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1. Introduction

A consistent estimator with order {c,} (or a {c.}-consistent estimator) is defined-in
Akahira [17], where the necessary conditions for the existence of such an estimator are
established and the bounds of the orders of convergence of consistent estimators are ob-
tained for non-regular cases.

In the present paper the asymptotic accuracies of {c,}-consistent estimators, that is,
the bounds of their asymptotic distributions are discussed in similar cases as those studied
in [1]. The approach is similar to Bahadur [27 dealing with the bound for asymptotic
variances. We shall define an estimator to be uniformly asymptotically most accurate if
the asymptotic distribution of it attains uniformly the bound of the asymptotic distributions
of asymptotically median unbiased estimators. If the asymptotic distribution of an estimator
{T,} attains the bound at one point, then {73} is ealled to be asymptotically most accurate
at the point. Suppose .that X, X», ---, X,, --- is a sequence of independent identically
distributed random variables having the density of the same location parameter case as
that in [1]. If a=2 and «>2, then the maximum likelihood estimators with the
asymptotic normal distributions N(0, 1/I) and N(0, 1/L) of order {(nlog n)!/*} and order

£ 12 /12
{n*/%} are uniformly asymptotically most accurate, respectively, where 11=-2—(—-'—‘—il,—+ Jii" )

1z

if B=2, Il=—2‘%— if >2, and L=E,[{(0/36) log fx—8)}*]. If a=p=1 and A'=B, then

it is shown that certain estimators with the asymptotic Weibull distributions of order {n}
are asymptotically most accurate at some point. Furthermore we shall obtain the bounds
of orders of convergence of consistent estimators and those of the orders of their asymptotic
distributions in non-regular cases. Also some results in terms .of the asymptotic distribu-
tions of estimators are given in Takeuchi [5].

2. Notations and Definitions

Let (¥, B) be a sample space. We consider a family of probability measures on
B, P={Py: §=@}, where the index set @ is called a parameter space. We assume that @
is an open set in a Euclidean 1-space R!. Consider n-fold direct products (£, B™) .of
(%, B) and the corresponding product measures P, of P,.

For each n=1, 2, ---, the points of X™ will be denoted by £.=(x;, -+, X.).

* Received October 29, 1974.
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An estimator of § is defined to be a sequence {T,: n=1, 2, ---} of B"-measurable
function T, on £ into @ (n=1, 2, ---). For an increasing sequence of positive numbers
{cs: n=1, 2, -~} (c, tending to infinity) an estimator {T,: n=1, 2, ---} is called consistent
with order {c.} (or {c.}-consistent for short) if for every e>0 and every & of @, there
exist a sufficiently small positive number § and a sufficiently large positive number L satis-
fying the following:

Iim sup Py {c,|Ta—B|=L})<3
no 01 |A-91<3

(Akahira [17).
Order {c,’} is called to be greater than order {c,} if lim c,/c,’=0.

n-soo

Definition 2.1, A distribution function Fj r8&(.) is called to be the asymptotic distribu-
tion function of an estimator T'={7,} of orders €={c,} if for each real number y, F, 18(»)
is continuous in # and for any D&® there exists a positive number 4 such that at any
continuity points y of Fp 7&(y),

lim sup [Py ({ca(Tw—0)<y})—Fy, 18(»)| =0.

noo §:]10-9]<d

Definition 2.2. T=AT,} is called asymptotically median unbiased if Fj 78(0—)=<1/2,
Fy, 78(0+)=>1/2. Specially if F; 18(0—)=F,; 18(0+)=1/2, then T is called exactly asympto-
tically median unbiased.

Definition 2.3. Suppose that T*={T,*} is (exactly) asymptotically median unbiased, it
is called asymptotically most accurate at y if
{ inf Fy r8(y) for y<0,
FO,T"@(J’): TE'SS,M@
| sup_Fu18() for y>o0,
Te%,,E
where Ty€ is the class of all (exactly) asymptotically median unbiased estimators with the
same order €={c,}.

Definition 2.4. T*={T,*} is called uniformly asymptotically most accurate if both
(2.1) and (2.2) of the following hold:

Fy, &(y)= inf F,; r€(y) for all y<0, .1
T=%,,C

Fy,:€(y)= sup F; r€(y) for all y>0. 2.2)
TET,,

‘Moreover, if either (2.1) or (2.2) hold, T* is called one-sided most accurate.

3. Bounds of Asymptotic Distributions of Consistent Estimators

In this section we shall show that there exist the asymptotic distribution of the esti-
mator of some order which is uniformly asymptotically most accurate or asymptotically
most accurate at some point, that is, attains the bound of the asymptotic distributions of
asymptotically median unbiased estimators uniformly or at some point.

Now we suppose that every Py(-)(6 €®) is absolutely continuous with respect to o-finite
measure z. We denote the density dP,/du by f(-:6) and by A(f) the set of points in the
space of ¥ for which f(x:8)>0.

For any two points # and ¢ in ® we put

Z(x: ¢, 0)=xawnaw(x) log{ flx: @)/ f(x: 6)}
where Xawna@ denotes the indicator (or the characteristic function) of A(p)nA(6). Then
we shall consider the following cases.

— 4 —
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Case I. For some sequence {c,:n=1, 2, ---} with ¢,~roco(n—c0),

=1 3.1
for —co<y< oo and the following hold:
0< V()< (n=1, 2, -);
0< VX (0) <o (n=1, 2, -);
lim V. *5(6)/Vi(6)=7(>0);

. n(M*(0)— M.(6)
BV )

where
M (0= xdx| Alye,: 0));
M#0) = 5000 e,ra(x| Ales: 0));
Vi0)= [ lr— MU0 d0 x| Alyes: 0);

Vir(O)= | L= MO0 dQs-ye, x| Alye™: 0)
with A(ye,™: 0)=A(0 —yc., )N A(F), and the following relations hold: for any £>0

_1 2 -1
"0 gxm»m”wnx dOy(x+ M(0)| ACyc,~: 0))—0 as n—rco (3.2)

uniformly in any compact subset of @, and for any £>0

1 2 _ * -1.
V.0 Sllxl>s\/n——‘v”*w>1x Q0-se 10+ MO Alye,™: 6))=0 as mmeo (3.3)

uniformly in any compact subset of ®, where

Qu(E|A(ye: oy = B 2 O gee s IS Bhndlyen” 2 0)

for all £E€B gnd

1 oy Pooye, (s Z(x: 0 —yea !, B)E Fyn A(ye,™: 6))
Qo-ye,1(F| A(ye,™: 6))= Poyei(Aye, 2 0)

for all Fe®B.
Case II. - For some sequence {¢,/:n=1, 2, .-} with ¢,/—oco(n—00),

im{| D)z}’

n-o

_{e‘ca*y"‘ for 0<y<s.*,

_ 3.4
e~Caly1® for —s5,<y=<0, oo
R § T
o~ Car® for 0Sy.<_sa*,

_ .5
{e-ca*"{“ for —s.=<y=0, o

1 , .
where ¢ and C, are positive numbers and s,= <T log 2) and C,* is a nonnegative
o

number and s,,*=( o log 2) if C,*>0, se*=co if Co*=0, and the following hold:

0<V,/ ()< (n=1, 2, --);
0< V”*'(ﬁ)<00 (l‘l=1, 2’ "');
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lim V,%/(0)/ V. (0)=7'(>0);
im n(Mn*l(ﬂ)_er,(ﬁ)) =O,
PR, v, (6)

where
M, (0)= ,xd0(x] Ay, 0);

M2 (0) =\ xd0q-es(xl 40y, )
Vo (0) =\ x = M 0010 Alve 2 6));

Vot (0) = L= M (00 A0y ey (x| Alyes 2 0)),

and for any ¢>0

V)
Vil (0) Jusi>evavaia)
uniformly in any compact subset of ®, and for any >0

1 2 . 1 E2 -1,
————-—Vn*,(ﬁ)g{mwm}x 404 ye 116+ M, (0)| Al yes : 6))—0 as n—co  (3.7)

uniformly in any compact subset of &, where

Ou(EIAGyey - oy = P Z e o e Rlndle 2200,

for all E€® and
Qo-ye,-1(F|Aye, 711 0))=
for all FE€DB.

x2dQo(x+ M, () A(yc,/ 1. 6))—0 as n—co 3.6y

Poji'cn'_l({x: Z(X 0‘—_}1(1,,',—1, 5)EF}0A(J’C;:'_1: 0))
Po-yey=1(A(yea' 1 0))

Lemma 3.1. Let Xy, Xo, -+, X,, --- be a sequence of independent identically distributed
(i.i.d.) random variables with a density function satisfying Case I. For testing H:0=0,
against A: =0~ yc,"(y+0), consider the sequence of thé most powerful level «, tests ¢,
such that

1, if £,&D#(ye, 60)U[{izns(ﬁo)>k,.}nA”( ye,~t: o)1,

Ou(%a)= '

0, if x,&D"(yc, : 50)“[{z.lzﬁ;(ﬁo)>kn}nf1”()’cn'li 6o)1,

where o, =Ep(¢n), Zu0)=2Z(x:: 6 ~yc, ™, 0), ku=—K|y|v/nV,*(0o)+ Ms*(00) (K=08/7),

D(yeat: Bo)= % A(Bo— ye,1)— X A(f) and A*(ye,~': 6o)= % A(ye,~': ). Then the following
i=1 i=1 : i=1

hold:
Iim a,=1/2; (3.8)

fi— o

im Epo- 1 06,1 (@n) = 0(|y]) for —ooly<eo, (3.9)

where O(uw)= S“ ~/1.2__ e~ 22 gy,
—e T

Proor. From (3.1) we have
lim P ™y, ye,-1((D*(ycs™": 60))

n-co

—_-l—lim{g S(x: ﬁo—yc,“l)dx}”
A0

now

=0 ' (3.10)

— 6 —
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for —co<y<<oo; .
lim Py "N D"*(yc,~': 60))=0 3.11)

for —co<y<<oo.
Since Z.1(0), Z..(0), ---, are independent and (3.2) and (3.3) hold, it follows from the
central limit theorem (Gnedenko and Kolmogorov [4]) that the distribution laws of

{iZ,,,-(ﬁ)—nM,,(ﬂ)}/«/n V.(6) and {éZﬂ;(ﬁ)—nMn*(ﬁ)}/Jn V,*(0) converge to the nomal law
i=1 i=1
N(0, 1) uniformly in any compact subset of ®. Hence it follows from (3.11) that

hm Eﬁo(wn)

=lim Pow({z”lz,,;wo)>k,,}nA"<yc,,—1:‘ea»

= £i§13 [P60<">({(éz,.,~(ﬁo) — M H(00)/n/nV,#(Ba) > — Kly[HA(yea™: 60))+ Po,™(A(ye, ™ )]

VG, _n
Vn(ﬁﬁ) ) '\/nV,,(ﬂo)

=lim [Pm( {(éZni(ﬁo)—nMn(ﬁo))/x/n ViG> —Kly| (M, *(60)— Mn(ao»}

A6, 712 00))-PaA"(ye,™: ) |
=1—0(0)
_1
=
Hence (3.8) holds.
Also it follows from (3.10) that

lim Epg-ye,~1(¢a)

=lim P9, ye, ({3 Za(00) > ik A"y, 60)

Nn-roo

n

=1m [Py yo,-1({(SZi(00) =nM,*(0o))// 5V, 5(Bo)> — K| || A"(yc, ™2 60))

n-s 0 i=1

Py yermi(A7(y6,7: B0)]
= 1—lim P, e, (520 00) =M * G/ V5B < — Kyl A*(ves™: 60)

=1-0(—KlyD
=0(KlyD

for —co <y ca,

Thus we complete the proof.

Lemma 3.2. Let X, X, -+, X,, --- be a sequence of i.i.d. random variables with a
density function satisfying Case II. For testing H:0=40, against A*: §=0,—yc,’ (y>0),
consider the sequence of the most powerful level a,* test ¢,* such that

L, if £,€DY(ye, " B)U[{ 2 Zui (00)> K A"y, =12 6],
¢r1+(fn)={ ,il
0, if g, &D"(yc,/ ™% ﬁo)U[{Z,lzn;*(ﬁo)>kn+}nA”'(nd'“l1 o)1,
where an+=Eﬁo(§0u+): Zui*(ﬁ)—:Z(Xiiﬁ—'nd/”l, 0)3 k,;+=“Kf)’“x/nV,‘*’(ﬁo)’f'Mn*/(HO) and
1

K,*zr"‘y““m"(_;.eca*y“) if Cu*>0, K;:—_T’-ly-da)“(?) if Co*=0. For testing H:0=0,

against A7 0= 0,—yc,’ "1 (y<0), consider the sequence of the most powerful level a,~ tests
@.~ such that

— 17 —
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o {1, if £, € D"y, 0V I{EZu (00> K Yo Ao~ 60)],

o, 2@ D0 00 S 20 (00> kI Ay 22 0],

where  a,”=Eg,(¢n7), Zui ™ (0)=2Z(x;: 6 — ye,' %, 0), ko= —K,"|y|%/nV,*(0,)+M*'(60) and
Ky =7~y 07 (Leceln®).

Then the following hold:

lim @,*=lim a,” =

o . 7
lim Eoo_,cﬁr—l((p,,“‘):l—e‘cd3”+—§~e‘(cd"ca*’3‘“ for 0<y<sd*; (3.13)

lim Egy-ye,-1(pa7) = 1=~ 15194 %e”“‘**"’*“ for —se<y<0. (3.14)

Proor. From (3.4) and (3.5) we have
lim Pﬁo(“)(A"(ycnlul: ﬁo))

n-too

=lim {g Fe: 50)d/1} "
Alfg-yc,'~1)

oo
_{e‘ca*’“ for 0<y<s,,
e Cal’1® for —s5,<y=<0,
Iim Py . r-1(A(yes' 71 60))
-

(3.15)

—_—nm{& Fes Bo— yc,,"‘)d,u}”
A9¢o)

{e‘cw’” for 0<y<s.*,
e Ca*l31% for —s5,<y<0,
lim P"y_ye 1-1(D*(ye,’1: O4))

(3.16)

noew

=1 —lim{g Flx: Bo— yC,.,’_l)d/.L}”
Albo)

no o

—e~Car® *
_{1 e for 0<y<s.*, (3.17)

Tl —eCe*i51® for —s,<y<0.
Since Z,17(8), Z,..*(8), --- are independent and (3.6) and (3.7) hold, it follows from the
central limit theorem (Gnedenko and Kolmogorov [4]) that the distribution laws of

{._i'.Z,.;‘L(ﬁ)—*nMn’(ﬂ)}/x/n V,7(8) and {_,gzni+(0) —nM,*'(6)}/~/nV,*(§) converge to the normal

law N(0, 1) uniformly in any compact subset of ®. Hence it follows from (3.15) that
lim Eﬁo(¢n+)

Bt

=Lim Py, {52 Z,* (00) > kn* F 0 A7(yes' 71 00))
nveo i=1

=lim [Py, ({5 Zus* (00)—nM* (G 2V, 770> —Kr yH A ye 2 00)
- Po,(A%(ye,' 752 60)]

=_£ig:[Pao<">({({é&ﬁ(%)—nMy(ao>/¢nf“_vnf(ao)>—K;y“ V™ (00)

V' (60)
(M 1(80) = M/ (B} | 4%(ve, 1 00)- Poy (e 2 00)

n

RNZTAICD)
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= 0(r' K, y)eCa""
=1/2
for 0<y<s.*.
Similary we have
lim Eyo(@s")
= 00" K, |y|=)e-Cels1®
=1/2

for —s,<y<0, where d)(r’K,“]yf“):—zl—eCa"!“.

Hence (3.12) holds.
Also it follows from (3.16) that
lim P‘"’ou—yc""l({%an*(ﬁo)>kn+}nA”(ycn'": o))

nrw i

=1im [P,y -1 ({5 20" (80) = ML= (ODI/ V(G > — Ko v H A(ver’ 2 00)

PO g yegi(A(ye, ™ G0))]
=0(r'K,* y*)eCar®

=%e—<ca—ca*>ya (3.18)

for 0<<y<<s.*.
Similary we have

”

lim Py ye,=1{ 3 Z0ni " (0) > ks~ Frn A™(yes' 721 80))

n—oe i=1

= 0G| y|9e-Ce e
=%_e(ca-ca*)|yla (3.19)

for —s,<y<0.
Hence it follows from (3.17), (3.18) and (3.19) that

Jim Eo_,cn/—l(go,,‘“)=1—e'caf"‘+%e“ca‘ca*)-"“ for 0=<y<s.*:

1imE0_,c”r-x(¢”')=1——e‘cfr*”'“—i——;—efcw“ca*’!-"’“ for —sa<y<O0.

Thus we complete the proof.

Let Z=R!. Now we suppose that every Pys(-)(#€®) is absolutely continuous with
respect to a Lebesgue measure m. Then we denote that the density dP,/dm by f(-:8) and
suppose f(x:8)=f(x—0). Next we shall make the following assumptions. In [1] we dis-
cussed the order of convergence of consistent estimators in the same case.

Assumption (4). f(x)>0 for a<x<b,

f(x)=0 for x<a, x=b.
Assumption (B). f(x) is twice continuously differentiable in the interval (e,b), and
limo(x——a)l'“f(x)zA’
liz'n0 b—x)'"Bf(x)=PH,
where both ¢ and 8 are positive constants satisfying a<f<co and A4’ and B’ are positive
finite numbers.
Assumption (C). A''= linjo(x—a)z‘“lf’(x)l and B/ = Iigno(b——x)z'ﬁif’(x)l are finite. For
Eaad x-+bh—

a>2, f'(x) is bounded.
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For example it is easily seen that the beta distributions Be(a, B) (0<a<B<2 or
3<a<f< o) satisfy Assumptions (A), (B) and (C).

Let # and ¢’ be any real numbers satisfying 0<u<s;=(1/Cy) log2 and 0<v'<s;.. We
put &' =(—1/Cy)log{l—e G161}, p=(—1/C)) log {1l —e~Crl1=v"} T *=max{T,*, T, } and

T **=min{7,'*, 7./}, where T,*=max X;=~b+un™}, T,”=min X;—a—u'n"?, T,’* =max X;
1<i<n 1<i<n 1<isn

—b+oyn™t and T, "=min X;—a—p'n~'. In the following theorem we shall show that there
1<i<n

exist the asymptotic distributions with different orders according to a.

TueoreMm 3.1. Let X, Xs, -+, X, --- be a sequence of i...d. random variables withk
a density function satisfying Assumptions (A), (B) and (C). If a=2, then the asymptotic
distribution of a maximum likelihood estnnator (M.L.E.) of order {(n log n)'/#} is N(O, 1/1),

112 112 112
where 1'1-——1—</i1, + ljg, ) if =2, L= ~—,— if g>2.

2

If @>2, then the asymptotm distributioni of an M.L.E. of order {n'/*} is N(0, 1/L),

where L=E,[{(0/06) log f(x—6)}*]. If a=B=1 and 4'=B=C,, then the asymptotic dis-
tributions of T*={7,*} and T**={T,**} of order {n} are the Weibull distributions

e—C1(u-y)__e—Cl(a+u’) lf 0<))Su,

Fg,]\u{ﬂ!(y)={ e s (3.20)
 [l—e S p et if —pl <0,
Fy, peel®) ()= { e e (3.21)
ProoOF. i) a=2. Let {U,} be an M.L.E. of 8. .
For any #*€® there exists a positive number & such that
lim oo, [Py ({(n log n)! *(U,— 0) < y//T, )= O(y//1;)] =0,
1 AIIZ BIIZ . AIIZ . 1

where I‘$5(7+T) if f=2, Il=——2—;17~ if B>2 (See the proof of Theorem 4.1 of

[1D.
ii) a>2. Let {U,*} be an M.L.E. of §. For any z?e@ there exists a positive number
d such that

lim sup_ o {n? ’Z(Uﬁ’f—ﬁ)Sy/«/Tz})—fP(y/le)!= ,

nmve §i10-
where L= E,[{06/00) log f (x 6)}*] (See the proof of Theorem 4.1 of [1]).
ili) e=F=1. From Assumptions (A) and (B) we have for any y>>0 and for sufficiently
large n,
Py ({n(T* —0)<y})
=Py ({n- max{T,*—0, T,~—0}<y})
=Py"({ max x;— 0 —b+un<yn pn{minx;—f —a—u'n"1<yn"'})

1<igtn 1<in

“Pﬁ(”)({lmax x; <O+b—(u—yn~'})
<ig<n
Py({ max x; <O+b—u—y)n~Fn{ mm x‘>0+a+(u +y)n~P
1I<i<n
a+{u’+ )n"1

- {1 —g f(x)dx} ~ {1 - S 7 fodx— S f(x)dx} .

b-(u-y)n~1 A a -/ =y)n=1

Hence we obtain
e~ C1w=y —eliln+s) if 0ly<u
Fy 7+n) ={ -
2. 7:"1() 1 —eg~Citu’+5 if u<y.
Further from Assumptions (A) and (B) we have for each y<0 and for sufficiently large n,

—10 —
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Py ({n(T**—0)<y})
=P0(”)({n' min {Tnl+ _“Ha Tn/- _ﬁ}s)}})
=1=P,"{n(T* —0)>y}yn{n(T.' - —6)>y}).
=1 —Pg‘")({lrélgsx x;—0—b+ vn”1>yn‘1}n{lr<n.i£ xi—0—a—v'n1>yn"1})

=1-[P"({, min x>0+ a+ (@' +y)n)
"’)({mlnx,>ﬁ+a+(v +y)n"}n{maxx‘<0+b (v—y)n"P]

1<i<n

—1— {1 _ g“”"'”’"_l f(x)a’x} + {1 - L”"”m_l Floydsx— S

a

S (x)afx} ",

b—(v-y)n~1
Hence we obtain
o Cy{v+y) =Cy{v+v’) 3 !
F(;,T**‘")(y)={1 e C1lvi+I o=y %f v’ <y<0,
e~C1e=y) if y<—7'.
Thus we complete the proof.

ReMARK: If ¢=2 and a>>2, then the M.L.E.’s are a {(n log n)!/*}-consistent estimator
and a {n'/?}-consistent estimator, respectively (See Theorem 4.1 of [17J).
The following lemma is proved in a similar way as lemma 4.4 of [1].

Lemma 3.3 If =2, then the all density functions satisfying Assumptions (A), (B) and.
(C) fall in Case I.

If a=p=1 and A’=PB'=C,, then the all density functions satisfying Assumptions (A)
and (B) fall in Case II.

Throughout the subsequent discussions we denote by T,€ the class of all exactly
asymptotically median unbiased estimators with the same order €={c,}.

THEOREM 3.2. Let Xi, X, ---, X,, --- be a sequence of i.i.d. random variables with a.
density function satisfying Assumptions (A), (B) and (C). If a=2 and a>2, then the
M.L.E.’s {U,} and {U,*} with the asymptotic normal distributions N(0, 1/I,) and N(0, 1/L)
of order {(nlogn)'/*} and order {n!/?} are uniformly asymptotically most accurate, respec-
tively, where I; and I, are defined in Theorem 3.1.

Proor. It follows from lemma 3.3 that the case =2 falls in Case I. We define
an estimator 5(={0}}) and order &(={c,}) and I as follows:

g ={U,. if a=2,
U I a>2,
c ={(n logn)'? if a=2,
T ne if a>2,
I— L if =2,
2 if a>2.

We have for T={7,}=Z4C and —co<y<oo,
P® iy kv Theg-1({ea(Tn—0)<0})

=P(”)0—(Y/K\/T)cn'i({K\/—I—Cn (Tn— (ﬁ_ K\/— Cn_1)>$y}>'
Put Ar={/Tc.(T,—0)<0}. Since for each y, Fj r&(y) is continuous function of 6, we
have

lim |Py"(A1) — Fy, 78(0)[ =0, (3.22)
lim [Py kv Tren-1(AT) — Fo, 78()| =0. (3.23)
—_11 —
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Further it follows from (3.22) and (3.23) and lemma 3.1 that for each y>>0 there exists a
sequence {¢,} of tests such that

0=lim| sup E,. (y/K\/I)c,,—l(Xar)“&SUP B 31 xvTre- ()]

ne Tag,

=lim | sup Ep_ sy xvTre,-t(Xar) = Eois kv Tre,-1(@n)]
nee Teg,

where ¥, ={test ¢: Eo(d)=a,}.
Hence since for each y>0, lim Eyp_(yx/vT)e,~1{@n) = O(y/s/T), for each y>0 and for any

€>0 there exists a sufficiently large 7n; such that for all n(=ny)
Py o) Dey{AD = Eg (51 kv ey 1 (Xan) < O(y[/ T )+ ¢ (3.29)
for all TeZ¥y€. From (3.23) and (3.24) we have for all y>0 and for all TeT,E,
Fo, 80 =0(y/v/T)-
Since Fp, ¢€(»)=0(y/s/T), we have

sup Fp, r8(y)="F;,48(y) for all y>0.
Tex,,E€
Furthermore from lemma 3.1 we have for each y<0,

0=lim | mf@Eo (ylxx/z>c”—1(74r)—¢lﬂf Eg_ iy &y Thep-(P)]

ne Teg,

=lim | inf E,_(xvTie, 1(Xar)— {1‘” Sup Ep_ (s kv Ty (PIH
B TEX,, PEY

=lim | inf Ep rvTie,~1(Xap)— {I_Eﬁ-(yKl\/I)c,,“l((pn)}l
me Tegy

Hence since lim Ey_ (51 5vTre,-1 (@) =O(—y/s/T), it is shown by a similar way as the case
s

y>0 that F; ;€(y)= inf F,; 18(y) for all y<0.
Teg,C
Thus we complete the proof.

THeEOREM 3.3. Let X3, X3, ---, X,, be a sequence of /.i.d. random variables with a
density function satisfying Assumptions (A), (B) and (C). If a=f=1 and A'=B'=(), then
T*={T,*} and T**={T,**} with the asymptotic distributions given in Theorem 3.1 of
order {r} are asymptotically most accurate at an arbitrary point « in [0, 5;] and at an
arbitrary point —¢’ in [—s;, 0], respectively.

Proor. It follows from lemma 3.3 that the case a=f=1 and A’=B'=C,; falls in
Case II.
i) Case T*. From lemma 3.2 we have for each y>0,
0=Ilim | SUP Eo m=1(Xag)— sup Epy,-1(4)]

noe TEG GET, .

—hml Sup Eg y”-l(XA]‘) E(? yn'1(¢» )l,

now TEF, (n)
where Ar=A{n(T,—6)<0} and ¥ *={test ¢: Ej(d)=a,*}.
Furthermore since from (3.13) of lemma 3.2
i Ea_y"_l(w):{%—e-cu if 0<y<s,
e 1 if 1<y,
it is shown in a similar way as Theorem 3.2 that

{3 —eC if 0<y<sy,
1

if s:<y. (3.25)
‘Hence it follows from (3.20) of Theorem 3.1 and (3.25) that T* is asymptotically most
accurate at an arbitrary point # in [0, s;].

sup Fp, ri*"}(y)=
TEZ pr{n}
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ii) Case T**. From lemma 3.2 we have for each y<0,
O0=lim| inf E,. ,,,-I(ZAT)—¢ inf  Ejyn-o($)]

now JE EM {n} Oy~
—lm_} ch inf Eo_y,, 1(Xar)— {1— SUP Eo—yn—l(@}l
=1i_'m (Temf Eo sn=t(Xap)—{1 ‘Ea sn=1(@a ") H

where (Qo,-=test ¢: Eylh)= a0, )
Since from (3.14) of lemma 3.2

_-1_ LeCy if —5 < 0
lim {1"E0—)'n‘1(¢u_)}= 2 e lf Sl—y< ’
e 0 if )7<"'Sl,
it is shown in a similar way as Theorem 3.2 that

—%—-}—e"w if —s5<y<0,
0

if y<—si. (3.26)
Hence it follows from (3.21) of Theorem 3.1 and (3.26) that T** is asymptotically most
accurate at an arbitrary point —»’ in [—s;, 0]. Thus we complete the proof.

inf Fa "(y)=
TEE p(n

4. Bounds of orders of asymptotic distributions of consistent estimators and others
in non-regular cases.

Let £=R'. We suppose that every P,(.)(f<=®) is absolutely continuous with respect
to a Lebesgue measure m. Then we denote the density dPy/dm by f(x:8) and suppose
that f(x: 0)=f(x—0) and f(x)>0 for all x&¥%. For any points §; and ; in @, we define

ﬂdXz’.
i=1
Then d™ is a metric on ®.
In subsequent discussions + and — signs should be read consistently. If

{fleed) — fP?
\z 7@ dx<eo,

a0, 69={,

ﬂf(xg—ﬁl)—- ﬁf(xe —02)

then it follows that
n 1/
AT 4, a)s[{gaﬁ(f(xid)~ f(x))z/f(x)dx—i—l} —1} . .1

Further we shall assume that f(x) is twice continuously differentiable for x&¥ except
for x=0 and

hm Fx)= hmf’(x) 0, (4.2)
and there exists a positive number A, such that
S(x)=0 for x<—M, and f/'(x)=0 for x<—M,, (4.3)
-My
| @y <o, (4.4
and for any >0 there exists a positive number M; such that M,>e,
f1(x)<0 for x>M,—¢ and f(x)=0 for x=M,—e, (4.5)
r {f/(x =)} fx)dx < 0. (4.6)
Mo .

Here we consider the following Cases III, IV and V.
Case III. a’=lim f(x) and &'=Ilim f(x) are finite, where a’ and &’ are certain positive

=40 x+=0

numbers satisfying a’#5’, and f'(x) is bounded on R!—{0}.

— 13 —
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Case IV. §=Ilim |x|~2(f(x)—7) and p=1Iim |x|*~%] f'(x)] are finite, where 0< a<1/2 and
x~x0 0

J, v and % are positive numbers.
Case V. §'=lim |x|®f(x) and 7’ =1Iim |x|**|f'(x)| are finite, where 0<a<1 and §’ and
x—=+0

=20
' are positive numbers.
Let &m, v and &v be classes of all density functions falling in Case III, Case IV
and Case V, respectively.
ReMARK: If fePFv, then it is easily seen that Fisher’s information is infinite:

&‘)33{f’(JC)/f(JC)}-Zf(X)dx== co.

If fe®m, then there exist positive numbers K;, K, and e; such that

K< f(x)<K, for —g<x<e;. 4.7)

If fe&v, then there exist positive numbers K; (i=3, 4, 5) and e; such that
T+ K| x| < fx) <7+ Kilx|® for —e,<x<e,, (4.8)
[ ffO)| < Ks|x|e-t for —e,<x<es. 4.9)

If fedv, then there exist positive numbers K;(i=6, 7, 8) and &3 such that
Ks|x| < f(x)<K7|x|™® for —es<x<es, (4.10)
| /)< Ks|x|#7! for —es<x<es. (4.11)

Putting e=min{e;, ez, €3, 1}, we see that (4.7), (4.8), (4.9), (4.10‘) and (4.11) hold for
—e<x<e. Let 0<4<e/2.
- Now we define an information 7

A==}
I= 833 56 dx.
6
‘We divide I into six parts L, L, I, Iy, Iy and [, that is, I=3I;, where
i=1

-t ~24 0 24 e
11=S > 12:& 3 I3=& > I4=S > IS=S and 15=& .
- \)

-t -24 24 c

©

LeMMA 4.1. In -each Case, the orders of I, I, Is, I, Is, I, and I are given by Table 1.

Table 1
Case o I Iz I3 Is Is Is I
I 0(4?» 0(4) 0(4) | O(4% 0/€)]
0<e <-;— O(42a+1) O(42+1) O(422+1)
v 0(43) |———| O(42%+1) | O(g2a+1) 0(4%)
ce:—;_— 0O(4%]1log 4]). ; O(42[log 4]) O(42|log 4))
A% O<a <é— O(41-2) O(41-<) O(41-=) O(4t=) O(412)

Proor. 1) I; and I,. In Case I1I, it follows from (4.7) that
_(* L fe= )~ f)y
L=, =
(K,—K1)? A

1

<2 “4.12)
In Case IV, it follows from (4.8) that

— 14 —
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PRV EIE S
S%S:A{le—dl“‘—sta}zdx
=O(Le). (4.13)
In Case V, it follows from (4.10) that
I“=8M {fx—D—fF .

0 Sx)
<de (K,,[_X_AI—a_st—a)Z de
o Kax“”

K2 _a _ a Y/ _ K4t v (ZA)I—Q
< S {a-B+a 1-20+02) A 9

=0(4), (4.14)
where B(1+«a, 1—2a) is the beta function and 0<a<1/2.
It follows from (4.12), (4.13) and (4.14) that
o) if fe@m,
Li={0(4) (0<a<l/2) if feFw,
o4y (0<a<1/2) if fETv,
Similarly it follows that the order of I; is consistent with that of I,.
ii) I, and Is. It follows by the mean value theorem that

)N

24 f(x)
= H{SE )y
=, P (4.15)

where 4<x—A4<E(x, H<x<e.
In Case III, since f'(x) is bounded function on R!—{0}, it follows from (4.7) and
(4.15) that

Isﬁgzddz(l/Kx){f’(E(x, Ayt

“—‘K’ldz(E—ZA)
=0(4%), (4.16)
where K.’ is some positive constant.
In Case 1V, it follows from (4.8), (4.9) and (4.15) that

L=\ (EnLfEx, DY

<@, Kegetx
24
S(Ks/r)dzg: (x — dya-idsx. (4.17)
4
If 0<a<1/2, then it follows from (4.17) that
IsS(Kszﬁz/T(Za'—1)){(€—A)2°‘_1'—Am'_1}
=K r(2a— 1) 42 (e2ed — oty
= (Ks*[r(1 —2a)) 4221, 4.18)
If a=1/2, then it follows from (4.17) that
L@ a|| - p7idx
24
<(Ks¥ 1)L (log e — log 4)
=0(4| log 4)). (4.19)

15 —
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From (4.18) and (4.19) we have

= {0(./12““) '{f 0<a<l)2, (4.20)
O(&] log 4)) if a=1/2.
In Case V, it follows from (4.10), (4.11) and (4.15) that
I <y p K8
s= 24 st—_“
S(Ks/Ks)AZY X — d)-2a=2qlx
24
<o), (4.21)
where 0<a<1/2.
It follows from (4.16), (4.20) and (4.21) that
(O(42) if fe@m,
I O(4%+) O<a<1/2) if fEeFw,
*lowlog ) (a=1/2)  if fEFw,
104 %) O<a<1/2) if feFv.
Similarly we have
o) if fefu,
. O(L2+1) O<a</2) if fev,
“Tloweliog ) (=1/2)  if fEBw,
O(4+2) O<a<1/2) if feBv.
i) I and I;. It follows by the mean value theorem that
_( A=Y
I
_\ LS EG, )Y d 4.22
| x> “-22
where —co<lx—A<E(x, A<x< —e.
Since f(x) and f’(x) are continuous functions on (—oo, —e), it follows that
[0 AL D oo, (4.23)
—My fx)
It also follows from (4.3) and (4.4) that
M {fl(f(x, A))}Z M {f/(x)}z 4.24
| ) g e *:29
From (4.22), (4.23) and (4.24) we have
L=0(4%.

Since f(x) and f’(x) are continuous functions on (e, o), it also follows from (4.5) and
(4.6) that

I;=0(4).
6
Since I=3I; and the orders of IL(i=1, 2, 3, 4, 5, 6) are obtained, it follows that
i=1
o) if fe@m,
_|jo(geh O<a<1/2) if feFv,
O(&|log 4)) («=1/2) if fegw,
o(4=) 0<a<l1/2) if fEeFv. (4.25)
Thus we complete the proof.

REMARK: We also define another information I* by

0 S+ D— )P
1*—85 o dx.

— 16 —
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In a similar way as the information I, we see that the order of I* is consistent with that

of I
From (4.1) and lemma 4.1 we get the following lemma.

Lemma 4.2,
{1+oy—11" if fe@m,
2a+1\\n __ 1/2 3
dGFL, )= H{l+ o=y —1] O<a<1/2) Tf fefv,
[{1+0(£1 log AN}y — 11 (a=1/2) if fed,
[{1+o)—1712 O<a<1/2) if fedv.
LemMA 4.3. In each Case let Xy, Xa, -+, X, -+ be a sequence of i.i.d. random varia-

bles with a density functon satisfying the Case. In each Case for a sequence {c,} given
in Table 2 there exists a nonnegative function H(-) satisfying the following: for each >0,
Tim d"W(6=Ftc,™t, 6)<H(C)<o, (4.26)

7=
where C; is some positive number.
Furthermore in each Case, for any greater order c¢,* than values as given in Table 2,

lim d™(8Ftc* 2, 6)=0 (4.27)
for all ¢>0.
Table 2
Case @ Csx
111 n
0<a<1/2 nilzas
v
a=1/2 (nlog n)t’2
A" O<a<l/2 nll/-a)

Proor. It follows from lemma 4.2 that for sufficiently large n,

H1+0(c, )y —17' if fefum,
H140(, =) —112  (0<a<1/2) if fed,

{14+ 0(c, 2 log c)}— 112 (@=1/2) if fedw,

H{1+0(c e )y —1742 O<a<1/2) if fedv. (4.28)
If ¢, is chosen as Table 2 and H(u)=(e*—1)!/ for all u=0, then it follows from (4.28) that
(4.26) holds. Further if ¢,* is greater than order ¢,, then it follows from (4.28) that (4.27)
holds. Thus we complete the proof.

dW(@Ftc,™, 6)=

TueoreM 4.1 Let X1, Xz, ---, X,, --- be a sequence of i.i.d. random variables with a
density function satisfying Case V. Then for each a with 0<a<1 the asymptotic distribu-
tion of a sequence {Xmed.} of order {#*/*~®7} is G(y: a), where Xmed. is the median of
X1, -, X, and G(y: @) is the c.d.f. of the random variable | ¥'|*/"~% (sgn Y) and for large
n, Y is asymptotically distributed according to the normal distribution N(0, 1/4n).

Proor. Let F(x) be the c.d.f. of the random variable X. Put U;=F(X)) (i=1, 2, --+).
Since Ui(i=1, 2, ---) have the uniform distribution U(0, 1), it follows that Umed. =F(Xmed.),
where Umed. is the median of Ui, ---, U,. Since F(x) is continuous, the asymptotic dis-
tribution of (Umed. —1/2), for large #, is the normal distribution N(0, 1/4n). On the other
hand, since lix}lo}xl“f(x)=b"(>0) for 0<a<1, we have for sufficiently small |x|>0,

— 17 —
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Sx)e< x|~
Hence we obtain for sufficiently small |x|>0,
Xt for x>0,
(Fe - 1/2)0:{ (—x)—¢ for x<0.
Therefore we have
Xco<|Umed. —1/2]/6-2) sgn (Umed. —1/2).
Thus putting Y=Umed.—1/2, we have the proof.
In follows from Theorem 4.1 that in Case V, {Xmed.} is a {n*/®-®}consistent estimator
and the asymptotic distribution of {Xmed.} has the largest order of consistency.
Next we define for sufficiently small >0,

fz(x)=71£-&; Flx+ 1), (4.29)

Then we easily see that fe(x) is a density function on ¥. An M.L.E. of § with respect to
the likelihood function ﬁfs(x;—ﬁ) is said to be a e-smooth M.L.E. of 4.

In the following theorems we shall show that the asymptotic distributions of the e-smooth
M.L.E.’s are certain normal distributions in Case III and IV.

TueoreM 4.2. Let Xy, Xa, -+, X,, -~ be a sequence of i.i.d. random variables with
a density function satisfying Case III. Then the asymptotic distribution of a e-smooth
M.L.E. of order {n'/*} is N(0, 1/I.), where Ie=0(c™?).

Proor. It follows from (4.29) that for every x(50)
li_{l; ﬁ’(x)=lii1;»21€~{f(x+ e)—flx—e)}=rf"(x), (4.30)
lim £ ()= £ (x). (4.31)
From (4.2)~(4.6), (4.30) and (4.31) we have
e (9 9 2
hmu { 2 log filx— 0)} Flr— 0)dx+8 { 2 tog f:(x-ﬂ)} flx=0)dx|=0. (4.32)

e—+0

Next we shall show that
L= S {(8/06) log fi(x — B))*F(x — 8)dx =O(e). (4.33)

Indeed, it follows from (4.30) that
1=\ (/06 10g fi(x — )} f(x— O)dx
= fe’(X)}2
!
=i\ (G| fwas

S ) =fx=2e)}* ,

e 4e2f(x)
where K, and K,’ are certain positive constants.
Hence it follows from I of lemma 4.1 that (4.33) holds. From (4.32) and (4.33) we
obtain that the asymptotic distribution of a e-smooth M.L.E. of order {n'/*} is N(0, 1/I)
(Cramér [37]). Thus we complete the proof.

TueoreMm 4.3. Let Xi, X3, ---, X, -~ be a sequence of i.i.d. random variables with
a density function satisfying Case IV. Then the asymptotic distribution of a e-smooth
M.L.E. of order {n'/*} is N(0, 1/L'), where
L= {O(ez"”l) if 0<a<1/2,
O(—loge) if a=1/2.

— 18 —
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Proor. From (4 2)~(4.6) and (4.29) we have
135?[8” { o log £ 6)} flx— ﬁ)dx—l—g {5,0 log fulx— 0)} flx— 0)dx] 0. (4.34)

Next we shall show that
r'=|" {0190) log fitx—))*f(x—0)dx= |

Indeed, it follows that

0?1 if 0<al/2,
O(—loge) if a=1/2. (4.35)

=\ LR fdx

us’gw A CY f(x)dx

SO —flx—2e)
<r| VO
where K, and K’ are certain positive constants.

Hence it follows from I of lemma 4.1 that (4.35) holds. From (4.34) and (4.35) we
obtain that the asymptotic distribution of a e-smooth M.L.E. of order {n'/?} is N(0, 1/I.)
(Cramér [3]). Thus we complete the proof.

Using lemma 4.3 and the necessary condition for the existence of a {c,}-consistent
estimator (Theorem 3.3 of [1]), we get the following. theorem.

TueorREM 4.4. In each Case III, IV and V, the order given by Table 2 of lemma 4.3
is the bound of the order of convergence of consistent estimators; that is, there does not
exist a consistent estimator with the order greater than values given in Table 2.

Remark: It follows from Theorem 4.4 that the bounds of orders of asymptotic dis-
tributions of consistent estimators in Case III, IV and V are given in Table 2 of lemma 4.3.
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