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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN 

NON-REGULAR CASES, II: BOUNDS OF ASYMPTOTIC 

DISTRIBUTIONS OF CONSISTENT ESTIMATORS* 

1. Introduction 

By Masafumi AKAHI RA 

University .of Electro,..Communications 

A consistent estimator with order {cn} (or a {cn}-consistent estimator) is defined· in 
Akahira [IJ, where the necessary conditions for the existence of such an estimator are 
,established and the bounds of the orders of convergence of consistent estimators are ob
tained for non-regular cases. 

In the present pap.er the asymptotic accuracies of {cn}-consistent .estimators, that is, 
the bounds of their asymptotic distributions are discussed in similar cases as those studied 
in [1]. The approach is similar to Bahadur (23 dealing with the bound for asymptotic 
variances. We shall define an estimator to be uniformly asymptotically most accurate if 
the asymptotic distribution of it attains uniformly the bound of the asymptotic distributions 
of asymptotically median unbiased estimators. If the asymptotic distribution of an estimator 
{Tn} attains the bound at one F.oint, then {Tn} is called to be asymptotically most accurate 
.at the point. Supposythat Xl> X2 , "', Xn, ... is a sequence of independent identically 
distributed random variables having the density of the same location Farameter Case ;as 
that in [lJ. If a=2 and a>2, then the maximum likelihood estimators with the 
asymptotic normal distributions N(O, 1/11) and N(O, 1/12) of order {en log n)1/2} and order 

1 ( A"2 B"2.) {nl/2} are uniformly asymptotically most accurate, respectively, where 11=2 ~+~ 

A"2 
jf /3=2,11 = 2A' if /3>2, andJ2=Eo[{W/a{l)log!(x-8)YJ· If a={3=l and A'=B', then 

it is shown that certain estimators with the a$yn;tptotic Weibull distributions of order {n} 
·are asymptotically most accurate at some point. Furthermore we shall obtain the bounds 
,of orders of convergence of consistent estimators and those of the orders of their asymptotic 
distributions in non-regular cases. Also some results in terms .of the asymptotic distribu
tions of estimators are given .in Takeuchi [5]. 

2. Notations and Definitions 

Let (iE, 58) b.e a sample space. We .consider a family of probability measures on 
'5B, ~={Po: {lE@}, wher:e the index set@ is called a parameter space. We asspme tha.t@ 
is an open set in a Euclidean I-space RI. Consider n-fold direct products (x~n), ~(n» .. of 
{iE, 58) and the corresponding product measures po(n) of Po. 

For each n=l, 2, "', the points of iE(n) will .be denoted by .i\=(Xl, "', x tl). 

* Received October 29, 1974. 
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100 M. AKAHIRA 

An estimator of (j is defined to be a sequence {T .. : n= 1, 2, ... } of ~(")-measurable 
function T .. on x(") into @ (n= 1, 2, ... ). For an increasing sequence of positive numbers 
{e,,: n=1, 2, .. J (e" tending to irifinity) an estimator {T .. : n=l, 2, .. } is called consistent 
with order {c,,} (or {c .. }-consistent for short) if for every 8>0 and every () of @, there 
exist a sufficiently small positive number 0 and a sufficiently large positive number L satis
fying the following: 

(Akahira [IJ). 
Order {c .. '} is called to be greater than order {c .. } if lim cn/e .. ' =0 . .. ""'.., 
Definition 2.1. A distribution function F(J, Tf§.(.) is called to be the asymptotic distribu

tion function of an estimator T={T .. } of orders Q";={cn} if for each real number y, Fo,fJ..(y) 
is continuous in tJ and for any (}E@ there exists a positive number d such that at any 
continuity points y of F(J, ~(y), 

lim sup IP(J{")({c .. (T,,-(j)'::;y})-Fo,~(Y)1 =0 . 
.. "",00 (J; J(J-SJ<d 

Definition 2.2. T={T .. } is called asymptotically median unbiased if Fo,Tf§.(O- )'::;1/2~ 

F(J,~(0+)2::1/2. Specially if Fo,Tf§.(0-)=Fo,~(0+)=1/2, then T is called exactly asympto
tically median unbiased. 

Definition 2.3. Suppose that T* ={T .. *} is (exactly) asymptotically median unbiased, it 
is called asymptotically most accurate at y if 

{ 

inf Fo,TJ-(y) for y<O, 
Fo,T*f§.(y)= TEstMf§. 

sup Fo, jf§.(y) for y>O, 
TEstMf§. 

where stMf§. is the class of all (exactly) asymptotically median unbiased estimators with the 
same order Q";={cn}. 

Definition 2.4. T* ={T .. *} is called uniformly asymptotically most accurate if both 
(2.1) and (2.2) of the following hold: 

Fo,T*f§.(y)= inf Fo,Tf§.(y) for all y<O, (2.1) 
TEstMf§. 

Fo, T*f§.(y) = sup Fo, ~(y) for all y>O. (2.2) 
TE'.itMf§. 

Moreover, if either (2.1) or (2.2) hold, T* is called one-sided most accurate. 

3. Bounds of Asymptotic Distributions of Consistent Estimators 

In this section we shall show that there exist the asymptotic distribution of the esti
mator of some order which is uniformly asymptotically most accurate or asymptotically 
most accurate at some point, that is, attains the bound of the asymptotic distributions of 
asymptotically median unbiased estimators uniformly or at some point. 

Now we suppose that every Po(' )((j E@) is absolutely continuous with respect to O'-finite 
measure fl.. We denote the density dP(J/dfl. by f(·: 8) and by A((j) the set of points in the 
space of x for which f(x: tJ»O. 

For any two points tJ and (,0 in @ we put 
Z(x: (,0, tJ)=XA{~)nA{O)(X) log{f(x: ('o)/f(x: (j)} 

where XA(~)nA{(J) denotes the indicator (or the characteristic function) of A(c,o)nA((j). Then 
we shall consider the following cases. 
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR 101 

Case 1. For some sequence {c,,: n= 1, 2, .. J with c,,-+co(n-+co), 

lim{\ f(x: f)- yc,,-l)dx}" 
" .... oo JAW) 

=1 

for -co<y<co and the following hold: 

where 

0< V,,«(J)<co (n= 1, 2, ... ); 
0< V,,*«(J) < co (n=I, 2, ... ); 

lim V,,*«(J)/V,lf))=r(>O); 

81yl (8)0), 

M,,«(J) = ~xxdQo(xIA(YC" -1: f))); 

M,,*«(J) = ~xxdQO_YC,,-l(xIA(yc,,-l: f))); 

V,,«(J) = ~x {x- M"(f))}ZdQoCxIA(yc,, -1: f))); 

V" *«(J) = ~x {x- M" *«(J)}ZdQo-Yc" -l(xIA(YCn -1: f))) 

with A(yc,,-l:(J)=A(f)-yc,,-l)nA«(J), and the following relations hold: for any e>O 

(3.1) 

V
I«(J) \ _ x 2dQoCx+M,,(f))IA(YCn -1: (J))-+O as n-+co (3.2) 

" J{\xl>ty'"V"W)} 

uniformly in any compact subset of @, and for any e>O 

V l«(J) \ __ x 2dQo_YC,,-1(X+ M" *(f))IA(yc" -1: f)))-+O as n-+co (3.3) 
n J f/xl>£y'"v,,*w)} 

uniformly in any compact subset of @, where 

QoCEIA(yc,,-l: f))) PoC{x: Z(x: f)-yc,,-I, f))EE}nA(yc,,-l: f))) 
Po(A(yc" 1: fJ)) 

for all EEm and 

Qo-yc"-l(FIA(yc,, -1: f))) 

for all FEm. 

PO-YC,,-l({X: Z(x: (J - yc" -1, (J)EF}nA(Yc" -1: (J)) 
PO- yc"-l(A(yc,, -1: f))) 

Case II. For some sequence {c,,': n= 1, 2, .. J with c,,'-+co(n-+co), 

lim {\ f(x: f))dp.} n 
" ... oo JAW-YC,,'-l) 

{
e-ca.*ya for O'::;y.::; sa. * , 

= e-Calyla for -sa.'::;y'::;O, 

lim{\ f(x:(J_YC,,'-l)dp.}n 
" .... .., JAW) 

(3.4) 

{
e-Caya for O.::;y,::;sa.*, 

= e-Ca.*IY~a. for -sa.,::;y,::;O, (3.5) 

where IX and Ca are positive numbers and Sa= ( ~a log 2) and Ca.* is a nonnegative 

number and sa. * = (C~* log 2) if Ca*>O, sa.*=co if Ca*="O, and the following hold: 

0< V,,'«(J) < co (n= 1, 2, ... ); 
0< Vn*'(f))<co (n=I, 2, ... ); 
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where 

and for any E:>O 

M. AKAHiRA 

lim V" *'(fJ)j V,,'(fJ) = r'(>O); 

lim n(M" *'(fJ) - M,,'(fJ» ° 
,,_00 v'nV,,'(fJ) , 

M,,'(fJ) = ~xxdQoCxIA(yC.,'-I: fJ»; 

M" *'(fJ) = ~x xdQo~YC"I-l(xIA(yc,,'-l: fJ»; 

Vn'(fJ) = ~x {x- M.,'(fJ)}2dQo(xIA(yc,,'-l; fJ»; 

V" *'({})= ~x {x- M" *'(fJ)}~dQo_YC"I-l(xIA(yc,,'-l: fJ», 

V ~(fJ) \ -- x 2dQo(x+Mn'(fJ)IA(yc,,'-I: fJ»-+O as n-+oo (3.6) 
" J{lxl>EV"V,,'W!l 

uniformly in any compact subset of @, and for any E:>O 

V ;'(fJ) \ -- x 2dQt9_YC"I-l(X+ M" *'(fJ)IA(yc,,'-l: fJ»-+O as n-+oo (3.7) 
" J{lxl>EvnV,,*'\dJl 

uniformly in any compact subset of @, where 

Q (EIA( ·1-1. fJ»= Pt9({x: Z(x: fJ - yc,,'-I, fJ)EE}n A(yc,.'-l: fJ»_ 
19 yc". Pt9(A(yc,,'-I: fJ» 

for all EE~ and 
'Q 1_ (F/A( 1-1. fJ»= Polyc,,'-l({x: Z(x: fJ-YCri/-I, fJ)EF}nA(yc,/-l: fJ» 

t9-yc" I yc". 1-1. 
PO- YC,t'--l(A(yc" . fJ» 

for all FE~. 

LEMMA 3.1. Let Xl> X z, ••• , X", .,. be a sequence of independent identically distributed 
(U.d.) random variables with a density function satisfying Case 1. For testing H: fJ = fJ o 

against A: fJ=fJo-yc,,-l(y*O), consider the sequence of the most powerful level all tests cp" 
such that 

_{I, if x"EDn(yc" -1: fJo)U[{~Z"i(fJo»k"}nA"(Yc,, -1: fJo)], 
cp,,(xn)- " 

0, if x"tED"(ycn -1: fJo)U[{2:Z"i(fJo»k,,}nA"(yc,,-l: fJo)], 
,,,,1 

where a,,=Et9o (CfJ,,), Z"i({}) = Z(Xj: fJ-yc,,-I, fJ), k,,= -Klylv'nVn*({}o)+M,,*(fJo) (K=o/r), 
"" n 

Dn(ycn -1: fJ O)= x A({}o - yc" -1) - X AUlo) and An(yc,,-1: (}o)= x A(yctl -
I : fJo). Then the following 

;=1 ;=1 ;=1 

hold: 

limEOo -(Y/K)cn-'-l(CfJ,,)=(])(lyJ) for -oo<y<oo, 
12...-+ 00 . 

where 

PROOF. From (3.1) we have 
lim P(") t9o-yc,,-l(Dn(ycn -1: fJo» ,,_co 

= 1 -lim {\ f(x: fJ 0 ---YCn -1 )dx} n 
,,"",co JAWo) 

=0 

-6----=-
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR 103 

for -co<y<co; 
lim Poo(t»{1Y'(YCn -I: (Jo»=O (3.11) 
n->'" 

for -co<y<co. 
Since Zn1((}), Zn2((J) , are independent and (3.2) and (3.3) hold, it follows from the 

central limit theorem (Gnedenko and Kolmogorov [4]) that the distribution laws of 

f±'Zni((J)-nMn(f})}/v'nVnC(J) and r£Zni((J)-nMn*((J)}/v'nVn*((J) converge to the nomal law 
1;1 ;=1 

N(O, 1) uniformly in any compact subset of @. Hence it follows from (3.11) that 

lim EOo(<[Jn) 

= lim POo (n)({iZ,,;((Jo) >kn}n An(ycn -1: '(Jo» 
1=1 

= lim [Po a (n)({(i:ZlIi((JO) -nMn *((Jo»/v' n Vn *((Jo» - Klyl}IAn(ycn -1: (Jo»' POo (n)(An(ycn -1: (Jo)] 
n-tOO i=l 

= ~~ [Po a (n) ( {(I~Zn;((Jo) -nMn((JO»/v' n V,,((Jo) > -Klyl ~ v,;n~~~ + v' n ;n((Jo) (Mn *((Jo)- Mn((Jo»} 

IAn(yc,,-l: (Jo».poo(An(ycn -1: (Jo») ] 

= 1- (/)(0) 

1 
=2" 
Hence (3.8) holds. 

Also it follows from (3.10) that 

lim EOo-ycn -l(<[Jn) 
n"'co 

n 

= lim p(nJOO-YCn-l({~Zni((JO»kn}nAn(ycn -1: (Jo» 
,.1-;.-00 i=l ' 

n 

= lim [p(n) OO-YCn -l({(~Zn;((JO) -nMn *((Jo»/v' n Vn*((Jo» - KlyllAn(ycn -1: (JO» 
n-+ oo i=l 

.p(n)oo_YCn-l(An(YCn~l: (JO»] 

= 1 -lim p(n) Oo-yen-I( {C±'Zni((Jo) -nMn *((Jo»/v' n Vn *((Jo):5, - KlyllAn(ycn -1: (JO» 
n-;co i=l 

=1-(/)(-Klyl) 
= (/)(Klyl) 

for -co<y<co. 
Thus we complete the proof. 

LEMMA 3.2. Let XI. X 2 , "', X n , ... be a sequence of i.i.d. random variables with a 
density function satisfying Case II. For testing H: (J=(Jo against A+: (}=(Jo-ycn'-l(y>O), 
consider the sequence of the most powerful level an + test <[In + such that 

+ _ _{I, if Xn EDn(ycn'-l: (Jo)U [\~Znt((Jo»kn +}. nAn(ycn'-l: (Jo)], 
~ ~J- n 

0, if xnttDn(ycn'-l: (Jo)U[{~Zni+({)o»kn+}nAn(ycn'-l: ( 0)]> 
;;1 

where (Xn+=EOo(q;,,+), Z,,;+((J) = Z(Xi: (J_yc ll'-l, (J), k,,+= -Ky+;rrv'nVn*'((Jo)+Mn*'(f}o) and 

Ky+=rl-ly-a(/)-l(~ eCa*ya) if Ca*>O, KY+=r'-ly-a(/)-l(~) if Ca*=O. For testing H: (J=(Jo 

against A -: (J = (Jo - YCn' -l(y<O), consider the sequence of the most powerful level an - tests 
<[In - such that 
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104 M. AKAHIRA 

" 

{

I, if x .. cD"(yc,,'-l: Oo)U[{~Z"'i-(Oo»k .. -}nA"(yc .. '-l: Oo)J, 
qJ .. -(X .. )= ,:1 

0, if x"t!::D"(YC .. '-l: Oo)U[{2::Z"i-(Oo»k .. -}nA"(yc .. '-l: Oo)J, 
. i=l 

where a .. -=Eoo(qJ .. -), Z .. i-(O)=Z(Xi: 0- yc,,'-l, 0), k,.= -Ky-lyIC\/n V .. *(Oo)+M .. *' (0 0 ) and 

KY-=r'-lIYI-aa>-l(~ eCaIYlll). 

Then the following hold: 

lim a .. +=1im cx .. -=.l; 
n-tCO n-+co 2 

lim Eo '-l(qJ +)= l_e-Caya+.le-(Ca-Ca",)ya for O<y<s *. 
n-+

CO 
o-yen n 2 - - a , 

lim Eoo_yc',.-l(qJ .. -)=l-e-Ca"'IYla+ 21 e(Ca-cll*)lyla for -sa~y~O. 
,. .... eo 

PROOF. From (3.4) and (3.5) we have 
lim POo(")(A"(yc;/-l: ( 0» 
,.-teo 

=1im{\ f(x: Oo)dJ-l}" 
" ... eo JA(OO-yc .. '-l) 

{
e-ca"'ya for O~y~sa, 

= e-CalYla for -Sa~y~O, 
lim P(,.) Oo-yc,.'-l(A"(yc,,' -1: ( 0» 
fi-tOO 

=1im{\ f(x: OO-yC,.'-l)dJ-l}" 
" ... '" JA(.'Jo) 

{
e-Ca,a for O~y~sa*, 

= e-ca*l.yla for -Sa~y~O, 
lim P(")o_yc,.I-1(D"(YC,.'-l: ( 0» 
n-+ CO 

= 1-lim{1 f(x: 00 - yc,.'-l)dJ-l}fI 
n"'''' JA<Oo) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

{
l-e-ca,a for O~y'::;;Sa*, 

= 1-e-ca*lyla for -sa'::;;y.::;;O. (3.17) 

Since Z,.1+(0), Zn2+(0), ... are independent and (3.6) and (3.7) hold, it follows from the 

central limit theorem (Gnedenko and Kolmogorov [4J) that the distribution laws of 

r±Z,.i+(O)-nMn'(O)}/v'nV,.'(O) and {±Zni+(O)-nMn*'(O)}fv'nV,,*'(O) converge to the normal 
;=1 i=1 

law N(O, 1) uniformly in any compact subset of @. Hence it follows from (3.15) that 

lim Eoo(qJ" +) 
n-teo 

= lim. POo(")({iZ"t(Oo»kn +}n A"(yc,.'-l: ( 0» 
n..yoo i=l 

= lim [Po 0 (")({C£Z"i+(Oo)-nM*'(Oo»/v' n V" *'(00» - Ky +ya}IA"(yc,,'-l: ( 0» 
n-+ OO i=l 

·poo(n)(A"(YC,.'-l: Oo»J 

=:~[poo(n)( {(~Z"i+(Oo)-nM,.' (0 0 )/ v'n Vn'(Oo» -Ky +y't~;:~~1 

+ v' n ~'(Oo) (M" *'(00)- M,,'(Oo)} I An(yc,.'-l : Oo»·poo(")(An(yc,.'-l: Oo»J 
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR 105 

= (/)(r' Ky + ya)e-ca*ya 

= 1/2 
for O.::;y,::;sa*. 

SimiIary we have 

= (/)(r' K, -lyla)e-CaIYla 

=1/2 

for -sa'::;y'::;O, where (j)(r' Ky -lyla)=.leCa1y)a. 
2 

Hence (3.12) holds. 
Also it follows from (3.16) that 

" lim P(1I) OO-YCII'-l({:ZZ"i +«(Jo» k" +}nA"(Ycn' -1: (Jo» 
n-co i=l 

" =1im [P(")OO-YC,,'-1({(~Z1It«(Jo) -nM" *'«(J»/.jn V1l *«(Jo» - Ky + ya}IAn(yc/- 1
: (Jo» 

11-;'00 i=1 

• p(n) Oo-ycn'-1(A1I(yc" -1: (Jo»] 
= (/)(r' Ky + y")e-Caya 

=.le-<Ca-ca*)ya 
2 

for O.::;y'::;sa*. 
SimiIary we have 

for -Sa'::;y.::;O. 

lim p<,,) OO-yc"'-l({iZ,,i-«(J)> k1l -}n A"(yc,,'-l: (Jo» 
n-+co i=l 

= (j)(r' K y -lyla)e-Ca*lyla 

= ~e(Ca-Ca*) Iyla 
2 

Hence it follows from (3.17), (3.18) and (3.19) that 

lim Eo '-l(q; +)= 1_e-Caya+.le-(Ca-Ca*)ya for O.::;y'::;sa*; 
fl,-H.o -yen n 2 

lim Eo- yc,,'-l(q;n -)= 1-e-Ca*lyla+ 21 e:ca-Ca*)!yla for -sa'::;y.::;O. 
11-->0> 

Thus we complete the proof. 

(3.18) 

(3.19) 

Let I=Rl. Now we suppose that every Po(· )«(J E@) is absolutely continuous with 
respect to a Lebesgue measure m. Then we denote that the density dPo/dm by f(·: (J) and 
suppose f(x: (J)=/(x-(J). Next we shall make the following assumptions. In [1J we dis
cussed the order of convergence of consistent estimators in the same case. 

Assumption (A). f(x»O for a<x<b, 
f(x)=O for x.::; a, x?::.b. 

Assumption (B). f(x) is twice continuously differentiable in the interval (a,b), and 
lim (x-a)l-af(x)=A' 

.'C-+a+O 

lim (b-X)l-Pf(x)=B', 
.'C-+b -0 

where both a and /3 are positive constants satisfying a.::;/3<oo and A' and B' are positive 
::finite numbers. 

Assumption (C). A" = lim (x-a)2-a\f'(x)\ and B" = lim (b-X)2-8\f'(x)\ are finite. For 
.'C-->a+O .'C-+b-O 

a?::.2, f"(x) is bounded. 

-9-
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For example it is easily seen that the beta distributions Be(a, (3) (0<a:5:{3:5:2 or 
3 < a :5:{3< ~) satisfy Assumptions (A), (B) and (C). 

Let u and v' be any real numbers satisfying O<U<Sl = (1/C1) log 2 and 0<1)' <SI. We 
put u'=(-1/C1)10g{1-e- C1 ('1-u)}, v=(-1/C1)log{1-e-C1 (sl-v

/J}, Tn*=max{T,,+, Tn-} and 
T,,**=min{Tn'+, T,,'-}, where Tn+=maxXi ...:....b+un-l, T,,-=min Xi-a-u'n-l, T,,'+=maxXi 

lSiSn ISiS" 1SiSn 
-b+vn-1 and T,/-=min Xi-a-v'n- 1

• In the. foHowing theorem we shall show that there 
lSiSn 

exist the asymptotic distributions with different orders according to a. 

THEOREM 3.1. Let Xl> X 2 , "', X"' .,. be a sequence of U.d. random variables with 
a density function satisfying Assumptions (A), (B) and (C). If a=2, then the asymptotic 
distribution of a maximum likelihood estimator (M.L.E.) of order {en log n)1/2} is N(O, l/Il)~ 

1 ( A"2 B"2). Afl2 . 
where 11=2: A'+--.sr If {3=2, 11 = 2A' If {3>2. 

If a>2, then the asymptotic distribution of an M.L.E. of order {nl/2} is N(O, 1/12). 
where I2=Eo[{(8/8B)10gf(x-B)}ZJ. If a={3=l and A'=B'=Cl> then the asymptotic dis
tributions of T* ={T" *} and T** ={Tn **} of order {n} are the Weibull distributions 

(3.20) 

(3 . .21) 

PROOF. i) a=2. Let {Un} be an M.L.E. of B. 
For any iJE@ there exists a positive number d such that 

lim sup IPo(n)({(n log n)I/2(Un-B):5:y/vT;})-([J(y/..;J;)1 =0, 
n->'" O:IO-OI<d 

1 ( A"2 Blf2 ) A"2 
where II =2: A'+--.sr if {3=2, II = 2A' if {3>2 (See the proof of Theorem 4.1 of 

[1J). 
ii) a> 2. Let {Un *} be an M.L.E. of B. For any iJ E@ there exists a positive number 

d such that 
lim sup IPo(n)({nl /2(Un ~-B):5:Y/vJ;})- ([J(y/v/2 )1 =0, 
n-tO> O:IO-,\II<d . 

where 12 = Eo[{8/8B) log f(x-B)}zJ (See the proof of Theorem, 4.1 of [1J). 

iii) a= (3= 1. From Assumptions (A) and (B) we have for any y>O and for sufficiently 
large n, 

po(n)({n(Tn * - B):S;y}) 
=po(n)({n· max{Tn+-B, Tn--B}:5:Y}) 
=po(n)({ max Xi- B -b+un-l :5:yn-l}n{ min xi-B -a-u'n-l:5:yn-1

}) 

lSiSn lS'S'1 
=po(n)({ max xi:5:B +b -(u - y)n-1}) 

lSiSn 
_po(n)({ max xi:5:B+b-(u-y)n-l}n{ min xi>B+a+(u' + y)n-l}) 

ISiS" ISiS" 

{ ~ b }" {~a+(U'+Y)"-l ~b }" 
= 1- f(x)dx - 1- . f(x)dx- f(x)dx . 

b-(u-Y)n-1 "a b_(u'_y),,-l 

Hence we obtain 

{

e-C1(U-Y) _eCl(n+u') if O<y<u 
F *{nl()- - , 

O,T Y - l-e-C1(u'+y) if u<y. 

Further from Assumptions (A) and (B) we have for each y<O and for sufficiently large n~ 

-·10-
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po(n)({n(Tn ** - fJ):::;y}) 
=po(n)({n. min {Tn'+-O, Tn'--O}:::;y}) 
= 1- po(n)({n(Tn'+ -O»Y}n{n(Tn'- -0» y}). 
= 1-po(n)({ max Xi-O -b+vn-l>yn-1}n{ min Xi-0-a-v'n-1>yn-1}) 

ISiSn l$'Sn. 
= l-[Po(n)({ min xi>O+a+(v' + y)n-1}) 

l$iSn 
-Po(n)({min xi>O+a+(v' + y)n-1}n{ max xi:::;0+b-(v-y)n-1})] 

l$i$n l$i$n 

= 1- {1- ~:+(vl+Y)n-l f(x)dx} n + {I- ~:+(v+Y)n-l f(x)dx- ~:-(V-Y)n-l f(x)dx} n. 

Hence we obtain 

{
l_e-Cl(VI+y)+e-Cl(v+vl) if -v' :::;y<O, 

Fo T**{n}(y) = 
. e-C1(v-y) if y<-v'. 

Thus we complete the proof. 

REMARK: If a=2 and a>2, then the M.L.E.'s are a {en log n)1/2}-consistent estimator 
and a {n1 / 2)-consistent estimator, respectively (See Theorem 4.1 of [IJ). 

The following lemma is proved in a similar way as lemma 4.4 of [1]. 

LEMMA 3.3 If a~2, then the all density functions satisfying Assumptions (A), (B) and. 
(C) fall in Case 1. 

If a= (3= 1 and A' = B' = Cb then the all density functions satisfying Assumptions (A} 
and (B) fall in Case II. 

Throughout the subsequent discussions we denote by sr:M~ the class of all exactly 
asymptotically median unbiased estimators with the same order (Q;={cn}. 

THEOREM 3.2. Let Xl> X 2 , "', X n , ... be a sequence of i.i.d. random variables with a 
density function satisfying Assumptions (A), (B) and (C). If a = 2 and a> 2, then the 
M.L.E.'s {Un} and {Un*} with the asymptotic normal distributions N(O, 1111) and N(O, 1112} 
of order {en log n)1/2} and order {nl!2} are uniformly asymptotically most accurate, respec
tively, where 11 and 12 are defined in Theorem 3.1. 

PROOF. It follows from lemma 3.3 that the case a2:2 falls in Case 1. We define 
an estimator 6( = {6n}) and order (Q;( = {cn }) and 1 as follows: 

6 = {Un if a=2, 
n Un* if a>2, 

C = {(nlog n)1/2 if a=2, 
n n1/2 if a>2, 

l=f11 if a=2, 
lI2 if a>2. 

We have for T={Tn}Esr:M~ and -co<y<co, 
p(n)o_(y! KVIlcn-1({Cn(Tn - O):::;O}) 

=p(n)o_(y! KvI)cn- i ( {Kv'TCn (Tn - (0 - K~ 1 Cn -1) ) :::;y} ). 

Put AT={v'TCn(Tn - O):::;O}. Since for each y, Fo. ~(y) is continuous function of 0, we: 
have 

lim IPo(n)(AT)-Fo.T~(O)1 =0, 

lim IP(n)o-(YIKvT)cn-l(AT)-Fo.~(y)1 =0. 

-11-
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Further it follows from (3.22) and (3.23) and lemma 3.1 that for each y>O there exists a 
:sequence {<;o,J of tests such that 

O=lim I sup EO-<y/KVIlc",-l(XAT)- sup EO-<Y/KVIlc",-l(1')! 
"'-><" TEst.M~ ifJE!J!a", 

=lim I sup EO-<Y/KVllc",-l(XAT)-Eo-<Y/KVIlc",-l(<;O",)! 
"'-+'" TE1:M~ 

where ?ITa",={test 1': Eo(1') = (Xn}. 

Hence since for each y>O, lim EO-<YK/VIlc",-l(<;On) = (J)(y/v'T) , for each y>O and for any 
n-+ CO 

€>O there exists a sufficiently large no such that for all n(?:no) 

p(nl O-<,IVIlcn-l(AT) = Eo-(,/ KVIJc",-l(XAT) 5, (J)(y/v'T) + e (3.24) 
for all TE 5tM~' From (3.23) and (3.24) we have for all y>O and for all TE 5tM~' 

Fo, T£(y) 5, (J)(y/v'T)· 
Since Fo,o~(Y)= (J)(y/v'T) , we have 

sup Fo,T'J(y)=Fo,o~(Y) for all y>O. 
TEst.M~ 

Furthermore from lemma 3.1 we have for each y<O, 

O=lim! inf EO-<y/KVIJcn-l(XAT)- inf EO-(Y/KVTlcn-1(1')! 
n-+ CD TEst.M~ </JE!J!an 

=1im I inf EO-<,/KVTlcn-1(XAT)-{1- sup EO-(Y/KVTlc",-l(1')}! 
n-+ CD TE1:M~ ifJE!J!an 

=1im I inf Eo-(y/ KVIlcn- 1(XAT) -{1-E O-(YK/VI)cn- 1(<;O",)}!. 
n-+'" TEst.M~ 

Hence since lim EO-(Y/KVI)cn-1(<;O",) = (J)(-y/v'T), it is shown by a similar way as the case 
n-4.., 

y>O that Fo,o~(Y)= inf Fo,rf£(y) for all y<O. 
TEst.M~ 

Thus we complete the proof. 

THEOREM 3.3. Let Xl> X 2 , ''', X n , be a sequence of U.d. random variables with a 
density function satisfying Assumptions (A), (B) and (C). If (X == {3= 1 and A'::= B' = Ch then 
T*={Tn*} and T**={Tn**} with the asymptotic distributions given in Theorem 3.1 of 
order {n} are asymptotically most accurate at an arbitrary point u in [0, Sl] and at an 
arbitrary point -v' in [-sr, OJ, respectively. 

PROOF. It follows from lemma 3.3 that the case a={3=l and A'=B'=C1 falls in 
Case II. 

i) Case T*. From lemma 3.2 we have for each y>O, 

O=lim I sup EO-yn-l(XAT)- sup EO- yn-l(1')/ 
n-4'" TEst.M[n} ifJE!J!an+ 

=lim! sup Eo-y,,-l(XAT)-EO-Yn-l(<;On+)!, 
n .... '" TEst.M{n} 

where AT={n(Tn -B)5,O} and P"a/={test <J;: Eo(1')=an+}. 
Furthermore since from (3.13) of lemma 3.2 

{ 

3 -Cly'f 0< < 
lim E

O
- yn-l(<;On +)= 2-e 

1 y_Sr, 

" ... '" 1 if Sl<y, 

it is shown in a similar way as Theorem 3.2 that 

17 (l() {2
3 

-e-C1Y if O<y<sr, sup ro,T" y= 
TEst.M{n} 1 if Sl <Yo (3.25) 

"Hence it follows from (3.20) of Theorem 3.1 and (3.25) that T* is asymptotically most 
accurate at an arbitrary point u in [0, SlJ. 

-12-
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ii) Case T**. From lemma 3.2 we have for each y<O, 
O=1im! inf EO- yn-1(XAT)- inf EO-yn-I(¢)! 

n-H" TEstM(n} </JE'Fan-

= lim! inf EO- yn-1(XAT) -{1- sup EO- yn-1(¢)}! 
n-+'" TEstM{n} </JE'Fa,,-

= lim' inf EO-yn-l(XAT) -{I - EO- yn-1(<;01' -)}I 
n-+'" TEstM{n} 

where (])an-={test ¢: Eo(¢) = an -}. 
Since from (3.14) of lemma 3.2 

. {--.l+eC1Y if -Sl.s:;y<O, hm {l- Eo- yt,-1(<;O" -)}= 2 
" ... 00 0 if y< -Sl, 

it is shown in a similar way as Theorem 3.2 that 

{
- 1 +eC1Y if -Sl.s:;y<O, 

inf FO,T{n)(y)= "2 
TEstM{n} 0 if y< -Sl' (3.26) 

Hence it follows from (3.21) of Theorem 3.1 and (3.26) that T** is asymptotically most 
accurate at an arbitrary point -v' in [-Sl, OJ. Thus we complete the proof. 

4. Bounds of orders of asymptotic distributions of consistent estimators and others 
in non-regular cases. 

Let I=Rl. We suppose that every Po(.)((} E®) is absolutely continuous with respect 
to a Lebesgue measure m. Then we denote the density dPoldm by f(x: 0) and suppose 
that f(x: (})=f(x-O) and f(x»O for all xEI. For any points 01 and (}2 in ®, we define 

d"'(O" O,)~ \11" 111f(X;-0,)-n f(x; - 0,)1 n dx/. 
:=1 :=1 :=1 

Then d(n) is a metric on ®. 
In subsequent discussions + and - signs should be read consistently. If 

\ {f(x±iJ)-f(X)}2 dx<oo 
JX f(x) , 

then it follows that 

d(n)(O+iJ, O).s:; [ nx (f(x±iJ) - f(X»21 f(x)dx+ I}" -1 r /2. (4.1) 

Further we shall assume that f(x) is twice continuously differentiable for xEI except 
for x=O and 

lim f'(x) = lim f'(x)=O, 
%-,,-(;0 x-+oo 

and there exists a positive number Ml such that 
f'(x)?::"O for x< -M1 and f"(x)?::..O for x< -MI, 

[~1 {f'(x)Ylf(x)dx<oo, 

and for any c>O there exists a positive number M2 such that M 2 >E, 

(4.2) 

(4.3) 

(4.4) 

f'(x).s:;O for x>M2 -c and f"(x)?::..O for X?::..Mz-E, (4.5) 

(CO {f'(x-E)Ylf(x)dx<oo. (4.6) 
JM 2 

Here we consider the following Cases III, IV and V. 
Case III. a' =1im f(x) and b' =lim f(x) are finite, where a' and b' are certain positive 

" ... +0 ,,-+-0 

numbers satisfying a' =Fb', and f'(x) is bounded on Rl_{O}. 

-13-
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Case IV. o=1im Ixl-a(f(x)-r) and ?J=lim IxI 1
- a 1f'(x)1 are finite., where O<a~1/2 and 

x-±O x .... ±D 

.0, rand ?J are positive numbers. 
Case V. 0' =1im Ixlaf(x) and ?J' = lim IxI1+alf'(x)1 are finite, where O<a< 1 and 0' and 

x .... ±o x .... ±o 

IJ' are positive numbers. 
Let 15III, 15IV and ITiv be classes of all density functions falling in Case III, Case IV 

.and Case V, respectively. 
REMARK: If fE15IV, then it is easily seen that Fisher's information is infinite: 

~I {f'(x)lf(x)Yf(x)dx= co. 

If fE 15III, then there exist positive numbers KI, K2 and Cl such that 
Kl~f(x)~K2 for -Cl<X<Cl' 

If fE ITiIV, then there exist positive numbers Ki (i = 3, 4, 5) and C2 such that 
r+K3Ixla~f(x)~r+K4Ixla for -c2<X<c2, 

1f'(x)I~K5Ixla-l for -C2<X<C2' 
If fEITiv, then there exist positive numbers K;(i=6, 7, 8) and C3 such that 

(4.7) 

(4.8) 
(4.9) 

K6Ixl-a~f(x)~K7Ixl-a for -cs<x<cs, (4.10) 

If'(x)I~K8Ixl-a-l for -cS<X<C3' (4.11) 
Putting c=min{ch C2, e3, I}, we see that (4.7), (4.8), (4.9), (4.1-0) and (4.11) hold for 

- e<X< e. Let O<J< e/2. 
Now we define an information [ 

1=\ {f(x-J)- f(X)}2 d 
Ja; f(x) x. 

6 

We divide I into six parts II, 12 , 13 , [4, Is and Is, that is, 1= 2:,1;, where 
;"'1 

1
1
=\-', 1

2
=\-2.d, Is=(O ,I

4
=(2.d, 1

5
=(C and 16=\"'. 

La> L, Lz.d Jo JZ.d Jc 

LEMMA 4.1. In each ·Case, the orders of II, 12 , 13 , 14 , 15 , 16 and / are given by Table I. 

Table 1 

Case I Is 16 I 

III 0.(.12) 0.(.1) 0.(.1) 0.(.12) 0.(.1) 

1 
0<a<2 0. (.12a+ 1) D(.12a+1) O.(.12a+1) 

IV 0.(.12) O.(.12a+1) o'(.12a+1) 0.(.12) 

1 
D(.12/log .11} D(.12l1og .1/) D(.1211og .1 /) a=-

2 

V 1 
0<a<2 O.(.11-a) D(.11-a) O.(.11-a) D(.11-a) D(.11- a) 

PROOF. 1) Is and 14 , In Case III, it follows from (4.7) that 

I 
= (2.d {f(x-J)- f(x)Y d 

4 Jo f(x) x 

<2 (Kz - K 1)2 1 
- Kl £;J. 

(4.12) 

In Case IV, it follows from (4.8) that 

-14-
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_ I ZLI {f(x-L1)- f(x)Y 
14 - }o f(x) dx 

~~lzLI {K4 Ix-LW"-K3x aYdx 
r )0 

= O(L12a+l). 

In Case V, it follows from (4.10) that 

1 = \2L1 {f(x-L1)- f(x)? d 
4 Jo f(x) x 

<eLi (K7 Ix-L1I-a-K6x-a
)2 dx 

- Jo K6x-a 

~ Kl {L11-aB (1+a, 1-2a)+(2L1)a Lf
l

-
2
a },' -4 K7 L11-a +K6 (2L1)1-a 

K6 1 - 2a 1 - a 1 - a 
=O(L11-a), 

where BO + a, 1-2a) is the beta function and O<a< 1/2. 
It follows from (4.12), (4.13) and (4.14) that 

{

O(L1) if fEts:m, 
14= O(L12a+l) (0<a~1/2) if fEts:.rv, 

O(L1l-a) (0<a<I/2) if fEf'rv, 
Similarly it follows that the order of 13 is consistent with that of 14 , 

ii) 1z and Is. It follows by the mean value theorem that 

Is= Ie {f(x-L1)- f(x)Y dx 
J2L1 f(x) 

= It iJ2{f'(f(~'~)Ldx 
JZ.1 f(x) 

where L1<x-L1<t;(x, L1)<x<e:. 

(4.13) 

(4.14) 

(4.15) 

In Case III, since f'(x) is bounded function on .Rl-,{O}, it follows from (4.7) and 
(4.15) that 

15~\£ lj2(1/Kl){f'{~(x, .L1)))2dx 
JZLI 

= K'1L12(e: - 2L1) 

= ° (L12) , 
where K 1' is some positive constant. 

In Case IV, it follows from (4.8), (4.9) and (4.15) that 

Is~ I e (L12/r ){f'(fex, Ll))Ydx 
J2L1 

~(L12/r) \ e K52 f2a- 2dx 
J2L1 

< (Ks/r)L1z \ £ (x-L1)2a- Zdx. 
J2.1 

If 0<a<1/2, then it follows from (4.17) that 
Is < (K5 2.Ll2/r(2a -l)){(e: - L1)2a-l - L12a-l} 
«K52/r (2a -1))L12(e:2a - 1 _ L12a-l) 
= (KS2/.r(1- 2a))L12a+ 1. 

If a = 1/2, then it follows from (4.17) that 

15~(K52/r)L12\ e (x _ L1)-ldx 
J2.d 

~(Ks2/r)L12(log.e - log L1) 
= O(L1211og L1J). 

-15 -
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From (4.18) and (4.19) we have 

15= {
O(Ll2a+I) if 0< a< 1/2, 

O(Ll2 11og Lll) if a= 1/2. 
In Case V, it follows from (4.10), (4.11) and (4.15) that 

where 0<a<1/2. 

~
e K f- 2a - 2 

Is'::; ,62 ~ -a dx 
2.d 6X 

'::;(Ks/Ks)Ll2\ E Xa(X- Ll)-2a-2dx 
jZ.d 

.::;O(Lll-a), 

It follows from (4.16), (4.20) and (4.21) that 

(

O(Ll2) 

O(Ll2a+I) (0<a<1/2) 
15= O(Ll21IogLlD (a=1/2) 

O(LlI-a) (O<a< 1/2) 
Similarly we have 

if fE tyIII, 
if fEfjIV, 
if fEfjIV, 
if fEtyv. 

1
2
= O(Ll2a+l) (0<a<1/2) if fEtyIV, 

(

O(Ll2
) if fE tyIII, 

O(Ll2 llog LtD (a= 1/2) if fEtylV, 
O(Lll-a) (0<a<1/2) if fEtyv. 

iii) II and 16 • It follows by the mean value theorem that 

II = \ -c {f(x - Ll) - f(X)}2 dx 
Leo f(x) 

_ \ -c Ll2{f' (f(x, Ll»Y 
- Loo f(x) dx, 

where -oo<;x-Ll<f(x, Ll)<x< -E. 

Since f(x) and f'(x) are continuous functions on (- 00, - 8), it follows that 

~ 
-I: {f'(f(x, Ll»}2 

f( ) dx<oo. 
-Ml x 

It also follows from (4.3) and (4.4) that 
\ -M1 {fl(f(x, Ll»}2 \ -Ml {fl(x)Y 
Leo f(x) dx'::; Leo f(x) dx<oo. 

From (4.22), (4.23) and (4.24) we have 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Since f(x) and fl(X) are continuous functions on (E, 00), it also follows from (4.5) and 
(4.6) that 

6 

Since 1= 2:Ji and the orders of I,(i= 1, 2, 3, 4, 5, 6) are obtained, it follows that 
;=1 

(

O(Ll) if fEfjm, 
1= O(Ll2a+l) (0<a<1/2) if fEtyIV, 

O(Ll211og LlD (a= 1/2) if fEtyIV, 
O(LlI-a) (O<a< 1/2) if fEtyv. (4.25) 

Thus we complete the proof. 

REMARK: We also define another information 1* by 

1*= \ {f(x+Ll)- f(X)}2 d 
jI f(x) x. 

-16-

-33-



ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR 113 

In a similar way as the information I, we see that the order of 1* is consistent with that 
of I. 

From (4.1) and lemma 4.1 we get the following lemma. 

LEMMA 4.2. 

(n) _ _ [{1+0(Ll2a+1)}"-lJl{2 (0<a<1/2) j
[ {I + O(Ll)}" -IJ1 /2 

d ((}+Ll, (})- [{I +O(Ll2110g LlI)}"-IJ l /z (a= 1/2) 

if fE~III, 
if fE~lV, 
if fE~IV, 
if fE~v. [{I +O(Lll-a)}"-IJ1j2 (O<a< 1/2) 

LEMMA 4.3. In each Case let Xl, X 2 , "', X"' .. , be a sequence of U.d. random varia
bles with a density functon satisfying the Case. In each Case for a sequence {c,,} given 
in Table 2 there exists a nonnegative function H(·) satisfying the following: for each t>O,. 

lim d(")((}+tcn -l, (}):5, H(Ct) < CO, (4.26) 

where C t is some positive number. 
Furthermore in each Case, for any greater order c" * than values as given in Table 2,. 

lim d(")((}+tc*-ln , (})=O (4.27) 

for all t>O. 
Table 2 

Case e" 

III n 

O<a<I/2 nl/(2a+l) 
IV 

a=1/2 (n log n)l/Z 

V O<a<I/2 n1 /(I-a) 

PROOF. It follows from lemma 4.2 that for sufficiently large n, 

d(")((}-t -1 (})= [{I +O(c" -za-l)}"_l]l j
Z (O<a< 1/2) if fE~IV, j

[{I+o(c,,_1)}"-IJl/2 if fEfjm, 

+ cn
, [{I+O(cn - Z logc,,)}n-IJ l /2 (a=1/2) if fE~IV, 

[{1+0(cn
a- 1)}"-IJl/2 (0<a<I/2) if fE~v. (4.28) 

If Cn is chosen as Table 2 and H(u)=(eu _1)1(2 for all u':::O, then it follows from (4.28) that 
(4.26) holds. Further if cll* is greater than order C", then it follows from (4.28) that (4.27) 
holds. Thus we complete the proof. 

THEOREM 4.1 Let Xl> X 2 , "', X"' ... be a sequence of i.i.d. random variables with a 
density function satisfying Case V. Then for each a with O<a< 1 the asymptotic distribu
tion of a sequence {Xmed.} of order {n1j(l-a)} is G(y: a), where Xmed. is the median of 
Xl> "', X" and G(y: a) is the c.d./. of the random variable J Yjl{(l-a) (sgn Y) and for large 
n, Y is asymptotically distributed according to the normal distribution N(O, 1j4n). 

PROOF. Let F(x) be the c.d./. of the random variable X. Put Ui=F(Xi ) (i= 1, 2, ... )~ 
Since U,(i= 1, 2, ... ) have the uniform distribution V(O, 1), it follows that Dmed. =F(Xmed.),. 
where Dmed. is the median of U1, "', Un. Since F(x) is continuous, the asymptotic dis
tribution of (Dmed. -1/2), for large n, is the normal distribution N(O, 1/4n). On the other 
hand, since lim Ixlaf(x)=O"(>O) for O<a<l, we have for sufficiently small Ixl>O, 

x-+±o 
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f(x)ex lxi-a. 

Hence we obtain for sufficiently small Ixl >0, 

(F(x)-1/2)ex {XI-(a 1- for x>O, 
- -x) a for x<o. 

Therefore we have 
Xex IUmed. -1/21 1 /(1-a) sgn (Umed. -1/2). 

Thus putting Y = Umed. -1/2, we have the proof. 
In follows from Theorem 4.1 that in Case V, {Xmed.} is a {n1 / CI - a )}-consistent estimator 

and the asymptotic distribution of {Xmed.} has the largest order of consistency. 
Next we define for sufficiently small 8 >0, 

1 I· 
fc(x) = 28 L £ f(x + t)dt. (4.29) 

Then we easily see that fc(x) is a density function on I. An M.L.E. of fJ with respect to 

" the likelihood function Il!t(xi - fJ) is said to be a 8-smooth M.L.E. of fJ. 
;=1 

In the following theorems we shall show that the asymptotic distributions of the 8-smooth 
M.L.E. 's are certain normal distributions in Case III and IV. 

THEOREM 4.2. Let Xl> X 2 , "', X n , ... be a sequence of i.i.d. random variables with 
a density function satisfying Case III. Then the asymptotic distribution of a 8-smooth 
M.L.E. of order {n1

/
2

} is N(O, l/Ie), where 1.=0(8-1). 

PROOF. It follows from (4.29) that for every x( * 0) 

lim f /(x)=1im-
2
1 

{f(X+8)- f(X-8)}=f'(X), 
.... 0 , ... 0 8 

( 4.30) 

lim hl/(x)=fl/(x). ( 4.31) 
, .... 0 

From (4.2)"-'(4.6), (4.30) and (4.31) we have 

:~~[[oo {t;2 log h(x-fJ)} f(x-fJ)dx+ [00 {tfJ log f,(x- fJ)rf(x-fJ)dx ] =0. (4.32) 

Next we shall show that 

1t= ~:oo {(fJ/fJfJ) log ft(x- fJ)Yf(x - fJ)dX=0(8- 1
). (4.33) 

Indeed, it follows from (4.30) that 

1e= [00 {(fJ/fJfJ) log fE(X-fJ)Yf(x-fJ)dx 

\00 {j;I(X)}2 
:5:K/ La> f,(x) fe(x)dx 

=KIl m 

{f(x)- f(x-28)Y dx Loo 482f(x) 

where KI and KIf are certain positive constants. 
Hence it follows from I of lemma 4.1 that (4.33) holds. From (4.32) and (4.33) we 
obtain that the asymptotic distribution of a 8-smooth M.L.E. of order {n1/2} is N(O, 1/1t) 
(Cramer [3J). Thus we complete the proof. 

THEOREM 4.3. Let Xl> X 2, "', X n , ... be a sequence of i.i.d. random variables with 
a density function satisfying Case IV. Then the asymptotic distribution of a 8-smooth 
M.L.E. of order {nl/2} is N(O, 1/1/), where 

Ie' ~ {0(e2a
-

l
) if 0<a<1/2, 

O( -log 8) if a= 1/2. 
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PROOF. From (4.2)"-'(4.6) and (4.29) we have 

:i~[[oo{:;2l0g/t(X-{7)}/(X-{7)dx+[",{:{7 IOg/t(x-{7)}2/(x-{7)dx]=O. (4.34) 

Next we shall show that 

Ie'=: ("' {W/fJ(7) log /t(x-{7)}2/(x- (7)dx= {O((c:
2
a!1-1) ) if O<a< 1/2, 

Loo ° - og c: if a=I/2. (4.35) 
Indeed, it follows that 

Ie' = ):'" {/c'(x)//t(x)}2/(x)dx 

~Kz'[co {//(x)}2//(x)dx 

<K)"" {/(x)-{~x-2c)}2 dx 
- L", . 4c: j(x) 

where K2 and Kz' are certain positive constants. 
Hence it follows from I of lemma 4.1 that (4.35) holds. From (4.34) and (4.35) we 

,obtain that the asymptotic distribution of a c:-smooth M.L.E. of order {nlj2} is N(O, 1/1/) 
{Cramer [3J). Thus we complete the proof. 

Using lemma 4.3 and the necessary condition for the existence of a {cn}-consistent 
,estimator (Theorem 3.3 of [1J), we get the following theorem. 

THEOREM 4.4. In each Case III, IV and'V, the order given by Table 2 of lemma 4.3 
1S the bound of the order of convergence of consistent estimators; that is, there does not 
·exist a consistent estimator with the order greater than values given in Table 2. 

REMARK: It follows from Theorem 4.4 that the bounds of orders of asymptotic dis
tributions of consistent estimators in Case III, IV and V are given in Table 2 of lemma 4.3. 
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