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Asymptotic Deficiency of the Estimator 
of a Parameter of an Autoregressive Process 

with the Missing Observation 

Masafumi- A KAHIRA * 

Abstract 

Let { X t } be defined by X t = 8Xt-1 + Ut (t = 1, 2, ... ), where { Ut } is a sequence of inde
pendently, identically and normally distributed random variables with mean 0 and variance 1 
and Xo is a normal random variable with mean 0 and variance 1/0-( 2

) and for each t Xo is 
independent of Ut . We assume that 18 1< 1 and consider the maximum likelihood estimator 
(MLE) 'of 8 based on the sample (X 0, X I, ... ,X T-l ,X T+ 1) in which X T is missing. It is shown 
that the bias-adjusted MLE is second order asymptotically efficient. When in the above auto
regressive process we assume that Xo = 0, the asymptotic deficiency of the MLE is given. 

1. Introduction. 

In the first order autoregressive (AR) processes the first order and the second order as
ymptotic efficiency of the MLE was discussed by Akahira [1 j , [2J , (3 J , [4 J . The first order 
asymptotic efficiency was extended by Kabaila [9] to an autoregressive moving average 
(ARMA) process when the innovations are not necessarily Gaussian and the second order 
asymptotic efficiency was done by Taniguchi (11] to a Gaussian ARMA process. 

In this paper we consider an AR process {Xt } which is defined by X t = 8Xt_ 1 + Ut(t = 
1, 2, ... ), where {Ut } is a sequence of independently, identically any normally distributed 
random variables with mean 0 and variance 1 and X 0 is a normal random variable with mean 0 
and variance 1/(1-8 2

) and for each t Xo is independent of Ut . We assume 18 I < 1. We con
sider the MLE based on the sample (Xo, Xl, ... , X T - 1 , X T +1) in which XT is missing. We shall 
show that the bias-adjusted MLE is second order asymptotically efficient. Further we assume 
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A 

that Xo =- 0 in the AR process. We shall obtain the asymptotic deficiency of the MLE 8ML 
AT 1 /\ T /\T+l 

based on the sample (Xl, ... , XT-l, XT+d with respect to the MLEs e - , e and e 
. ML ML ML 

based on the samples (Xl, ... ,X T-l),(Xl' ... , X T) and (Xl, ... , XT+ d, respectively. ! 

2. Definitions. 

Let (3:,~) be a sample space and e be a parameter space, which is assumed to be an open 
set in a Euclidean I-space Rl . We shall denote by (x(T), 58(T») the T-fold direct products of 
(x, 58). For each T =- 1, 2, ... , the points of l(T) will be denoted by x T = (Xl' ... , XT)' We 
consider a sequence of classes of probability measures {PT , a: ae e} (T = 1,2, ... ) each de-
fined on (x(T),Q3(T)) such that for each T= 1,2, ... and each Oe e the following holds: 

PT, e(BCT») = PT+ 1 ,e(B(T) XX) 

for all BCT)EQ3(T)· A "'-

An estimator of 0 is defined to be J: sequence {o I } of58( T)-measurable functions 0 T. For 
simplicity we may denote an estimator e instead or{ 8T L For an increasing sequence of posi-

A . 

tive numbers {CT} (cT tending to infinity) an estimator a is called consistent with order {CT} 
(or{ CT }-consistent for short) if for every 8 > 0 and every JJe E)' there exist a sufficiently 
small positive number [) and sufficiently large positive number L satisfying the following: 

A 

lim sup PT,e{ CT lOT -e 1.2:: L } < U. 

T+"'" e: Ie - tJ.\<[) 
/\, 

A {c T} -consistent estimator e is k-th order asymptotically median unbiased (or k-th order 
AMU) if for any liE e there exists a positive number 0 such that . 

lim 
T+oo 

lim 
T+oo 

f'. 1 
sup CTk - 1IPTe{8>8} --1=0. 

0: I O-JJ 1< (j ,- 2 

For each k = 1,2, '" we denote by Ak the class of the all k-th order AMU estimators. 
We have defined a first (second) order AMU estimator e* to be first (second) order as

ymptotically efficient in the class A 1 (A 2) if for any first (second) order AMU estimator fj 
and any u > 0 

"" A 
lim [PT,O {CT 18* - e I < u} - PT,O {CT 10 - e ! < u}] > O. 
T+oo 

~ A 

(limCT[PT,O{cTle*-O I<U}-PT,e{CT 10-0 l<u}J~O) 
T+oo 
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(e.g. see Akahira and Takeuchi [7]). 
A 

Let D be the class of estimators whose element 19 is best asymptotically normal and third 
order AMU and may be asymptotically expanded as 

A Z1(e) 1 1 
CT(e - e) = --+ r:;; Q(8) + ope ;::;:;-), 

~e) yT yT 

where 1(19) is the Fisher information, Z 1 (e) = Op(l), Q(8) = Op(I) and Eo[Z 1 (e)Q(8~] = 0(1) 
with the notation Eo [.] of the asymptotic expectation, and the distribution of cTC8 -8) ad
mits an Edgeworth expansion. We have defined an estimator e* in D to be third order asymp
totically efficient in the class D if for any estimator 8 in D and any u > 0 

~ A 

lim CT2 [PT,e {CT I 19*- 19 I < u} - PT,e {CT I 19 - 19 I < U } ].2. O. 
T+oo 

In the subsequent discussion we shall deal with only the case when cT =..Jj. 

Let kT(T = 1, 2, ... ) be positive numbers such that d=limT+oo(kT-T) exists, and the esti-
A A* . 

mators 19 T and 8 k T in the class D based on the sample sizes T and k T, Jespectively, ar~ asymp-
totically equivalent in the sense that asymptotic distributions of y'T(eT-8) ~nd vr(ekT-8) 
are "equal up to the order T-1

. Then d is called the asymptotic deficiency of 8kT with respect 
to 19 T (See Hodges and Lehmann [8]). If we denote by Q and Q* the terms of the order T -1/2 

in the stochastic expansio~s of ViCe T--e) and vr(§ kT-e), respectively, we see that the as
ymptotic deficiency d of ekT W.Lt. eT is given by l{ Ve(Q*)- Ve(Q)} ,where lis the Fisher 
information and Va designates the asymptotic variance (See Akahira [5], [6]). 

3. Second order asymptotic efficiency. 

Let Xt (t = 1, 2, ... ) be defined recursively by 

(3.1) X t = eXt-l + Ut (t = 1,2, ... ), 

where { Ut } is a sequence of independently, id.entica1ly and normally distributed random 
variables with mean 0 and variance 1 and Xo is a normal random variable with mean 0 and var
iance 1/(1-192

.) and for each t X ° is independent of Ut . We assume that 8 = (-1, 1), i.e., 
18 I < 1. Then it is easily seen that the process (3.1) is stationary. 

Let ~L be theMLE based on the sample (Xo, Xl, ... ,XT). Then it is known in Akahira 
[3] that the stochastic expansion of the MLE ~ L is given by 
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where 

1 a 
K(e) = TEe [( ae log L(e))3] 

with the likelihood function L(e) of (XO,XI , ... ,XT ). It is also shown that the bias-adjusted 
MLE and the bias-adjusted least squares estimator are second order asymptotically efficient. 

We consider the sample (Xo, Xl, .. , ,XT-1,XT+1) in which XT is missing. The joint den
sity of (Xo, Xl, ... ,XT - 1 , XT + 1) is given by 

t-B2 
I {( 2) 2 T-I( )2 

• 1+D2 exp [--2 l-e X o + t~-l x t - eX t - 1 (2rr)(T+ 1)/2 u 

We put 
1 a 

Z I (e) = r;;;- -log L(e) ; 
vT ae 

1 a2 a2 

Z2(e) = . ;;;;- {- log L(8) - Ee [aD2Iog L(e)]}; 
v T a8 2 u 

1 a 
1(8) = T Ee [(ae-1og L(8)}2]; 

1 a2 a 
l(e)= -Ee[{- logL(8)}{-logL(e)}]' 

T ae 2 ae ' 
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1 a 
K (8) = -T Ee [{-log L(8) f]. ae 

Then it is known that the stochastic expansion of the .A1LE ~M L based on the sample (X 0, Xl, 

... ,XT-l, XT+l)is given by 

(3.3) vr(rf _ 0) = Zl (8) + Z1 (0)Z2(8) _ 3J(8) + K(8) Z (0)2 + 0 (_1 ) 
ML 1(8) J(8)2vr 2l(0)3.jT 1 P Vr 

(e.g. see Akahira [3] and Akahira and Takeuchi [7]). 

Since 

T-2 1-30 2 

L x 2 + (x 2 + 2x x ) 
t=1 t (1+82)3 T+l T+l T-l 

02 (0 4 + 30 2 + 6) ----__ x 2 • 

(1 + ( 2)3 T-] , 

We have 

1 T-1 1 
(3.4) Z 1 (0) = _ r;;:: L UtXt-l + _ r;;; (R T - a ); 

yT t=1 yT 

1 T-2 1 1 
(3.5) Z2(8) = - . r;;;- L (~- -1 £)2) + Ope r;;;)' 

yT t=j -u yT 
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8 8 28 
a =-+ 

1-8 2 1+8 2 1-84
' 

Note that Ee (RT) = a. 

Since 

X T+1 = 8 2 XT-1 + BUT + UT+1, 

we obtain 

(3.6) RT= 8X02+ 8 {2(1+8 2)(8UT+UT+1)XT- 1 +(BUT +UT+1)2}. 
(1 + ( 2)2 

By (3.3), (3.4) and (3.5) we have 

-"'\ 1 T-1 1 1 1 T-1 
(3.7) 0r(8ML-8)= r;;:;; L UtXt-l + . r;;;,(RT-a)+ -- (r;;.- :z:; UX -1) 

yIT t= 1 vIT I3/2yr y T t=1 t t 

1 T - 2 1 3J + K 1 T-1 1 
. { - . r;;;- L (~- 1_ 112)} - 5/2;::;:;- (r;;;- L Ut Xt -1)2 + opt ;;:;:;-) , 

vT t=1 u 2I vT vT t=1 VT 

where I = 1(8) = 1/(1- ( 2
) + o(l/VY) and-l and K denote 1(8) and K(8). By (3.6) we obtain 

T-1 2 T-1 
= Ee [( L UtXt- 1 )(RT-8X )] + Ee [( L UtXt-1)(8X~ - a)] 

t"" 1 0 t = 1 

= 0; 

T-] T-2 1 
Ee[(:Z:; UtX t- 1){- :z:; (X?---2)}(RT-a)]=O: 

t=] t=1 1-8 

T-J 
Ee[( L UtX t_ 1)2(RT-a)]=O. 

t= 1 

/\ 

Hence the stochastic expansion (3.7) of the MLE8ML based on (Xo, Xl'"'' XT-J, XT+1) 
can be essentially reduced to the case when the stochastic expansion of the MLE based on 
(Xo, Xl, ... ,XT) is given by (3.2). 

In a similar way as in Akahlra [3] we have established the following: 
Theorem 3.1. The bias-adjusted MLE 0* (fA 2 ) based on the sample (Xo, Xl, '" ,XT-1, 

X T+ 1) is second order asymptotically efficient. 

-6-
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4. Asymptotic deficiency of the estimator. 

In this section we deal with the case when Xo = 0 in the AR process given by (3.1). Then 
we shall obtain the asymptotic deficiency of the MLE based on the sample (Xl, ... ,XT- 1, 
XT+1 ) with respect to theMLEs based on the samples (Xl , ... , XT-l), (Xl,'" , XT)and (Xl, 
... ,XT +1 ), respectively. By (3.2) it is shown that the bias-adjusted MLE based on the sample 
(X I, '" , X T) belongs to the class D. In a similar way as the independently and identically 
distributed sample case discussed in Akahira and Takeuchi [7] it is seen that the bias-adjusted 
MLE is third order asymptotically efficient in the class D. 

Next we consider the MLE ~'VJL based on the sample (Xl) .,. ,XT- 1, XT+d. By (3.7) we 
have 

, 1 I I 

where ZI = Z1 + yr(RT -a) ; 

1 31+ K 
Q=-ZI'Z - --Z '2 I 2 2P 1, 

1 T-l 1 T-2 1 
with Z1' = r;;;- L UtXt-l; Z2 = - r;;; L: (r - -2); 

V T t = 1 V T t = 1 t l-() 

() 
RT' = 2 2 {2(1 + ()2)(() UT + UT+l )XT- 1 + (() UT + UT+l)2}; 

(I + () ) 

, () 
a = 

Note that Eo(RT') = a' . 

Since 

E e(ZI'3 Z2 2) = 0(;); Ee(Z'1 4 Z2) = o(~); EeCZI(5) = OC)y); 

Ee [ZI'2 Z2 2(R T' - a')] = o(Jr); Ee [ZI'3 Z2 (RT' - a)] = 0(;); 
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it follows that 

Hence the bias-adjusted MLE fJ*ML based on the sample (Xl, ... , XT-1,XT+l) belongs to the 

class D. 1\ 

We consider the estimator 8~1 based on the sample (Xl, ... , XT-1) which has the stocha-
stic expansion 

.-::\ Z'l 1 1 
(4.2) VIT(8 T - 1 - e)=- + -Qo + op(-), 

ML Vi Vii Fr 

1, 31 + K '2 
where Qo =-Z1 Z2 - -- Zl . 

I 2P 

Let ~~ be the MLE based on the sample (Xl, ... , X T) and e;;i the bias-adjusted MLE. We 

put ST = yfiT(~;{L - 8). Then fI ~ has cumulants of the following form: 

Ee(ST) = ~ + o(.l); 
~ T 

T 1 
Ve(ST) = 1 +-+ 0(-) ; 

T T 

It is noted by Akahira [5] that only the terms of the order of T-1 in the cumulants are essen
tially different between the estimators §;;~ and'$' ~L since they belong to the class D. 

Also the Edgeworth expansion of the distribution of 8'JL is given by 

(4.3) 

_ ~ (u 3 -3u) ¢ (u) - rP3 (u 5 _ lOu 3 + 15u) ¢ (u) 
24T 72T 
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_ 2 p. 

- 1+J1 U ¢ (u)-~ (U3~ 3u) ¢ (U) + O(..l) 
2T 6T T ' 

I 
where <l>(u) = too ¢(x)dX with ¢(X)= ,fE/-x2 /2. 

Since by (4.1) 

Ee [Q(R T' -a')] = 0, 

it follows by (4.1), (4.2), (4.3) and a similar way as in Akahira ([5], page 71) that the Edge
worth expansion of the conditional distribution of ~L based on the sample (Xl, ... ,XT - 1 , 

XT+d givenRT' is obtained by 

(4.4) PT+l,e{ViT(eML -e)$U IRTf} 

=PT+l,e{-JIT(~~i-e)~u -~(RT'-a') IRT'} 

1 ( , / :\ J1 ( 1 ( , ')) = <I>(u - - R T - a)) - - ¢ u - - RT - a 
yJT Vr..fiT 

{33 { 1 ( , ')2 } ( 1 , ')) - -- (U - - R T - a ) - I ¢ u - - (RT - a 
6ft Vii' y7T 

_ ~ (u 3 -3u) ¢(u) - {3l (u 5_ IOu 3 + 15u) ¢(u) 
24T 72T 

7 + U 2 + 1 {33 U 3 I 
- u ¢ (u)--(u -3u) ¢ (u) + 0(-) 

2T 6T T 

{332 5 3 7 + fJ.2 + I {33fJ. 3 
--(u -lOu + 15u)¢(u)- u ¢(u)--(u -3u)¢(u) 

72T 2T 6T 

I ") () I ( ")2 J1, ') ( - r;;;, (RT -a ¢ u + -- RT -a u ¢ (u)- r; (RT -a u¢ u) 
yIT 2IT yIT 

- ~ (RT'-a')u(u 2 -I)¢(u)+ ~ (RT'-:-a')u¢(u)+o(-L). 
6yI T 3yI T T 
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By (4.4) we have 

(4.5) PT+l,e{-JiT(eML -e)s..U} 

=Ee[PT+l,eh!jT(8ML-e)~U IRT'}] 

/1 P3 2 (34 (3 ) () = <I>(u) - -¢ (u)- --(u -1) ¢ (u)- - u -3u ¢ u 
~ 6~ 24T 

(33
2 

5 3 7 +/12 + 1 P3/1 3 
- - (u -lOu + 15 u) ¢ (u) - u ¢ (u) - 6T (u - 3u) ¢ (u) 

72T 2T 

+ _1_{ Eo (RT'- a')2) u ¢ (u) + o(.-L). 
2fT T 

Since 

it follows that 

Hence the variance of R T' is given by 

(4.6) Ve (R r ') = Ee(R r '-a')2 = Ee (R r '2) - a'2 

In a similar way as in Akahlra ([5], page· 71) we have by (4.3) 

I'r 1 
(4.7) PT-l,e {ViT (e M~ - e) ~u} 
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~ ~3 ( 2 ~4 3 ==cI>(U)- ;;;:¢(U)-c.r;;:U -l)¢(u)--(U -3u)¢(u) 
VT ~T 24T 

{33
2 

5 3 7 -1 + ~2 
---(u -lOu +15u)¢(u)- u¢(u) 

72T 2T 

~3~ 3 1 --- (u - 3u) ¢ (u) + 0(-) . 
6T T ' 

. r;;;; I\T+ 1 } (4.8) PT +1 ,8 {V IT (() ML - () ~ u 

== <I> (u) - . J!;; ¢ (u) - {3~ (u 2 
- 1) ¢ (u) -~ (u 3 - 3u) ¢ (u) 

vT 6vT 24T 

{3 2 
__ 3_ (uS - 10u 3 + 15u) ¢ (u) 

72T 

{33~ 3 () (1 ) - --;;:r(u - 3u) ¢ u + 0 T ' 

where L1 == 7 + 1 and 71 = 7 - 1 

"'T 1 7 1 
with Ve (-vlI(T-I) ce AiL - ())) = 1 + T:~ + oCT_I); 

Ve (-JJTT+l)(fjTM+Ll - ())) = 1 + .2L. + 0(_1_) . 
T + 1 T+l 

Note that the difference in the above (4.7) and (4.8) appears in the sixth terms of their ri~ht
hand sides. It is ~een by (4.3),(4.7)and(4.8) that the asymptotic deficiencies of 8J11 and 8 M+l 
with respect to () :; L are equal to 1 and -1, respectively, i.e., 7-1 - 7 = 1 and 71 - 7 = -1. 

It follows by (4.3), (4.5), (4.7), (4.8) and Akahira [5] that the asymptotic deficiencies of 
" "'T-l '" T "'T+ 1 . 
()ML based on the sample (Xl, ... ,XT- 1,XT+l) w.r.t. ()ML' ()ML and ()ML areglVenby 

- Ve(RT')/I, 1- {Ve(Ry')/I}and2-{Vt9 (RT')/I}with(4.6),respectively.Hencewehavees
tablished the following. 

Theorem 4.1. The asymptotic deficiencies of eML based on the sample (Xl, ... ,XT- 1 
"'T-l A T "T+l . . ' 

X T+ 1) with respect to () M L ' eM Land eM L are gIven ill the table below. 

- 11 -
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Asymptotic deficiency of eM L W.T. 1. 8 

_ 262 (6 2 + 3) 

(1 + 62 ? 

5 - (6 2 + 2? 
(1 + 62)2 

Remark. It is seen that the loss of informations on 6 from the sample (Xl, '" , X T- 1 ~ 

XT+d with respect to the samples (Xl, ... ,XT - d, (Xl, ... ,XT) and (Xl, ... ,XT+l) through 
the MLE are given by the asymptotic deficiencies depending on 6 in the table in Theorem 4.1, 
respectively. 

It is natural that the asymptotic deficiencies of eM L W.f. 1. '8~-Ll and (fiti .a,re negative 

and positive, respectively since the based sample of ~L includes that ofeI;i and is done in 

that of e~1. It is also seen that the asymptotic deficiency of eML W.Lt. eJ;L is positive if 

I 6 I < ..Jy'5-2,,; 0.486 and negative if ..Jy'5-2 < 16 1< 1. The fact means that for the sample 
(Xl, '" ,XT - 1 ), XT is more informative than X T +1 if 16 1<"';0-2 and XT is less informa
tive than X T+ 1 if ..Jv'5- 2 < I 6 I < 1. It seems reasonable in the process (3.1) since it is better 

to contract the spacing of the observations if I 6 I is small and expand it if I 6 I is big. Further 
it may be extended to the problem on the optimum spacing of observations from a process 
([10]). 

In a similar way as the above discussion it may be possible to obtain the asymptotic defi
ciency of the MLE based on the sample (Xl, ... ,Xi, Xi-t-k , ... ,XT+l) in which Xi+l, ... , 
Xi+k-l are missing, where 1 ~ i < i + k ~ T + 1 and that of the MLE based on the sample in 
which any observations except the extremes are missing. 
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