$ ), total cholesterol level ( $\mathrm{mmol} /$ liter), high-density lipoprotein cholesterol level ( $\mathrm{mmol} /$ liter) , and log-transformed triglyceride level ( $\mathrm{mmol} /$ liter) change values (the endpoint minus the baseline) to Model 1 for adjustment.
§Adjusted for time-dependent covariates: age (years), systolic blood pressure ( mmHg ), diastolic blood pressure ( mmHg ), fasting status (yes or no), total cholesterol level ( $\mathrm{mmol} / \mathrm{liter} \mathrm{)}$, density lipoprotein cholesterol level ( $\mathrm{mmol} /$ liter), log-transformed triglyceride level ( $\mathrm{mmol} / \mathrm{liter}$ ), lipid medication use (yes or no), blood glucose status (normal, border, hyperglycemia), diabetic medication use (yes or no), smoking status (never, ex-, $<20$ cigarettes/day, or $\geq 20$ cigarettes/day), and alcohol intake (never, sometimes, $<66 \mathrm{~g} / \mathrm{day}$, or $\geq 66 \mathrm{~g} / \mathrm{day}$ ).
Bold values showed statistical significance ( $P<0.05$ ).

Figure 1


