# ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN NON-REGULAR CASES, I: ORDER OF CONVERGENCE OF CONSISTENT ESTIMATORS* 

By Masafumi Akahira<br>University of Electro-Communications

## 1. Introduction

Suppose that $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ is a sequence of independent identically distributed (i.i.d.) random variables. We assume that a parameter space $\oplus$ is an open set in a Euclidean $p$-space with a norm $\|\cdot\|$. In the textbook discussion of an asymptotic theory, it is usually shown that the asymptotically best (in some sense or other) estimator $\left\{T_{n}^{*}\right\}$ has the asymptotic distribution of order $\sqrt{n}$, in the sense that the distribution of $\sqrt{n}\left(T_{n}^{*}-\theta\right)$ converges to some probability law (in most cases normal). There were the sporadic examples that the distribution of $n\left(T_{n}^{*}-\theta\right)$ or $\sqrt{n \log n}\left(T_{n}^{*}-\theta\right)$ converges to some law (Woodroofe [7]) when $X_{i}$ 's are i.i.d. random variables with an uniform distribution or a truncated distribution. The purpose of this paper is to give a systematic treatment for the problem whether for a given sequence $\left\{c_{n}\right\}, c_{n}\left(T_{n}{ }^{*}-\theta\right)$ converges to some law, and what is the possible bound for such a sequence. In a location parameter case it will be shown that such a bound is explicitely given, and the above mentioned are too special cases of our result. The asymptotic distribution of $c_{n}\left(T_{n}^{*}-\theta\right)$ and the bound for it will be discussed in the subsequent paper (Akahira [1]). Also some results in terms of the asympotic distributions of estimators are given in Takeuchi [6].

Suppose that $\left\{T_{n}\right\}$ is a (sequence of) consistent estimator(s). $\left\{T_{n}\right\}$ is defined to be consistent with order $\left\{c_{n}\right\}$, where $\left\{c_{n}\right\}$ is an increasing sequence of positive numbers ( $c_{n}$ tending to infinity) if for every $\varepsilon>0$ and every $\vartheta$ of $\Theta$, there exist a sufficiently small positive number $\delta$ and a sufficiently large positive number $L$ satisfying the following:

$$
\varlimsup_{n \rightarrow \infty} \sup _{\theta:\|\theta-9\|<\delta} P_{\theta}^{(n)}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right)<\varepsilon
$$

A necessary condition for the existence of such an estimator is established, and the bounds of the order of consistency of estimators are obtained. As a special example, a location parameter case is discussed when the density function of $x-\theta$ satisfies the following:
Assumption (A).

$$
\begin{array}{ll}
f(x)>0 & \text { for } \quad a<x<b, \\
f(x)=0 & \text { for } \quad x \leq a, x \geq b,
\end{array}
$$

Assumption (B). $f(x)$ is twice continuously differentiable in the interval ( $a, b$ ) and

$$
\begin{array}{ll}
\lim _{x \rightarrow a+0}(x-a)^{1-\alpha} & f(x)=A^{\prime}, \\
\lim _{x \rightarrow b-0}(b-x)^{1-\beta} & f(x)=B^{\prime},
\end{array}
$$

where both $\alpha$ and $\beta$ are positive constants satisfying $\alpha \leq \beta<\infty$, and $A^{\prime}$ and $B^{\prime}$ are positive finite numbers.

[^0]Assumption (C). $\quad A^{\prime \prime}=\lim _{x \rightarrow a+0}(x-a)^{2-\alpha}\left|f^{\prime}(x)\right|$ and $B^{\prime \prime}=\lim _{x \rightarrow b-0}(b-x)^{2-\beta}\left|f^{\prime}(x)\right|$ are finite. For $\alpha \geq 2, f^{\prime \prime}(x)$ is bounded.

It is shown that the bound of $\left\{c_{n}\right\}$ is given by $c_{n}=n^{1 / \alpha}$ if $0<\alpha<2, c_{n}=(n \log n)^{1 / 2}$ if $\alpha=2$, $c_{n}=n^{1 / 2}$ if $\alpha>2$, and the existence of estimators with such order of consistency is established.

## 2. Notations and Definitions

Let $\mathfrak{X}$ be an abstract sample space whose generic point is denoted by $x, \mathfrak{B}$ a $\sigma$-field of subsets of $\mathfrak{X}$, and let $(\underset{\text { be }}{ }$ be a parameter space, which is assumed to be an open set in a Euclidean $p$-space $R^{p}$ with a norm denoted $\|\cdot\|$. We consider a sequence of classes of probability measure $\left\{P_{0 i}: \theta \in \mathbb{\oplus}\right\}(i=1,2, \cdots)$ each defined over $(\mathfrak{X}, \mathfrak{B})$. We shall denote by ( $\mathfrak{X}^{(n)}, \mathfrak{B}^{(n)}$ ) the $n$-fold direct products of ( $\mathfrak{X}, \mathfrak{B}$ ) and the corresponding product measures by $P_{\theta^{(n)}}^{(n)}=P_{01} X \cdots X P_{0_{n}}$. For each $n=1,2, \cdots$, the points of $\mathfrak{X}^{(n)}$ will be denoted by $\tilde{x}_{n}=\left(x_{1}\right.$, $\cdots, x_{n}$ ) and the corresponding random variable by $\tilde{X}_{n}$ with the probability distribution $P_{\theta}{ }^{(n)}$. An estimator of $\theta$ is defined to be a sequence $\left\{T_{n}: n=1,2, \cdots\right\}$ of $\mathfrak{B}(n)$-measurable function $T_{n}$ on $\mathfrak{X}^{(n)}$ into $@(n=1,2, \cdots)$.

Definition 2.1. An estimator $\left\{T_{n}: n=1,2, \cdots\right\}$ is called (weakly) consistent if for every $\varepsilon>0$ and every $\theta$ of $\Theta$

$$
\lim _{n \rightarrow \infty} P_{\theta}^{(n)}\left(\left\{\left\|T_{n}-\theta\right\|>\varepsilon\right\}\right)=0 .
$$

Definition 2.2. For an increasing sequence of positive numbers $\left\{c_{n}\right\}$ ( $c_{n}$ tending to infinity) an estimator $\left\{T_{n}: n=1,2, \cdots\right\}$ is called consistent with order $\left\{c_{n}\right\}$ (or $\left\{c_{n}\right\}$-consistent for short) if for every $\varepsilon>0$ and every $\vartheta$ of $\Theta$, there exist a sufficiently small positive number $\delta$ and a sufficiently large positive number $L$ satisfying the following:

$$
\begin{equation*}
\overline{\lim }_{n \rightarrow \infty} \sup _{0:\|\theta-9\|<\delta} P_{\theta}^{(n)}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right)<\varepsilon \tag{2.1}
\end{equation*}
$$

It is easily seen that if $\left\{T_{n}\right\}$ is a $\left\{c_{n}\right\}$-consistent estimator, then $\left\{T_{n}\right\}$ is a consistent estimator. Order $\left\{c_{n}\right\}$ is called to be greater than order $\left\{c_{n}{ }^{\prime}\right\}$ if $\lim _{n \rightarrow \infty} c_{n}{ }^{\prime} / c_{n}=0$. For any two
 lutely continuous with respect to $\mu_{n}$. Further for any points $\theta$ and $\theta^{\prime}$ in $\Theta$ we define

$$
\begin{align*}
d_{n}\left(\theta, \theta^{\prime}\right) & =\int_{\mathfrak{X}^{(n)}}\left|\frac{d P_{\theta^{(n)}}}{d \mu_{n}}-\frac{d P_{\theta^{\prime}(n)}}{d \mu_{n}}\right| d \mu_{n} \\
& =2 \sup _{B \in \mathfrak{B}}\left|P_{\theta^{(n)}}(B)-P_{\theta^{\prime(n)}}(B)\right| . \tag{2.2}
\end{align*}
$$

It is easily seen that for each $n, d_{n}$ is a metric on $\Theta$ independent of $\mu_{n}$.

## 3. Necessary Conditions for Existences of Consistent Estimators

In this section we shall obtain the necessary conditions for the existences of a consistent estimator and a $\left\{c_{n}\right\}$-consistent estimator.

The following is already known. (e.g. Hoeffding and Wolfowitz [4]).
Theorem 3.1. If there exists a consistent estimator, then for any two disjoint points $\theta_{1}$ and $\theta_{2}$ in $\Theta$,

$$
\lim _{n \rightarrow \infty} d_{n}\left(\theta_{1}, \theta_{2}\right)=2
$$

The proof is omitted.
The following theorem shows that the necessary condition for the existence of a consistent estimator is that the limit of the Kullback information is infinite.

Theorem 3.2. Suppose that for each $n$, $\left\{\tilde{x}_{n}: d P_{\theta}{ }^{(\pi)} / d \mu_{n}>0\right\}$ does not depend on $\theta$. If there exists a consistent estimator, then the following holds: for any two disjoint points $\theta_{1}$ and $\theta_{2}$

$$
\lim _{n \rightarrow \infty} I_{n}\left(\theta_{1}, \theta_{2}\right)=\infty,
$$

where $I_{n}\left(\theta_{1}, \theta_{2}\right)=\int_{\mathfrak{X}^{(n)}}\left(d P_{\theta_{1}}{ }^{(n)} / d \mu_{n}\right) \log \left(d P_{\theta_{1}}{ }^{(n)} / d P_{\theta_{2}}{ }^{(n)}\right) d \mu_{n}$. :
Proof. We denote a consistent estimator by $\left\{T_{n}: n=1,2, \cdots\right\}$. Let $0<\delta<\frac{1}{2}$. Putting $Y_{n}=d P_{\theta_{2}}{ }^{(n)} / d P_{\theta_{1}}{ }^{(n)}$, we have from Theorem 3.1 for sufficiently large $n$,

$$
\begin{align*}
E_{\theta_{1}}{ }^{(n)}\left(\left|Y_{n}-1\right|\right) & =\int_{\mathfrak{X}^{(n)}}\left|Y_{n}-1\right| d P_{\theta_{1}}{ }^{(n)} \\
& =d\left(P_{\theta_{1}}{ }^{(n)}, P_{\theta_{2}}{ }^{(n)}\right) \\
& \geq 2-2 \delta . \tag{3.1}
\end{align*}
$$

Putting $Y_{n}^{+}=\max \left\{Y_{n}-1,0\right\}$ and $Y_{n}^{-}=\max \left\{1-Y_{n}, 0\right\}$, we have for each $n=1,2, \cdots$,

$$
\begin{aligned}
E_{\theta_{1}}{ }^{(n)}\left(Y_{n}{ }^{+}\right)-E_{\theta_{1}}{ }^{(n)}\left(Y_{n}-\right) & =\int_{X^{(n)}}\left\{\frac{d P_{\theta_{1}}{ }^{(n)}}{d \mu_{n}}-\frac{d P_{\theta_{3}}{ }^{(n)}}{d \mu_{n}}\right\} d \mu_{n} \\
& =0
\end{aligned}
$$

and for sufficiently large $n$,

$$
E_{\theta_{1}}{ }^{(n)}\left(Y_{n}^{+}\right)+E_{\theta_{1}}{ }^{(n)}\left(Y_{n}^{-}\right)=E_{\theta_{1}}{ }^{(n)}\left(\left|Y_{n}-1\right|\right) \geq 2-2 \delta .
$$

Hence we obtain for sufficiently large $n$,

$$
\begin{equation*}
E_{\theta_{1}}^{(n)}\left(Y_{n}^{+}\right)=E_{\theta_{1}}{ }^{(n)}\left(Y_{n}^{-}\right) \geq 1-\delta . \tag{3.2}
\end{equation*}
$$

Since $0 \leq Y_{n}^{-} \leq 1$ and (3.2) hold, for sufficiently large $n$,

$$
\begin{aligned}
1-\delta \leq E_{\theta_{1}}{ }^{(n)}\left(Y_{n}^{-}\right) & =\int_{\left\{Y_{n}-\geq 1-2 \delta\right)} Y_{n}^{-} d P_{\theta_{1}}{ }^{(n)}(\tilde{x})+\int_{\left\{Y_{n}-<1-2 \delta\right\}} Y_{n}^{-} d P_{\theta_{1}}{ }^{(n)}\left(\tilde{x}_{n}\right) \\
& \leq P_{\theta_{1}}{ }^{(n)}\left(\left\{Y_{n}^{-} \geq 1-2 \delta\right\}\right)+(1-2 \delta) P_{\theta_{1}}^{\left({ }^{(n)}\right)}\left(\left\{Y_{n}^{-} \leq 1-2 \delta\right\}\right) \\
& =2 \delta P_{\theta_{1}}{ }^{(n)}\left(\left\{Y_{n}-\geq 1-2 \delta\right\}\right)+1-2 \delta .
\end{aligned}
$$

Hence we have for sufficiently large $n$,

$$
\begin{equation*}
P_{\theta_{1}}{ }^{(n)}\left(\left\{Y_{n} \geq 1-2 \delta\right\}\right) \geq \frac{1}{2} . \tag{3.3}
\end{equation*}
$$

It follows from (3.3) that for sufficiently large $n$,

$$
\begin{aligned}
I_{n}\left(\theta_{1}, \theta_{2}\right) & =E_{\theta_{1}}{ }^{(n)}\left(-\log Y_{n}\right) \\
& =E_{\theta_{1}}{ }^{(n)}\left[-\log \left(1+Y_{n}^{+}\right)\right]-E_{\theta_{1}}{ }^{(n)}\left[\log \left(1-Y_{n}{ }^{-}\right)\right] \\
& \geq-E_{\theta_{1}{ }^{(n)}}\left(Y_{n}^{+}\right)-\frac{1}{2} \log 2 \delta \\
& \geq-1-\frac{1}{2} \log 2 \delta .
\end{aligned}
$$

Therefore we have

$$
\lim _{n \rightarrow \infty} I_{n}\left(\theta_{1}, \theta_{2}\right)=\infty
$$

Thus we complete the proof.
Theorem 3.3 If there exists a $\left\{c_{n}\right\}$-consistent estimator, then for every $\varepsilon>0$ and every $\theta \in(\circledast)$ there is a positive number $t$ such that

$$
\lim _{n \rightarrow \infty} d_{n}\left(\theta, \theta \pm t c_{n}^{-1} 1\right) \geq 2-\varepsilon
$$

where $1=(1, \cdots, 1)^{\prime}$.
Proof. Suppose that $\left\{T_{n}: n=1,2, \cdots\right\}$ be a $\left\{c_{n}\right\}$-consistent estimator. It follows from the definition of a $\left\{c_{n}\right\}$-consistent estimator that for every $\varepsilon>0$ and every $\theta$ of $\Theta$,
there exist positive numbers $\delta$ and $L$ such that

$$
\varlimsup_{n \rightarrow \infty} \sup _{\vartheta:\|-\theta-\theta\|<\delta} P_{g}(n)\left(\left\{c_{n}\left\|T_{n}-\dot{v}\right\| \geq L\right\}\right)<\varepsilon / 4 .
$$

Let $t>2 L$ be fixed. Since there exists $n_{0}$ such that for any $n>n_{0}$,

$$
\begin{gathered}
c_{n}>c_{n_{0}}>t / \delta, \\
\sup _{\vartheta:\|\vartheta-\theta\|<t c_{n_{0}-1}-1} P_{s^{(n)}}\left(\left\{c_{n}\left\|T_{n}-\vartheta\right\| \geq L\right\}\right)<\varepsilon / 4,
\end{gathered}
$$

it follows that

$$
\begin{align*}
& \left.\varlimsup_{n \rightarrow \infty} P_{\theta+t c_{n}-11^{(n)}}\left(c_{n}\left\|T_{n}-\theta-t c_{n}^{-1} 1\right\| \geq L\right\}\right)<\varepsilon / 4,  \tag{3.4}\\
& \varlimsup_{n \rightarrow \infty} P_{\theta}^{(n)}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right)<\varepsilon / 4 . \tag{3.5}
\end{align*}
$$

From (3.4) we have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} P_{\left.\theta+t c_{n}-11^{(n)}\right)}^{\left(\left\{c_{n}\left\|T_{n}-\theta-t c_{n-}^{1}\right\| \geq t-L\right\}\right)<\varepsilon / 4 . . . ~ . ~} \tag{3.6}
\end{equation*}
$$

Since the following holds:

$$
\begin{align*}
d_{n}\left(\theta, \theta+t c_{n}^{-1} 1\right)= & 2 \sup _{B \in \mathscr{S}(n)}\left|P_{\theta+t c_{n}-1^{(n)}}(B)-P_{\theta^{(n)}}(B)\right| \\
& \geq 2\left|P_{\theta+t c_{n}-1^{(n)} 1}\left(\left\{c_{n}| | T_{n}-\theta| | \geq L\right\}\right)-P_{\theta}^{(n)}\left(\left\{c_{n}| | T_{n}-\theta| | \geq L\right\}\right)\right| \tag{3.7}
\end{align*}
$$

for all $n$, it is sufficient to show that the inferior limit of the last term of (3.7) is not smaller than $2-\varepsilon$. Because we have

$$
\left\{\tilde{x}_{n}: c_{n}\left\|T_{n}(\tilde{x})-\theta-t c_{n}^{-1} \mathbf{1}\right\|<t-L\right\} \subset\left\{\tilde{x}_{n}: c_{n}\left\|T_{n}\left(\tilde{x}_{n}\right)-\theta\right\| \geq L\right\}
$$

for all $n$,

$$
\begin{align*}
& \varliminf_{n \rightarrow \infty} P_{\left.\theta+t c_{n}-11^{(n)}\right)}\left(\left\{c_{n}\left\|T_{n}-\theta-t c_{n}^{-1} \mathbf{1}\right\|<t-L\right\}\right) \\
\leq & \lim _{n \rightarrow \infty} P_{\theta+t c_{n}-11^{(n)}}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right) . \tag{3.8}
\end{align*}
$$

It follows from (3.6) and (3.8) that

$$
\begin{equation*}
1-\frac{\varepsilon}{4} \leq \lim _{n \rightarrow \infty} P_{\theta+t c_{n}-11^{(n)}}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right) . \tag{3.9}
\end{equation*}
$$

From (3.5) and (3.9) we obtain

$$
2-\varepsilon \leq \lim _{n \rightarrow \infty} 2\left|P_{\theta+i c_{n}-11^{(n)}}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right)-P_{0}^{(n)}\left(\left\{c_{n}\left\|T_{n}-\theta\right\| \geq L\right\}\right)\right| .
$$

Therefore we have

$$
\lim _{n \rightarrow \infty} d_{n}\left(\theta, \theta+t c_{n}^{-1} 1\right) \geq 2-\varepsilon
$$

Similarly we also obtain

$$
\lim _{n \rightarrow \infty} d_{n}\left(\theta, \theta-t c_{n}^{-1} 1\right) \geq 2-\varepsilon .
$$

Thus we complete the proof.

## 4. Order of Convergence of $\left\{C_{n}\right\}$-Consistent Estimators for Location Parameter Cases

Before discussing order of convergence of $\left\{c_{n}\right\}$-consistent estimators in detail, we shall give a definition and lemmas.

Definition 4.1. (Generalized from Gnedenko and Kolmogorov [3]). For each $\theta \in 囚$, the sums

$$
Y_{n}(\theta)=X_{1}(\theta)+X_{2}(\theta)+\cdots+X_{n}(\theta)
$$

of positive independent random variables $X_{1}(\theta), X_{2}(\theta), \cdots, X_{n}(\theta), \cdots$ are said to be uniformly relatively stable for constants $B_{n}(\theta)$ if there exist positive constants $B_{n}(\theta)$ such that for any $\varepsilon>0, P_{0^{(n)}}\left(\left\{\left|\frac{Y_{n}(\theta)}{B_{n}(\theta)}-1\right|>\varepsilon\right\}\right) \rightarrow 0$ as $n \rightarrow \infty$ uniformly in any compact subset of $\Theta$.

In the subsequent lemmas, we use the notation that for each $k$ and each $\theta \in \Theta, F_{\theta k}(x)$ is the distribution function of $X_{k}(\theta)$.

Lemma 4.1. (Gnedenko and Kolmogorov [3]). For each $\theta \in \Theta$, let $X_{1}(\theta), X_{2}(\theta), \cdots$, $X_{n}(\theta), \cdots$ be a sequence of positive independent random variables. The sums

$$
Y_{n}(\theta)=X_{1}(\theta)+X_{2}(\theta)+\cdots+X_{n}(\theta)
$$

are uniformly relatively stable for constants $B_{n}(\theta)$, if there exists a sequence of positive constants $B_{1}(\theta), B_{2}(\theta), \cdots, B_{n}(\theta), \cdots$ such that for any $\varepsilon>0$,

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{\varepsilon B_{n}(\theta)}^{\infty} d F_{o k}(x) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in any compact subset of $\Theta$,

$$
\begin{equation*}
\frac{1}{B_{n}(\theta)} \sum_{k=1}^{n} \int_{0}^{\varepsilon B_{n}(\theta)} x d F_{\theta k}(x) \rightarrow 1 \tag{4.2}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in any compact subset of $(\mathbb{C}$.
The following lemma is a generalization of Lindeberg's condition (see Gnedenko and Kolmogorov [3]).

Lemma 4.2. For each $\theta \in \Theta$, let $X_{1}(\theta), X_{2}(\theta), \cdots, X_{n}(\theta), \cdots$ be a sequence of independent random variables.

The distribution laws of the sums

$$
Y_{n}(\theta)=\frac{X_{1}(\theta)+X_{2}(\theta)+\cdots+X_{n}(\theta)}{B_{n}(\theta)}
$$

converges to the normal law

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

uniformly in any compact subset of $\Theta$, if there exists a sequence of constants $B_{n}(\theta)$ such that $\lim _{n \rightarrow \infty} B_{n}(\theta)=\infty$ uniformly in any compact subset of $\circledast$ and for any $\varepsilon>0$,

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{\left\{1 x \mid>\in B_{n}(\theta)\right\}} d F_{\theta k}(x) \rightarrow 0 \tag{4.3}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in any compact subset of $\Theta$, and

$$
\begin{equation*}
\frac{1}{\left\{B_{n}(\theta)\right\}^{2}} \sum_{k=1}^{n}\left\{\int_{\left\{|x|<\varepsilon B_{n}(\theta)\right\}} x^{2} d F_{\theta k}(x)-\left(\int_{\left\{|x|<\varepsilon B_{n}(\theta)\right\}} x d F_{\theta k}(x)\right)^{2}\right\} \rightarrow 1 \tag{4.4}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in any compact subsets of $\oplus$.
Now we assume that $X_{i}$ 's are identically distributed i.e. $P_{\theta i}=P_{\theta}(i=1,2, \cdots)$.
We suppose that every $P_{\theta}(\cdot)(\theta \in \Theta)$ is absolutely continuous with respect to a $\sigma$-finite measure $\mu$. We denote the density $d P_{\theta} / d \mu$ by $f(\cdot: \theta)$ and by $A(\theta) \subset \mathfrak{X}$ the set of points in the space of $\mathfrak{X}$ for which $f(x: \theta)>0$. Then we may write $f(x: \theta)=\chi_{A(\theta)}(x) f(x: \theta)$, where $\chi_{A(\theta)}(\cdot)$ denotes the indicator of $A(\theta)$.

Lemma 4.3. If

$$
\int_{i=1}^{n} A\left(\theta_{1}\right) \cap \sum_{i=1}^{n} A\left(\theta_{2}\right)\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}: \theta_{i}\right)}{f\left(x_{i}: \theta_{2}\right)}-1\right\}^{2} \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right) d \mu^{(n)}<\infty,
$$

then for any two points $\theta_{1}$ and $\theta_{2}$ in $\Theta$ and each $n=1,2, \cdots$,

$$
\begin{align*}
d\left(P_{\theta_{1}}^{(n)}, P_{\theta_{2}}^{(n)} \leq \leq\right. & {\left[1-\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right\}^{n}\right]+\left[1-\left\{P_{\theta_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n}\right] } \\
& +\left[\left\{\int_{A\left(\theta_{1}\right) \cap A\left(\theta_{2}\right)} f^{2}\left(x: \theta_{1}\right) / f\left(x: \theta_{2}\right) d \mu\right\}^{n}\right. \\
& \left.\left.-2\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right)\right\}^{n}+\left\{P_{\theta_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n}\right]^{1 / 2} \tag{4.5}
\end{align*}
$$

Proof. Since for any two points $\theta_{1}$ and $\theta_{2}$ in $\Theta$ and each $n=1,2, \cdots$,

$$
\frac{d P_{\theta_{j}^{(n)}}^{(n)}}{d \mu^{(n)}}=\prod_{i=1}^{n} f\left(x_{i}: \theta_{j}\right)=\prod_{i=1}^{n} \chi_{A\left(\theta_{j}\right)} f\left(x_{i}: \theta_{j}\right)=\chi_{i=1}^{n} A\left(\theta_{j}\right)\left(\tilde{x}_{n}\right) \prod_{i=1}^{n} f\left(x_{i}: \theta_{j}\right) \quad(j=1,2)
$$

from (2.1) we have

$$
\begin{aligned}
& d\left(P_{0_{1}}{ }^{(n)}, P_{0_{2}}{ }^{(n)}\right) \\
& =\int_{X^{(n)}}\left|\chi_{i=1}^{n} A\left(\theta_{1}\right)\left(\tilde{x}_{n}\right) \prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\chi_{i=1}^{n} A\left(\theta_{2}\right)\left(\tilde{x}_{n}\right) \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} \\
& =\int_{X_{i=1}^{n} A\left(\theta_{1}\right)-{\underset{X}{i=1}}_{n} A\left(\theta_{2}\right)} \prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right) d \mu^{(n)}+\int_{i=1}^{n} A\left(\theta_{2}\right)-\prod_{i=1}^{n} A\left(\theta_{1}\right) \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right) d \mu^{(n)} \\
& +\int_{i=1}^{{\underset{X}{X}}_{n}^{n} A\left(\theta_{1}\right) \cap{\underset{i}{X}}_{n}^{n} A\left(\theta_{2}\right)}\left|\prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} \\
& =1-\int_{X_{i=1}^{n}\left(A\left(\theta_{1}\right) \cap A\left(\theta_{2}\right)\right)} \prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right) d \mu^{(n)}+1-\int_{i=1}^{n}\left(A\left(\theta_{1}\right) \cap A\left(\theta_{2}\right)\right) \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right) d \mu^{(n)} \\
& +\int_{X_{i=1}^{n} A\left(\theta_{1}\right) \cap \prod_{i=1}^{n} A\left(\theta_{2}\right)}\left|\prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} \\
& =\left[1-\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right\}^{n}\right]+\left[1-\left\{P_{\theta_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n}\right] \\
& +\int_{i=1}^{n} A\left(\theta_{1}\right) \cap{\underset{i}{i=1}}_{n} A\left(\theta_{2}\right)\left|\prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} .
\end{aligned}
$$

Further it follows form the assumption and the Schwarz's inequality that

$$
\begin{aligned}
& \int_{i=1}^{n} A\left(\theta_{1}\right) \cap \prod_{i=1}^{n} A\left(\theta_{2}\right) \\
&\left|\prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} \\
&= \int_{X_{i=1}^{n} A\left(\theta_{1}\right) \cap \prod_{i=1}^{n} A\left(\theta_{2}\right)}\left|\prod_{i=1}^{n} \frac{f\left(x_{i}: \theta_{1}\right)}{f\left(x_{i}: \theta_{2}\right)}-1\right| \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right) d \mu^{(n)} \\
& \leq {\left[\int_{X_{i=1}^{n} A\left(\theta_{1}\right) \cap \prod_{i=1}^{n} A\left(\theta_{2}\right)}\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}: \theta_{1}\right)}{f\left(x_{i}: \theta_{2}\right)}-1\right\}^{2} \prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right) d \mu^{(n)}\right]^{1 / 2} } \\
&= {\left[\left\{\int_{A\left(\theta_{1}\right) \cap A\left(\theta_{2}\right)} f^{2}\left(x: \theta_{1}\right) / f\left(x: \theta_{2}\right) d \mu\right\}^{2}-2\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right\}^{n}+\left\{P_{\theta_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n}\right]^{1 / 2} }
\end{aligned}
$$

Thus we complete the proof.
In order to use afterwards (4.5), we write

$$
\begin{aligned}
& L\left(\theta_{1}, \theta_{2}\right)=1-\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right\}^{n} \\
& R\left(\theta_{1}, \theta_{2}\right)=1-\left\{P_{\partial_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n} \\
& M\left(\theta_{1}, \theta_{2}\right)=\left[\left\{\int_{A\left(\theta_{1}\right) \cap A\left(\theta_{2}\right)} f^{2}\left(x: \theta_{1}\right) / f\left(x: \theta_{2}\right) d \mu\right\}^{n}-2\left\{P_{\theta_{1}}\left(A\left(\theta_{2}\right)\right)\right\}^{n}+\left(P_{\theta_{2}}\left(A\left(\theta_{1}\right)\right)\right\}^{n}\right]^{1 / 2}
\end{aligned}
$$

and we shall note that

$$
M\left(\theta_{1}, \theta_{2}\right) \geq \int_{i=1}^{\sum_{i}^{n} A\left(\theta_{1}\right) \prod_{i=1}^{X} A\left(\theta_{2}\right)}\left|\prod_{i=1}^{n} f\left(x_{i}: \theta_{1}\right)-\prod_{i=1}^{n} f\left(x_{i}: \theta_{2}\right)\right| d \mu^{(n)} .
$$

Let $\mathfrak{X}=R^{1}$. Now we suppose that every $P_{\theta}(\cdot)(\theta \in \circledast)$ is absolutely continuous with respect to a Lebesgue measure $m$. Then we denote the density $d P / d m$ by $f(\cdot: \theta)$ and suppose $f(x: \theta)=f(x-\theta)$. For the lemmas and theorems in sections 4 and 5 we make the following assumptions.

Assumption (A). $\quad f(x)>0$ for $a<x<b$,

$$
f(x)=0 \text { for } x \leq a, x \geq b .
$$

Assumption (B). $f(x)$ is twice continuously differentiable in the interval $(a, b)$ and

$$
\begin{aligned}
& \lim _{x \rightarrow+0+0}(x-a)^{1-\alpha} f(x)=A^{\prime} \\
& \lim _{x \rightarrow b-0}(b-x)^{1-\beta} f(x)=B^{\prime}
\end{aligned}
$$

where both $\alpha$ and $\beta$ are positive constants satisfying $\alpha \leq \beta<\infty$, and $A^{\prime}$ and $B^{\prime}$ are positive finite numbers.

Assumption (C). $A^{\prime \prime}=\lim _{x \rightarrow a+0}(x-a)^{2-\alpha}\left|f^{\prime}(x)\right|$ and $B^{\prime \prime}=\lim _{x \rightarrow b-0}(b-x)^{2-\beta}\left|f^{\prime}(x)\right|$ are finite. For $\alpha \geq 2, f^{\prime \prime}(x)$ is bounded.

For example we see that the beta distributions $B e(\alpha, \beta)(0<\alpha \leq \beta \leq 2$ or $3<\alpha \leq \beta<\infty)$ satisfy Assumptions (A), (B) and (C).

Lemma 4.4. Suppose that a density function $f$ satisfies Assumptions (A), (B) and (C). If $\alpha=2$, then the following hold: for any $\varepsilon>0$,

$$
\begin{equation*}
n \int_{\left\{x: \varepsilon c_{1}(n \log n)<-\left(\partial^{2} \mid \theta \theta^{2}\right) \log f(x-\theta)\right\}} f(x-\theta) d x \rightarrow 0 \tag{4.6}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $\theta$ of $(\mathbb{H}$,

$$
\begin{equation*}
\frac{1}{c_{1} n \log n} \int_{\left\{x: 0<-\left(\theta^{2} / \partial \theta^{2}\right) \log f(x-\theta)<\varepsilon c_{1} n \log n\right\}}\left\{-\left(\partial^{2} / \partial \theta^{2}\right) \log f(x-\theta)\right\} f(x-\theta) d x \rightarrow 1 \tag{4.7}
\end{equation*}
$$

as $n \rightarrow \infty$ uniformly in $\theta$ of $\Theta$, where $c_{1}=\frac{1}{2}\left(\frac{A^{\prime 2}}{A^{\prime}}+\frac{B^{\prime 2}}{B^{\prime}}\right)$ if $\beta=2, c_{1}=\frac{A^{\prime 2}}{2 A^{\prime}}$ if $\beta>2$ :
Proof. It follows from Assumptions (A), (B) and (C) that there exist $n_{0}$ and $\eta_{n}$ such that for all $n \geq n_{0}$,

$$
\begin{equation*}
0<x-a<\eta_{n}, \quad 0<b-x<\eta_{n}, \tag{4.8}
\end{equation*}
$$

implies

$$
\begin{align*}
& A^{\prime}-\frac{1}{n}<(x-a)^{-1} f(x)<A^{\prime}+\frac{1}{n}, A^{\prime \prime}-\frac{1}{n}<\left|f^{\prime}(x)\right|<A^{\prime \prime}+\frac{1}{n}, \\
& B^{\prime}-\frac{1}{n}<(b-x)^{1-\beta} f(x)<B^{\prime}+\frac{1}{n}, \quad B^{\prime \prime}-\frac{1}{n}<(b-x)^{2-\beta}\left|f^{\prime}(x)\right|<B^{\prime \prime}+\frac{1}{n} . \tag{4.9}
\end{align*}
$$

Let $A_{-n}=A^{\prime}-\frac{1}{n}, A_{n}=A^{\prime}+\frac{1}{n}, \quad B_{-n}=B^{\prime}-\frac{1}{n}, \quad B_{n}=B^{\prime}+\frac{1}{n}, \quad A_{-n}^{\prime \prime}=A^{\prime \prime}-\frac{1}{n}, \quad A_{n}^{\prime \prime}=A^{\prime \prime}+\frac{1}{n}$, $B_{-n}{ }^{\prime \prime}=B^{\prime \prime}-\frac{1}{n}$ and $B_{n}{ }^{\prime \prime}=B^{\prime \prime}+\frac{1}{n}$.

Putting

$$
\begin{gathered}
I_{1 n}=\int_{\left\{x: \varepsilon c_{1} n \log n<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right\}_{n^{(a, ~}}\left(a+\eta_{\left.n_{0}\right)}\right.} f(x) d x, \\
I_{2 n}=\int_{\left\{x: c c_{1} n \log n<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right\}_{\cap^{\left[a+\eta_{n}, b-\eta_{n_{0}}\right]}} f(x) d x,}-\mathbf{1 4 -}
\end{gathered}
$$

$$
I_{3 n}=\int_{\left\{x: \varepsilon c_{1} n \log n<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right\}_{n}^{\left(b-\eta_{n_{0}}, b\right)}} f(x) d x
$$

we have

$$
\begin{align*}
& n \int_{\left\{x: \varepsilon c_{1} n \log n<-\frac{\partial^{2}}{\partial \theta^{2}} \log f(x-\theta)\right\}} f(x-\theta) d x \\
= & n \int_{\left\{x: \varepsilon c_{1} n \log n<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right\}} f(x) d x \\
= & n\left(I_{1 n}+I_{2 n}+I_{3 n}\right) . \tag{4.10}
\end{align*}
$$

Since $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are bounded,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n I_{2 n}=0 \tag{4.11}
\end{equation*}
$$

Since $f^{\prime \prime}(x)$ is bounded, from (4.8) and (4.9) we have for sufficiently large $n$,

$$
\begin{aligned}
n I_{1 n} & =n \int_{\left\{x: \varepsilon c_{1} n \log n<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right\} n^{\left(a, a+n_{0}\right)}} f(x) d x \\
& \leqq n \int_{\left\{x: \varepsilon c_{1} n \log n<\left\{\frac{A^{\prime \prime} n}{A_{-n}(x-a)}\right\}^{2}\right\}(x) d x+O\left(n^{-1}(\log n)^{-2}\right)} \\
& =n \int_{a}^{a+\frac{A^{\prime \prime} n}{A_{-n}}\left(\varepsilon c_{1} n \log n\right)^{-\frac{1}{2}}} A_{n}(x-a) d x+O\left(n^{-1}(\log n)^{-2}\right) \\
& =\frac{n}{2} A_{n} \frac{A_{n}{ }^{\prime \prime}}{A_{-n}}\left(\varepsilon c_{1} n \log n\right)^{-1}+O\left(n^{-1}(\log n)^{-2}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
& \varlimsup_{n \rightarrow \infty} n I_{1 n} \\
\leq & \varlimsup_{n \rightarrow \infty} \frac{n}{2} A_{n} \frac{A_{n}^{\prime \prime}}{A_{-n}}\left(\varepsilon c_{1} n \log n\right)^{-1} \\
= & \frac{1}{2} A^{\prime \prime} /\left(\varepsilon c_{1}\right)^{-1} \lim _{n \rightarrow \infty}(\log n)^{-1} \\
= & 0 \tag{4.12}
\end{align*}
$$

Repeating a similar argument, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n I_{3 n}=0 \tag{4.13}
\end{equation*}
$$

It follows from (4.10), (4.11) and (4.12) that (4.6) holds.
Putting

$$
\begin{aligned}
& I_{1 n}^{\prime}=\int_{\left\{x: 0<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}<\varepsilon \sigma_{1} n \log n\right\}_{\cap^{\prime}}\left(a, a+\pi n_{0}\right)}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x, \\
& I_{2 n}^{\prime}=\int_{\left\{x: 0<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}<\varepsilon c_{1} n \log n\right\}_{n}\left[a+\eta_{n_{0}}, b-\eta_{\left.n_{0}\right]}\right.}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x, \\
& I_{3 n}^{\prime}=\int_{\left\{x: 0<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}<\varepsilon \varepsilon_{1} n \log n\right\}_{n^{\left(b-\eta_{0}, b\right)}}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x . ~ . ~ . ~}^{f}
\end{aligned}
$$

we have

$$
\begin{align*}
& \frac{n}{c_{1} n \log n} \int_{\left\{x: 0<-\frac{\partial^{2}}{\partial \theta^{2}} \log f(x-\theta)<\varepsilon c_{1} n \log n\right\}}\left\{-\frac{\partial^{2}}{\partial \theta^{2}} \log f(x-\theta)\right\} f(x-\theta) d x \\
= & \frac{1}{c_{1} \log n} \int_{\left\{x: 0<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}<\varepsilon c_{1} n \log n\right\}}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x \\
= & \frac{1}{c_{1} \log n}\left(I_{1 n}^{\prime}+I_{2 n}{ }^{\prime}+I_{3 n}^{\prime}\right) . \tag{4.14}
\end{align*}
$$

Since $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are bounded,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} I_{2 n}^{\prime}=0 \tag{4.15}
\end{equation*}
$$

Since $f^{\prime \prime}(x)$ is bounded, from (4.8) and (4.9) we have for sufficiently large $n$,

$$
\begin{aligned}
& \frac{1}{c_{1} \log n} I_{1 n^{\prime}} \\
& =\frac{1}{c_{1} \log n} \int_{\left\{x: 0<-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}<\varepsilon c_{1} n \log n\right\}_{\left.n^{\left(a, a+\eta_{n}\right.}\right)}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x} \\
& \leq \frac{1}{c_{1} \log n} \int_{\left\{x: \frac{A_{-n^{n 2}}}{A_{n^{2}}} \cdot \frac{1}{(x-a)^{2}}<\varepsilon c_{1} n \log n\right\}_{n}\left(a, a+\eta_{n_{0}}\right)}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x \\
& \leq \frac{1}{c_{1} \log n} \int_{\frac{A_{n}}{A_{n} n_{n}}}^{A_{n}}\left(\varepsilon c_{1} n \log n\right)^{-1 / 2} \frac{A_{n}^{\prime \prime}{ }^{2}}{A_{-n}} \cdot \frac{1}{x} d x+O\left(n^{-1}\right) \\
& =\frac{1}{c_{1} \log n}\left\{\frac{A_{n}{ }^{\prime \prime 2}}{A_{-n}}\left(\log \eta_{n_{0}}-\log \frac{A_{-n}{ }^{\prime \prime}}{A_{n}}+\frac{1}{2} \log \varepsilon c_{1}+\frac{1}{2} \log n+\frac{1}{2} \log \log n\right)\right\} \\
& +O\left(n^{-1}\right) \text {. }
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{1}{c_{1} \log n} I_{1 n}^{\prime} \leq \frac{A^{\prime 2}}{2 c_{1} A^{\prime}} \tag{4.16}
\end{equation*}
$$

Further we have

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} I_{1 n}^{\prime} \\
& \geq \lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} \int_{\left\{x: \frac{A_{n^{\prime \prime}}}{A_{-n^{2}(x-a)^{2}}}<\varepsilon c_{1} n \log n\right\}_{\cap}\left(a, a+\eta_{n_{0}}\right)}\left[-\frac{f^{\prime \prime}(x)}{f(x)}+\left\{\frac{f^{\prime}(x)}{f(x)}\right\}^{2}\right] f(x) d x \\
& \geq \lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} \int_{\frac{A_{n}{ }^{n}}{A_{-n}}\left(\varepsilon c_{1} n \log n\right)^{1 / 2}}^{\eta_{n_{0}}} \frac{A_{-n}{ }^{\prime 2}}{A_{n}} \cdot \frac{1}{x} d x \\
& =\lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n}\left\{\frac { A _ { - n } ^ { \prime \prime 2 } } { A _ { n } } \left(\log \eta_{n_{0}}-\log \frac{A_{n}^{\prime \prime}}{A_{-n}}+\frac{1}{2} \log \varepsilon c_{1}+\frac{1}{2} \log n\right.\right. \\
& \left.\left.+\frac{1}{2} \log \log n\right)\right\} \\
& \geq \frac{A^{\prime \prime 2}}{2 c_{1} A^{\prime}} . \tag{4.17}
\end{align*}
$$

It follows from (4.16) and (4.17) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} I_{1 n}^{\prime}=\frac{A^{\prime \prime 2}}{2 c_{1} A^{\prime}} \tag{4.18}
\end{equation*}
$$

Repeating a similar argument, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{c_{1} \log n} I_{3 n}^{\prime}=\left\{\begin{array}{cl}
\frac{B^{\prime \prime 2}}{2 c_{1} B^{\prime}} & \text { for } \beta=2  \tag{4.19}\\
0 & \text { for } \beta>2
\end{array}\right.
$$

Hence it follows from (4.15), (4.18) and $c_{1}=\frac{1}{2}\left(\frac{A^{\prime / 2}}{A^{\prime}}+\frac{B^{\prime \prime 2}}{B^{\prime}}\right)$ if $\beta=2, c_{1}=\frac{A^{\prime 2}}{2 A^{\prime}}$ if $\beta>2$ that (4.7) holds.
Thus the proof is completed.
Lemma 4.5. Suppose that a density function $f$ satisfies Assumptions (A), (B) and (C). If $\alpha=2$, then the following hold: for any $\varepsilon>0$,

$$
n \int_{\left\{x:\left|\frac{\partial}{\partial \theta} \log f(x-\theta)\right|>\varepsilon c_{2}(n \log n)^{1 / 2}\right\}} f(x-\theta) d x \rightarrow 0
$$

as $n \rightarrow \infty$ uniformly in $\theta$ of $\Theta$, and .

$$
\begin{aligned}
& \frac{1}{c_{2}^{2} \log n}\left[\int_{\left\{x:\left|\frac{\partial}{\partial \theta} \log f(x-\theta)\right|<\delta c_{2}(n \log n)^{1 / 2}\right\}}\left\{\frac{\partial}{\partial \theta} \log f(x-\theta)\right\}^{2} f(x-\theta) d x\right. \\
& \left.\quad-\left\{\int_{\left\{x:\left|\frac{\partial}{\partial \theta} \log f(x-\theta)\right|<c c_{2}(n \log n)^{112}\right\}}\left(\frac{\partial}{\partial \theta} \log f(x-\theta)\right) f(x-\theta) d x\right\}^{2}\right] \rightarrow 1
\end{aligned}
$$

as $n \rightarrow \infty$ uniformly in $\theta$ of $\Theta$ where $c_{2}=\left\{\frac{1}{2}\left(\frac{A^{\prime \prime 2}}{A^{\prime}}+\frac{B^{\prime \prime 2}}{B^{\prime}}\right)\right\}^{\frac{1}{2}}$ if $\beta=2, c_{2}=\frac{A^{\prime \prime}}{\sqrt{2 A^{\prime}}}$ if $\beta>2$.
The proof is omitted because it is given by the same way as that of lemma 4.4.
The following lemma is already given in Takeuchi [5].
Lemma 4.6. Suppose that a density function $f$ satisfies Assumptions (A), (B) and (C). If $\alpha>2$, then

$$
\int_{a}^{b} \frac{\left\{f^{\prime}(x)\right\}^{2}}{f(x)} d x<\infty .
$$

Proof. Since $f(a)=0$ and $\lim _{x \rightarrow a+0} f(x)=0$, by the second mean value theorem in a neighborhood of $a$, we have

$$
\frac{\left\{f^{\prime}(x)\right\}^{2}}{f(x)}=\frac{2 f^{\prime}(\xi) f^{\prime \prime}(\xi)}{f^{\prime}(\xi)}=2 f^{\prime \prime}(\xi)
$$

for $a<\xi<x$. Since $f^{\prime \prime}(x)$ is continuous and bounded, $\{f(x)\}^{2} / f(x)$ is bounded in the neighborhood of $a$, and also that of $b$, and so is the integral. Thus the proof is completed.

In the following theorem we shall show that there exist consistent estimators with different orders according to $\alpha$ of density functions in a family satisfying Assumptions (A), (B) and (C).

Theorem 4.1. Let $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ be a sequence of independent identically distributed random variables with a density function satisfying Assumptions (A), (B) and (C). For each $\alpha$ there exists a consistent estimator with the order given by Table 1 respectively, where M.L.E. is the maximun likelihood estimator of $\theta$, the existence of which is guaranteed since $f$ is continuous and bounded.

Table 1.

| $\alpha$ | order $c_{n}$ | $\left\{c_{n}\right\}$-consistent estimator |
| :---: | :---: | :---: |
| $0<\alpha<2$ | $n^{1 / \alpha}$ | $\left\{\min _{1 \leq i \leq n} X_{i}+\max _{1 \leq i \leq n} X_{i}-(a+b)\right\} / 2$ |
| $\alpha=2$ | $(n \log n)^{1 / 2}$ | M.L.E. |
| $\alpha>2$ | $n^{1 / 2}$ | M.L.E. |

Proof. 1) $0<\alpha<2$. Let $T_{n}\left(\tilde{X}_{n}\right)=\left\{\min _{i \leq i \leq n} X_{i}+\max _{1 \leq i \leq n} X_{i}-(a+b)\right\} / 2$. It follows from Assumptions (A) and (B) that there are positive constants $C$ and $\gamma$ such that

$$
\begin{array}{lll}
C \leq(x-a)^{1-\alpha} f(x) & \text { for all } & x \in(a, a+\gamma) \\
C \leq(b-x)^{1-\beta} f(x) & \text { for all } & x \in(b-\gamma, b) .
\end{array}
$$

Then we shall show that $\left\{T_{n}: n=1,2, \cdots\right\}$ is a $\left\{n^{1 / \alpha}\right\}$-consistent estimator. It is sufficient to know that for every $\varepsilon>0$, we can choose $L$ satisfying

$$
\begin{gathered}
L>\max \left\{\frac{1}{2}\left(\frac{\alpha}{C} \log \frac{2}{\varepsilon}\right)^{1 / \alpha}, 0\right\} . \\
-17-
\end{gathered}
$$

Indeed, since the following holds: for each $n=1,2, \cdots$,

$$
\begin{aligned}
& \left\{\tilde{x}_{n}: T_{n}\left(\tilde{x}_{n}\right)-\theta>L n^{-1 / \alpha} \text { and } \max _{1 \leq i \leq n} x_{i} \leq b+\theta\right\} \\
\subset & \left\{\tilde{x}_{n}: a+\theta+2 L n^{-1 / \alpha}<x_{i} \leq b+\theta(i=1,2, \cdots, n)\right\},
\end{aligned}
$$

we have for each $n=1,2, \cdots$,

$$
\begin{align*}
& P_{\theta}^{(n)}\left(\left\{T_{n}-\theta>L n^{-1 / \alpha}\right\}\right) \\
= & P_{\theta}^{(n)}\left(\left\{T_{n}-\theta>L n^{-1 / \alpha} \text { and } \max _{1 \leq i \leq n} x_{i} \leq b+\theta\right\}\right) \\
\leq & P_{\theta}^{(n)}\left(\left\{a+\theta+2 L n^{-1 / \alpha}<x_{i} \leq b+\theta(i=1,2, \cdots)\right\}\right) \\
= & \left\{\int_{a+\theta+2 L n-1 / \alpha}^{b+\theta} f(x-\theta) d x\right\}^{n} \\
= & \left\{\int_{a+2 L_{n}-1 / \alpha}^{b} f(x) d x\right\}^{n} \\
= & \left\{1-\int_{a}^{a+2 L n-1 / \alpha} f(x) d x\right\}^{n} . \tag{4.20}
\end{align*}
$$

Similarly we also obtain for each $n=1,2, \cdots$,

$$
\begin{align*}
& P_{\theta}^{(n)}\left(\left\{T_{n}-\theta<-L n^{-1 / \alpha}\right\}\right) \\
= & \left\{\int_{a}^{b-2 L n-1 / \alpha} f(x) d x\right\}^{n} \\
= & \left\{1-\int_{b-2 L n^{-1 / \alpha}}^{b} f(x) d x\right\}^{n} . \tag{4.21}
\end{align*}
$$

It follows from (4.20) and (4.21) for that each $n=1,2, \cdots$,

$$
\begin{aligned}
& P_{\theta}^{(n)}\left(\left\{\left|T_{n}-\theta\right|>L n^{-1 / \alpha}\right\}\right) \\
\leq & \left\{1-\int_{a}^{a+2 L n^{-1 / \alpha}} f(x) d x\right\}^{n}+\left\{1-\int_{b-2 L n^{-1 / \alpha}}^{b} f(x) d x\right\}^{n}
\end{aligned}
$$

Hence we have uniformly in $\theta$ of $\theta$,

$$
\begin{aligned}
& \varlimsup_{\lim } P_{\theta}^{(n)}\left(\left\{\left|T_{n}-\theta\right|>L n^{-1 / \alpha}\right\}\right) \\
\leq & \lim _{n \rightarrow \infty}\left\{1-\int_{a}^{a+2 L n-1 / \alpha} f(x) d x\right\}^{n}+\lim _{n \rightarrow \infty}\left\{1-\int_{b-2 L n^{-1 / \alpha}}^{b} f(x) d x\right\}^{n} \\
\leq & 2 \exp \left\{-\frac{C(2 L)^{\alpha}}{\alpha}\right\} \\
< & \varepsilon
\end{aligned}
$$

Therefore it is seen that $\left\{T_{n}\right\}$ is $\left\{n^{1 / \alpha}\right\}$-consistent.
2) $\alpha=2$. Since the M.L.E. is a consistent estimator (Wald [6]) and it is a root of

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(x_{i}-\theta\right)=0 \tag{4.22}
\end{equation*}
$$

there exist at least a consistent solution of (4.22). We denote it by $T_{n}{ }^{*}$.
Let $A_{n}=(n \log n)^{1 / 2}$ and put $L_{n}\left(\theta, \bar{x}_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}-\theta\right)$ for $\theta+a<x_{i}<\theta+b(i=1,2, \cdots, n)$.
Using the mean value theorem, we have

$$
\begin{equation*}
-\frac{1}{c^{2} A_{n}{ }^{2}}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log L_{n}\right]_{\theta=\theta_{n} *} c A_{n}\left(T_{n}^{*}-\theta\right)=\frac{1}{c A_{n}}\left[\frac{\partial}{\partial \theta} \log L_{n}\right]_{\theta=\theta} \tag{4.23}
\end{equation*}
$$

where $\left|\theta-\theta_{n}^{*}\right| \leq\left|\theta-T_{n}^{*}\right|$ and $c=\left\{\frac{1}{2}\left(\frac{A^{\prime / 2}}{A^{\prime}}+\frac{B^{\prime \prime 2}}{B^{\prime}}\right)\right\}^{1 / 2}$ if $\beta=2, c=\frac{A^{\prime \prime}}{\sqrt{2 A^{\prime}}}$ if $\beta>2$.
$-\left(\partial^{2} / \partial \theta^{2}\right) \log L_{n}$ is the sums of positive i.i.d. random variables $-\left(\partial^{2} / \partial \theta^{2}\right) \log f\left(X_{1}-\theta\right)$, $-\left(\partial^{2} / \partial \theta^{2}\right) \log f\left(X_{2}-\theta\right), \cdots,-\left(\partial^{2} / \partial \theta^{2}\right) \log f\left(X_{n}-\theta\right)$. If $c^{2} A_{n}{ }^{2}$ is taken as $B_{n}(\theta)$ in lemma 4.1, then it follows from lemma 4.4. that the conditions (4.1) and (4.2) hold. From lemma 4.1 we conclude that $-\left(\partial^{2} / \partial \theta^{2}\right) \log L_{n}$ is uniformly relatively stable for constant $c^{2} A_{n}{ }^{2}$. Since
$T_{n}{ }^{*}$ is uniformly consistent in any compact subset of $\Theta$ (Wald [6]), $\theta_{2}{ }^{*}$ converges in probability to $\theta$ uniformly in any compact subset of $\Theta$. Furthermore since $\left(\partial^{2} / \partial \theta^{2}\right) \log L_{n}\left(\theta, \tilde{x}_{n}\right)$ is uniformly continuous is any compact subset of $\Theta$, it is seen that $\left(-1 / c^{2} A_{n}^{2}\right)\left[\left(\partial^{2} / \partial \theta^{2}\right) \log \right.$ $\left.L_{n}\right]_{0=\theta_{n}}$ converges in probability to 1 uniformly in any compact subset of $\oplus$.
$(\partial / \partial \theta) \log L_{n}$ is the sums of i.i.d. random variables $f_{\theta}\left(X_{1}-\theta\right) / f\left(X_{1}-\theta\right), f_{\theta}\left(X_{2}-\theta\right) / f\left(X_{2}-\theta\right)$, $\cdots, f_{0}\left(X_{n}-\theta\right) / f\left(X_{n}-\theta\right)$, where $f_{0}(X-\theta)=(\partial / \partial \theta) f(X-\theta)$. If $c A_{n}$ is taken as $B_{n}(\theta)$ in lemma 4.2, then it follows from lemma 4.5 that conditions (4.3) and (4.4) are satisfied. From lemma 4.2 we see that the distribution laws of $\left(1 / c A_{n}\right)\left\{(\partial / \partial \theta) \log L_{n}\right\}$ converges to the normal law $\emptyset(x)=(1 / \sqrt{2 \pi}) \int_{-\infty}^{x} e^{-y^{2} / 2} d y$ uniformly in anycompact subset of $\Theta$.

Since from (4.23)

$$
c A_{n}\left(T_{n}^{*}-\theta\right)=\frac{\left(1 / c A_{n}\right)\left[(\partial / \partial \theta) \log L_{n}\right]_{\theta=0}}{\left(-1 / c^{2} A_{n}^{2}\right)\left[\left(\partial^{2} / \partial \theta^{2}\right) \log L_{n}\right]_{\theta=\theta_{n}}}
$$

it follows that the distribution laws of $c A_{n}\left(T_{n}^{*}-\theta\right)$ coverges to the normal $\emptyset(x)$ uniformly in any compact subset of $\Theta$.

In order to prove that $\left\{T_{n}^{*}: n=1,2, \cdots\right\}$ is a $\left\{A_{n}\right\}$-consistent estimators, it is sufficient to show that for any $\varepsilon>0$ we can choose $L$ satisfying $\int_{-C L}^{C L}(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x>1-\varepsilon$ and that (2.1) holds.

Since

$$
\begin{aligned}
& P_{\theta}{ }^{(n)}\left(\left\{A_{n}\left|T_{n}^{*}-\theta\right| \geq L\right)\right. \\
= & P_{\theta}^{(n)}\left(\left\{c A_{n}\left|T_{n}^{*}-\theta\right| \geq c L\right\}\right) \\
= & 1-P_{\theta}{ }^{(n)}\left(\left\{c A_{n}\left|T_{n}^{*}-\theta\right|<c L\right\}\right)
\end{aligned}
$$

it follows that for every $\vartheta \in \circledast$ there exists $\delta>0$ such that

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} \operatorname{sus}_{\theta:|0-9|<\delta} P_{\theta}^{(n)}\left(\left\{A_{n}\left|T_{n}^{*}-\theta\right| \geq L\right\}\right) \\
&= 1-\int_{-C L}^{C L}(1 / \sqrt{2 \pi}) e^{-x^{2} / 2} d x \\
&<\varepsilon .
\end{aligned}
$$

Hence it is shown that $\left\{T_{n}{ }^{*}\right\}$ is $\left\{(n \log n)^{1 / 2}\right\}$-consistent.
3) $\alpha>2$. It follows from Assumption (C) that $E_{\theta}\left(Z_{\theta}\right)=0$ and $E_{\theta}\left(Z_{\theta \theta}\right)+E_{\theta}\left(Z_{\theta}{ }^{2}\right)=0$, where $Z_{\theta}=(\partial / \partial \theta) \log f(x-\theta)$ and $Z_{00}=\left(\partial^{2} / \partial \theta^{2}\right) \log f(x-\theta)$. Further it is seen from lemma 4.6 that $E_{\theta}\left(Z_{0}{ }^{2}\right)<\infty$. Hence the distribution law of $\sqrt{n \bar{I}}\left(T_{n}{ }^{*}-\theta\right)$ converges to the normal law $\Phi(x)$ uniformly in any compact subset of $\oplus$, where $I=E_{\theta}\left(Z_{\theta}{ }^{2}\right)$ (Cramér [2]). Therefore it is shown in the same way as the case $\alpha=2$ that $\left\{T_{n}{ }^{*}: n=1,2, \cdots\right\}$ is a $\left\{n^{1 / 2}\right\}$-consistent estimator. Thus we complete the proof.

## 5. Bounds for the Order of Convergence of Consistent Estimators

In this section we shall show that for each $\alpha$, there does not exist a consistent estimator with the order greater than values as given in Table 1 of Theorem 4.1, that is, the order given by Table 1 is bound of the order of convergence of consistent estimators. Before proceeding to the next theorem, we shall prove the following lemmas.

Lemma 5.1. Let $f$ be a density function satisfying Assumption (A). Suppose that for $0<\Delta<b-a$, there exists a measurable function $g(\cdot)$ on $\mathfrak{X}$ such that $g(x)>0$ if $a-\Delta<x<b$, $g(x)=0$ otherwise and $\int_{\mathfrak{X}} g(x) d x=1$. Then

$$
\begin{gather*}
d_{n}(\theta-\Delta, \theta) \leq\left[\left\{\int_{a-4}^{b} \frac{(f(x+\Delta)-g(x))^{2}}{g(x)} d x+1\right\}^{n}-1\right]^{1 / 2}  \tag{5.1}\\
-19-
\end{gather*}
$$

$$
+\left[\left\{\int_{a-4}^{b} \frac{(f(x)-g(x))^{2}}{g(x)} d x+1\right\}^{\pi}-1\right]^{1 / 2}
$$

Proof. First we have

$$
\begin{align*}
& d_{n}(\theta-\Delta, \theta) \\
= & \int_{\mathfrak{X}(n)}\left|\prod_{i=1}^{n} f\left(x_{i}-\theta+\Delta\right)-\prod_{i=1}^{n} f\left(x_{i}-\theta\right)\right| \prod_{i=1}^{n} d x_{i} \\
\leq & \int_{\mathfrak{Z}(n)}\left|\prod_{i=1}^{n} f\left(x_{i}-\theta+\Delta\right)-\prod_{i=1}^{n} g\left(x_{i}-\theta\right)\right| \prod_{i=1}^{n} d x_{i}+\int_{\mathfrak{X}(n)}\left|\prod_{i=1}^{n} f\left(x_{i}-\theta\right)-\prod_{i=1}^{n} g\left(x_{i}-\theta\right)\right| \prod_{i=1}^{n} d x_{i} \\
= & \int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left|\prod_{i=1}^{n} f\left(x_{i}+\Delta\right)-\prod_{i=1}^{n} g\left(x_{i}\right)\right| \prod_{i=1}^{n} d x_{i}+\int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left|\prod_{i=1}^{n} f\left(x_{i}\right)-\prod_{i=1}^{n} g\left(x_{i}\right)\right| \prod_{i=1}^{n} d x_{i} \\
= & \int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left|\prod_{i=1}^{n} \frac{f\left(x_{i}+\Delta\right)}{g\left(x_{i}\right)}-1\right| \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i}+\int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left|\prod_{i=1}^{n} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}-1\right| \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i} \\
\leq & {\left[\int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left\{\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}+\Delta\right)}{g\left(x_{i}\right)}-1\right\}^{2} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i}\right]^{1 / 2}\right.} \\
& +\left[\left[_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}-1\right\}^{2} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i}\right]^{1 / 2} .\right. \tag{5.2}
\end{align*}
$$

Furthermore we have

$$
\begin{align*}
& \int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b}\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}+\Delta\right)}{g\left(x_{i}\right)}-1\right\}^{2} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i} \\
= & \int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b} \prod_{i=1}^{n}\left\{\frac{f\left(x_{i}+\Delta\right)}{g\left(x_{i}\right)}\right\}^{2} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i}-2 \int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b} \prod_{i=1}^{n} f\left(x_{i}+\Delta\right) \prod_{i=1}^{n} d x_{i} \\
& +\int_{a-\Delta}^{b} \ldots \int_{a-\Delta}^{b} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i} \\
= & {\left[\int_{a-\Delta}^{b}\left\{\frac{f(x+\Delta)}{g(x)}\right\}^{2} g(x) d x\right]^{n}-1 } \\
= & {\left[\int_{a-\Delta}^{b} \frac{\{(f(x+\Delta)-g(x))+g(x)\}^{2}}{g(x)} d x\right]^{n}-1 } \\
= & {\left.\left[\int_{a-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x+2\right]_{a-4}^{b}\{f(x+\Delta)-g(x)\} d x+\int_{a-4}^{b} g(x) d x\right]^{n}-1 } \\
= & {\left[\int_{a-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x+1\right]^{n}-1 . } \tag{5.3}
\end{align*}
$$

Similarly we have

$$
\begin{equation*}
\int_{a-4}^{b} \ldots \int_{a-4}^{b}\left\{\prod_{i=1}^{n} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}-1\right\}^{2} \prod_{i=1}^{n} g\left(x_{i}\right) \prod_{i=1}^{n} d x_{i}=\left[\int_{a-4}^{b} \frac{\{f(x)-g(x)\}^{2}}{g(x)} d x+1\right]^{n}-1 \tag{5.4}
\end{equation*}
$$

It follows from (5.2), (5.3) and (5.4) that (5.1) holds. Thus we complete the proof.
If the assumptions of Lemma $5: 1$ hold, we can define an information $I$ such that

$$
I=\int_{a-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x
$$

Henceforth for $0<\Delta<b-a$, we put $g(x)=\frac{1}{2}\{f(x+\Delta)+f(x)\}$. Then it is easily seen that $g(\cdot)$ satisfies the assumption of Lemma 5.1. Since

$$
f(x+\Delta)-g(x)=\frac{1}{2}\{f(x+\Delta)-f(x)\}
$$

and

$$
f(x)-g(x)=\frac{1}{2}\{f(x)-f(x+\Delta)\}
$$

it follows from (5.1) that

$$
\begin{equation*}
d_{n}(\theta-\Delta, \theta) \leq 2\left[\left\{\int_{a-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x+1\right\}^{n}-1\right]^{1 / 2}=2\left\{(I+1)^{n}-1\right\}^{1 / 2} \tag{5.5}
\end{equation*}
$$

Henceforth we suppose that $f(x)$ satisfies Assumptions (A), (B) and (C). Then there exist positive numbers $K_{i}, K_{i}^{\prime}(i=1,2,3)$ and $\varepsilon$ such that

$$
\begin{align*}
0<K_{1} \leq(x-a)^{1-\alpha} f(x) \leq K_{2} & \text { for } a<x<a+\varepsilon  \tag{5.6}\\
0<K_{1}^{\prime} \leq(b-x)^{1-\beta} f(x) \leq K_{2}^{\prime} & \text { for } b-\varepsilon<x<b,  \tag{5.7}\\
\quad(x-a)^{2-\alpha}\left|f^{\prime}(x)\right| \leq K_{3} & \text { for } a<x<a+\varepsilon,  \tag{5.8}\\
\quad(b-x)^{2-\beta}\left|f^{\prime}(x)\right| \leq K_{3}^{\prime} & \text { for } b-\varepsilon<x<b,  \tag{5.9}\\
0<\varepsilon<\min \left\{1, \frac{b-a}{2}\right\} &
\end{align*}
$$

Let $0<\Delta<\frac{\varepsilon}{2}$.
Now we devide $I$ into six parts $I_{0}, I_{1}, I_{2}, I_{3}, I_{4}$ and $I_{5}$, that is,

$$
I=\sum_{i=0}^{5} I_{i}
$$

where

$$
\begin{array}{ll}
I_{0}=\int_{a-\Delta}^{a} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x, & I_{1}=\int_{a}^{a+\Delta} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \\
I_{2}=\int_{a+\Delta}^{a+\varepsilon} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x, & I_{3}=\int_{a+\varepsilon}^{b-\varepsilon} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \\
I_{4}=\int_{b-\varepsilon}^{b-\Delta} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x, & I_{5}=\int_{b-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x
\end{array}
$$

Lemma 5.2. For each $\alpha>0$, the orders of $I_{0}, I_{1}, I_{2}, I_{3}, I_{4}, I_{5}$ and $I$ are given by Table 2.
Table 2

| $\alpha$ | $I_{0}$ | $I_{1}$ | $I_{2}$ | $I_{3}$ | $I_{4}$ | $I_{5}$ | $I$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0<\alpha<2$ | $O\left(\Delta^{\alpha}\right)$ | $O\left(\Delta^{\alpha}\right)$ | $O\left(\Delta^{\alpha}\right)$ |  |  |  | $O\left(\Delta^{\alpha}\right)$ |
| $\alpha=2$ | $O\left(\Delta^{2}\right)$ | $O\left(\Delta^{2}\right)$ | $O\left(\Delta^{2}\|\log \Delta\|\right)$ | $O\left(\Delta^{2}\right)$ | $\left\{\begin{array}{l}O\left(\Delta^{2}\right) \text { if } \beta \neq 2 \\ O\left(\Delta^{2}\|\log \Delta\|\right) \text { if } \beta=2\end{array}\right.$ | $O\left(\Delta^{\beta}\right)$ | $O\left(\Delta^{2}\|\log \Delta\|\right)$ |
| $\alpha>2$ | $O\left(\Delta^{\alpha}\right)$ | $O\left(\Delta^{\alpha}\right)$ | $O\left(\Delta^{2}\right)$ |  |  | $O\left(\Delta^{2}\right)$ |  |

Proof. i) $I_{0}$ and $I_{1}$. It follows from (5.6) that

$$
\begin{equation*}
I_{0}=\int_{a-\Delta}^{a} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x=\int_{a-\Delta}^{a} \frac{f(x+\Delta)}{2} d x=O\left(\Delta^{\alpha}\right) \tag{5.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
I_{1} & =\int_{a}^{a+\Delta} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \\
& =\int_{a}^{a+\Delta} \frac{\{(f(x+\Delta)-f(x)) / 2\}^{2}}{\{(f(x+\Delta)+f(x)) / 2\}^{2}}\{(f(x+\Delta)+f(x)) / 2\} d x \leq \frac{1}{2} \int_{a}^{a+\Delta}\{f(x+\Delta)+f(x)\} d x \\
& -21-
\end{aligned}
$$

it follows from (5.6) that

$$
\begin{equation*}
I_{1}=O\left(\Delta^{\alpha}\right) . \tag{5.11}
\end{equation*}
$$

ii) $I_{2}$. It follows by the mean value theorem that

$$
\begin{align*}
I_{2} & =\int_{a+\Delta}^{a+\varepsilon} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \\
& =\int_{a+\Delta}^{a+\varepsilon} \frac{\{(f(x+\Delta)-f(x)) / 2\}^{2}}{\{(f(x+\Delta)+f(x)) / 2\}^{2}} d x \leq \frac{1}{2} \int_{a+\Delta}^{a+\varepsilon} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x \\
& =\frac{1}{2} \int_{a+\Delta}^{a+\varepsilon} \Delta^{2} \frac{\left\{f^{\prime}(\xi(x, \Delta))\right\}^{2}}{f(x)} d x, \tag{5.12}
\end{align*}
$$

where

$$
a+\Delta<x<\xi(x, \Delta)<x+\Delta<a+\varepsilon+\Delta
$$

If $0<\alpha<2$, then it follows from (5.6), (5.8) and (5.12) that

$$
\begin{align*}
I_{2} \leq \int_{a+\Lambda}^{a+\varepsilon} \Delta^{2} C_{1} \frac{(\xi-a)^{2 \alpha-4}}{(x-a)^{\alpha-1}} d x \leq C_{1} \Delta^{2} \int_{a+\Delta}^{a+\varepsilon} \frac{(x-a)^{2 \alpha-4}}{(x-a)^{\alpha-1}} d x & =C_{1} \Delta^{2} \int_{\Delta}^{\varepsilon} x^{\alpha-3} d x \\
& =\frac{C_{1}}{\alpha-2} \varepsilon^{\alpha-2} \Delta^{2}-\frac{C_{1}}{\alpha-2} \Delta^{\alpha} \tag{5.13}
\end{align*}
$$

where $C_{1}$ is some positive constant. If $\alpha=2$, then it follows from (5.8) that $f^{\prime}(x)$ is bounded on ( $a, a+\varepsilon$ ). From (5.6) and (5.12) we have

$$
\begin{equation*}
I_{2} \leq C_{2} \Delta^{2} \int_{a+\Delta}^{a+\varepsilon}\{1 /(x-a)\} d x=C_{2} \Delta^{2}(\log \varepsilon-\log \Delta) \tag{5.14}
\end{equation*}
$$

where $C_{2}$ is some positive constant. If $\alpha>2$, then it follows from (5.6), (5.8) and (5.12) that

$$
\begin{align*}
I_{2} & \leq C_{3} \int_{a+\Delta}^{a+\varepsilon} \Delta^{2} \frac{(\xi-a)^{2 \alpha-4}}{(x-a)^{\alpha-1}} d x \leq C_{3} \Delta^{2} \int_{a+\Delta}^{a+\varepsilon} \frac{(x-a+\Delta)^{2 \alpha-4}}{(x-a)^{\alpha-1}} d x \\
& =C_{3} \Delta^{2} \int_{\Delta}^{\varepsilon} x^{\alpha-3}\left(1+\frac{\Delta}{x}\right)^{2 \alpha-4} d x \leq 2^{2 \alpha-4} C_{3} \Delta^{2} \int_{\Delta}^{\varepsilon} x^{\alpha-3} d x \leq 2^{2 \alpha-4} C_{3} \varepsilon^{\alpha-2} \Delta^{2}-\frac{2^{2 \alpha-4}}{\alpha-2} C_{3} \Delta^{\alpha}, \tag{5.15}
\end{align*}
$$

where $C_{3}$ is some positive constant. Hence it follows from (5.13), (5.14) and (5.15) that

$$
I_{2}= \begin{cases}O\left(\Delta^{\alpha}\right) & \text { if } 0<\alpha<2  \tag{5.16}\\ O\left(\Delta^{2}|\log \Delta|\right) & \text { if } \alpha=2 \\ O\left(\Delta^{2}\right) & \text { if } \alpha>2\end{cases}
$$

iii) $I_{3}$. Since $f(x)$ and $f^{\prime}(x)$ are continuous functions on $(a, b)$, it follows that

$$
\begin{align*}
I_{3} & =\int_{a+\varepsilon}^{b-\varepsilon} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \leq \frac{1}{2} \int_{a+\varepsilon}^{b-\varepsilon} \frac{\{f(x+\Delta)-f(x)\}^{2}}{g(x)} d x \\
& =\frac{1}{2} \int_{a+\varepsilon}^{b-\varepsilon} \frac{\Delta^{2}\left\{f^{\prime}(\xi(x, \Delta))\right\}^{2}}{f(x)} d x \leq C_{4}^{\prime} \Delta^{2} \int_{a+\varepsilon}^{b-\varepsilon}\{1 / f(x)\} d x \\
& =C_{4} \Delta^{2}, \tag{5.17}
\end{align*}
$$

where

$$
a+\varepsilon<x<\xi(x, \Delta)<x+\Delta<b-(\varepsilon / 2)
$$

and $C_{4}{ }^{\prime}$ and $C_{4}$ are certain positive constants. Hence we have

$$
\begin{equation*}
I_{3}=O\left(\Delta^{2}\right) \tag{5.18}
\end{equation*}
$$

iv) $I_{4}$. It follows by the mean value theorem that

$$
\begin{align*}
I_{4} & =\int_{b-\varepsilon}^{b-\Delta} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} d x \leq \frac{1}{2} \int_{b-\varepsilon}^{b-\Delta} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x \\
& =\frac{1}{2} \int_{b-\varepsilon}^{b-\Delta} \frac{\Delta^{2}\left\{f^{\prime}(\xi(x, \Delta))\right\}^{2}}{f(x)} d x, \tag{5.19}
\end{align*}
$$

where

$$
b-\varepsilon<x<\xi(x, \Delta)<x+\Delta<b-(\varepsilon / 2)
$$

If $0<\beta<2$, then it follows from (5.7), (5.9) and (5.19) that

$$
\begin{align*}
I_{4} & \leq C_{5} \Delta^{2} \int_{b-\varepsilon}^{b-\Delta} \frac{(b-\xi)^{2 \beta-4}}{(b-x)^{\beta-1}} d x \leq C_{5} \Delta^{2}\left(\frac{\varepsilon}{2}\right)^{2 \beta-4} \int_{\Delta}^{\varepsilon} x^{1-\beta} d x \\
& =\frac{C_{5}}{2-\beta} \frac{\varepsilon^{\beta-2}}{2^{2 \beta-4}} \Delta^{2}-\frac{C_{5}}{2-\beta}\left(\frac{\varepsilon}{2}\right)^{2 \beta-4} \Delta^{4-\beta}, \tag{5.20}
\end{align*}
$$

where $C_{5}$ is some positive constant. If $2 \leq \beta$, then it follows from (5.7), (5.9) and (5.19) that

$$
\begin{align*}
I_{4} & \leq \int_{b-\varepsilon}^{b-4} C_{6} \Delta^{2} \frac{(b-\xi)^{2 \beta-4}}{(b-x)^{\beta-1}} d x \leq C_{6} \Delta^{2} \int_{b-\varepsilon}^{b-\Delta} \frac{(b-x)^{2 \beta-4}}{(b-x)^{\beta-1}} d x \\
& =C_{6} \Delta^{2} \int_{\Delta}^{e} x^{\beta-3} d x \\
& = \begin{cases}C_{6} \Delta^{2}(\log \varepsilon-\log \Delta) & \text { if } \beta=2, \\
C_{6} \Delta^{2} \frac{1}{\beta-2}\left(\varepsilon^{\beta-2}-\Delta^{\beta-2}\right) & \text { if } \beta>2,\end{cases} \tag{5.21}
\end{align*}
$$

where $C_{6}$ is some positive constant. Hence it follows from (5.20) and (5.21) that

$$
I_{4}= \begin{cases}O\left(\Delta^{2}\right) & \text { if } \beta \neq 2  \tag{5.22}\\ O\left(\Delta^{2}|\log \Delta|\right) & \text { if } \beta=2\end{cases}
$$

v) $I_{5}$. It follows from (5.8) that

$$
\begin{align*}
I_{5} & =\int_{b-\Delta}^{b} \frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} b x \\
& =\int_{b-\Delta}^{b} \frac{f(x)}{2} d x \\
& =O\left(\Delta^{\beta}\right) . \tag{5.23}
\end{align*}
$$

Since $I=\sum_{i=0}^{5} I_{i}$, it follows from (5.10), (5.11), (5.16), (5.18), (5.22) and (5.23) that

$$
I= \begin{cases}O\left(\Delta^{\alpha}\right) & \text { if } 0<\alpha<2 \\ O\left(\Delta^{2}|\log \Delta|\right) & \text { if } \alpha=2, \\ O\left(\Delta^{2}\right) & \text { if } \alpha>2\end{cases}
$$

Thus we complete the proof.
Remark. We also define an information $I^{*}$ such that

$$
I^{*}=\int_{a}^{b} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x
$$

Since

$$
\frac{\{f(x+\Delta)-g(x)\}^{2}}{g(x)} \leq \frac{1}{2} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} \quad \text { for } a<x<b
$$

it follows that $I_{i} \leq I_{i}{ }^{*}(i=1,2,3,4,5)$, where $I^{*}=\sum_{i=1}^{5} I_{i}{ }^{*}$,

$$
\begin{array}{ll}
I_{1}^{*}=\int_{a}^{a+\Delta} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x, & I_{2}^{*}=\int_{a+\Delta}^{a+\varepsilon} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x, \\
I_{3}^{*}=\int_{a+\varepsilon}^{b-\varepsilon} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x, & I_{4}^{*}=\int_{b-\varepsilon}^{b-\Delta} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x, \\
I_{5}^{*}=\int_{b-\Delta}^{b} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x . &
\end{array}
$$

It follows from the proof of Lemma 5.2 that for each $\alpha>0$, the orders of $I_{i}^{*}(i=2,3,4,5)$ given by Table 2 respectively. Furthermore if $0<\alpha \leq 1$, then it follows from (5.6) that there exists a positive constant $C_{7}$ such that

$$
\begin{equation*}
0<\frac{f(x+\Delta)}{f(x)} \leq \frac{K_{2}(x+\Delta-a)^{\alpha-1}}{K_{1}(x-a)^{\alpha-1}}=\frac{K_{2}}{K_{1}}\left(1+\frac{\Delta}{x-a}\right)^{\alpha-1} \leq C_{7} \quad \text { for } a<x<a+\Delta \tag{5.24}
\end{equation*}
$$

and the following hold:

$$
\begin{align*}
& \int_{a}^{a+\Delta} f(x) d x=O\left(\Delta^{\alpha}\right)  \tag{5.25}\\
& \int_{a}^{a+\Delta} f(x+\Delta) d x=O\left(\Delta^{\alpha}\right) \tag{5.26}
\end{align*}
$$

From (5.24) we have

$$
\begin{align*}
I_{1}^{*}= & \int_{a}^{a+\Delta} \frac{\{f(x+\Delta)-f(x)\}^{2}}{f(x)} d x \\
= & \int_{a}^{a+\Delta} \frac{\{f(x+\Delta)\}^{2}}{f(x)} d x-2 \int_{a}^{a+\Delta} f(x+\Delta) d x+\int_{a}^{a+\Delta} f(x) d x \\
& \leq\left(C_{7}{ }^{2}+1\right) \int_{a}^{a+\Delta} f(x) d x-2 \int_{a}^{a+\Delta} f(x+\Delta) d x \tag{5.27}
\end{align*}
$$

It follows from (5.25), (5.26) and (5.27) that $I_{1}{ }^{*}=O\left(\Delta^{\alpha}\right)$. Hence if $0<\alpha \leq 1$, the order of $I_{1}{ }^{*}$ is equal to the order of $I_{1}$.

From Lemmas 5.1 and 5.2 and (5.5) we get the following lemma.
Lemma 5.3.

$$
d_{n}(\theta-\Delta, \theta)= \begin{cases}2\left[\left\{1+O\left(\Delta^{\alpha}\right)\right\}^{n}-1\right]^{1 / 2} & \text { if } 0<\alpha<2, \\ 2\left[\left\{1+O\left(\Delta^{2}|\log \Delta|\right)\right\}^{n}-1\right]^{1 / 2} & \text { if } \alpha=2, \\ 2\left[\left\{1+O\left(\Delta^{2}\right)\right\}^{n}-1\right]^{1 / 2} & \text { if } \alpha>2\end{cases}
$$

Theorem 5.1. Let $X_{1}, X_{2}, \cdots, X_{n}, \cdots$ be a sequence of independent identically distributed random variables with a density function satisfying Assumptions (A), (B) and (C). For each $\alpha$, the order given by Table 1 of Theorem 4.1 is the bound of the order of convergence of consistent estimators, that is, there does not exist a consistent estimator with the order greater than values as given by Table 1.

Proof.

1) $0<\alpha<2$. From Lemma 5.3 we obtain for sufficiently large $n$ and every $t>0$, $d_{n}\left(\theta-t c_{n}{ }^{-1}, \theta\right) \leq 2\left[\left\{1+O\left(\left(t c_{n}^{-1}\right)^{\alpha}\right)\right\}^{n}-1\right]^{1 / 2}$.
If order $\left\{c_{n}\right\}$ is greater than order $\left\{n^{1 / \alpha}\right\}$, then $\lim _{n \rightarrow \infty} d_{n}\left(\theta-t c_{n}{ }^{-1}, \theta\right)=0$ for all $t>0$ and all $\theta \in \oplus$. Hence it follows from Theorem 3.3 that there does not a consistent estimator with the order greater than order $\left\{n^{1 / \alpha}\right\}$.
2) $\alpha=2$. From Lemma 5.3 we obtain for sufficiently large $n$ and every $t>0$,

$$
d_{n}\left(\theta-t c_{n}^{-1}, \theta\right) \leq 2\left[\left\{1+O\left(\left(t c_{n}^{-1}\right)^{2}\left|\log t c_{n}^{-1}\right|\right)\right\}-1\right]^{1 / 2} .
$$

If order $\left\{c_{n}\right\}$ is greater than order $\left\{(n \log n)^{1 / 2}\right\}$, then $\lim _{n \rightarrow \infty} d\left(\theta-t c_{n}^{-1}, \theta\right)=0$ for all $t>0$ and all $\theta \in \Theta$. Hence it follows from Theorem 3.3 that there does not exist a consistent estimator with the order greater than order $\left\{(n \log n)^{1 / 2}\right\}$.
3) $\alpha>2$. From Lemma 5.3 we have for sufficiently large $n$ and every $t>0$,

$$
d_{n}\left(\theta-t c_{n}^{-1}, \theta\right) \leq 2\left[\left\{1-O\left(\left(t c_{n}^{-1}\right)^{2}\right)\right\}^{n}-1\right]^{1 / 2} .
$$

If order $\left\{c_{n}\right\}$ is greater than $\left\{n^{1 / 2}\right\}$, then $\lim _{n \rightarrow \infty} d_{n}\left(\theta-t c_{n}{ }^{-1}, \theta\right)=0$ for all $t>0$ and all $\theta \in \Theta$. Hence it follows from Theorem 3.3 that there does not exist a consistent estimator with the order greater than order $\left\{n^{1 / 2}\right\}$. Thus we complele the proof.

Remark. Since $A(\theta)=(a+\theta, b+\theta)$, it follows from Assumptions (A) and (B) that for every $t>0$ and sufficiently large $n$

$$
\begin{aligned}
&\left\{P_{\theta}\left(A\left(\theta-t c_{n}^{-1}\right)\right)\right\}^{n}=\left\{1-\int_{b+\theta-t c_{n}-1}^{b+\theta} f(x-\theta) d x\right\}^{n} \\
&= \exp \left[n \log \left\{1-\int_{b-t c_{n}-1}^{b} f(x) d x\right\}\right] \\
&-24-
\end{aligned}
$$

$$
\begin{aligned}
= & \exp \left[n\left\{-\frac{M}{\beta} t^{\beta} c_{n}^{-\beta}+O\left(c_{n}^{-2 \beta}\right)\right\}\right] \\
& \left\{P_{\theta-t c_{n}-1}(A(\theta))\right\}^{n} \\
= & \exp \left[n\left\{-\frac{M}{\alpha} t^{\alpha} c_{n}^{-\alpha}+O\left(c_{n}^{-2 \alpha}\right)\right\}\right]
\end{aligned}
$$

where $M$ is some positive constant. From Lemma 4.3 we obtain the following results.
If $0<\alpha<2$ and $\alpha<\beta$, then every $\theta \in \circledast$ and every $t>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} L\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right)=1-e^{-\frac{M}{\alpha} t^{\alpha}}, \\
& \lim _{n \rightarrow \infty} R\left(\theta-n^{-\frac{1}{\alpha}}, \theta\right)=0, \\
& \lim _{n \rightarrow \infty} M\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right)= \begin{cases}\left(e^{K t^{\alpha}}-2 e^{-\frac{M}{\alpha} t^{\alpha}}+1\right)^{1 / 2} & \\
\infty & \text { for } 0<\alpha \leq 1\end{cases} \\
& \varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right) \leq 1-e^{-\frac{M}{\alpha} t^{\alpha}}+\left(e^{K t^{\alpha}}-2 e^{-\frac{M}{\alpha} t^{\alpha}}+1\right)^{1 / 2} \\
& \text { for } 1<\alpha<2, \\
& \text { for } 0<\alpha \leq 1
\end{aligned}, \begin{array}{ll}
\lim _{n \rightarrow \infty} d_{n}\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right) \leq 2\left(e^{\tau^{\alpha} \alpha}-1\right)^{1 / 2} & \text { for } 1<\alpha<2
\end{array}
$$

where $c$ is some positive constant and $K$ is some constant. If $0<\alpha<2$ and $\alpha=\beta$, then for every $\theta \in \Theta$ and every $t>0$,

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} L\left(\theta-t^{-\frac{1}{\alpha}}, \theta\right)=\lim _{n \rightarrow \infty} R\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right)=1-e^{-\frac{M}{\alpha} t^{\alpha}}, \\
\lim _{n \rightarrow \infty} M\left(\theta-n^{-\frac{1}{\alpha}}, \theta\right)= \begin{cases}\left(e^{K t^{\alpha}}-e^{-\frac{M}{\alpha} t^{\alpha}}\right)^{1 / 2} & \text { for } 0<\alpha<1 \\
0 & \text { for } \alpha=1 \\
\infty & \text { for } 1<\alpha<2\end{cases} \\
\varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-\operatorname{tn}^{-\frac{1}{\alpha}}, \theta\right) \leq 2\left(1-e^{-\frac{M}{\alpha} t^{2}}\right)+\left(e^{K t^{\alpha}}-e^{-\frac{M}{\alpha} t \alpha}\right)^{1 / 2} & \text { for } 0<\alpha<1, \\
\varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-\operatorname{tn}^{-1}, \theta\right) \leq 2\left(1-e^{-M t}\right) & \text { for } \alpha=1 \\
\varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-n^{-\frac{1}{\alpha}}, \theta\right) \leq 2\left(e^{c t^{\alpha}}-1\right)^{1 / 2} & \text { for } 1<\alpha<2
\end{array}
$$

If $\alpha=2$, then for every $\theta \in \Theta$ and every $t>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} L\left(\theta-t(n \log n)^{-\frac{1}{2}}, \theta\right)=\lim _{n \rightarrow \infty} R\left(\theta-t(n \log n)^{-\frac{1}{2}}, \theta\right)=0 \\
& \lim _{n \rightarrow \infty} M\left(\theta-t(n \log n)^{-\frac{1}{2}}, \theta\right)=\infty
\end{aligned}
$$

but

$$
\varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-t(n \log n)^{-\frac{1}{2}}, \theta\right) \leq 2\left(e^{c}-1\right)^{\frac{1}{2}}
$$

where $c$ is some positive constant. If $\alpha>2$, then for every $\theta \in \oplus$ and every $t>0$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} L\left(\theta-t n^{-\frac{1}{2}}, \theta\right)=\lim _{n \rightarrow \infty} R\left(\theta-t n^{-\frac{1}{2}}, \theta\right)=0 \\
& \lim _{n \rightarrow \infty} M\left(\theta-t n^{-\frac{1}{2}}, \theta\right)=\infty
\end{aligned}
$$

but

$$
\varlimsup_{n \rightarrow \infty} d_{n}\left(\theta-t n^{-\frac{1}{2}}, \theta\right) \leq 2\left(e^{c^{\prime}}-1\right)
$$

where $c^{\prime}$ is some positive constant.

## Acknowledgements

The author wishes to thank Professor Kei Takeuchi of Tokyo University for his encouragement and many valuable suggestions and Professor T. Kusama of Waseda University for suggestive discussions.

## REFERENCES

[1] M. Akahira: "Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distributions of consistent estimators and their asymptotic accuracy," (to appear).
[2] H. Cramér (1946): "Mathematical Methods of Statistics," Princeton University Press.
[3] B.V. Gnedenko and A.N. Kolmogorov (1954): 'Limit Distributions for Sums of Independent Random Variables." Addison-Wesley, Cambridge, Massachussets, (Translated from Russian).
[4] W. Hoeffding and J. Wolfowitz (1958): "Distinguishability of sets of distributions," Ann. Math. Statist., 700-718.
[5] K. Takeuchi: "Lower bounds of variance of unbiased estimators of location for the nonregular case," (to appear).
[6] K. Takeuchi (1974): "Tokei-teki Suitei no Zenkinriron (Asymptotic Theory of Statistical Estimation)' (In Japanese), Kyoiku-Shuppan, Tokyo.
[7] A. Wald (1949): "Note on the consistency of the maximum likelihood estimator," Ann. Math. Statist, 20, 595-601.
[8] M. Woodroofe (1972): 'Maximum likelihood estimation of a translation paramater of a truncated distribution," Ann. Math. Statist., 43, 113-122.

Department of Mathematics
University of Electro-Communications
Chofugaoka, Chofu-shi, Tokyo 182, Japan]


[^0]:    * Received October 29, 1974.

