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1. Introduction

Suppose that Xi, Xs, -+, Xa., -+ 1S a sequence of independent identically distributed
(i.i.d.) random variables. We assume that a parameter space @ is an open set in a Euclidean
p-space with a norm ||-||. In the textbook discussion of an asymptotic theory, it is
usually shown that the asymptotically best (in some sense or other) estimator {7,*} has
the asymptotic distribution of order 4/ 7, in the sense that the distribution of &/ (TW*—6)
converges to some probability law (in most cases normal). There were the sporadic ex-
amples that the distribution of n{(T.*—8) or +/nlogn(7.*—0@) converges to some law
(Woodroofe [7]) when X;’s are i.i.d. random variables with an uniform distribution or
a truncated distribution. The purpose of this paper is to give a systematic treatment
for the problem whether for a given sequence {c.}, ca(Tw*—0) converges to some law, and
what is the possible bound for such a sequence. In a location parameter case it will be
shown that such a bound is explicitely given, and the above mentioned are too special
cases of our result. The asymptotic distribution of ¢.(T,*—6) and the bound for it will be
discussed in the subsequent paper (Akahira [17]). Also some results in terms of the
asympotic distributions of estimators are given in Takeuchi [6].

Suppose that {T,} is a (sequence of) consistent estimator(s). {7.} is defined to be
consistent with order {c,}, where {c,} is an increasing sequence of positive numbers (c,
tending to infinity) if for every >0 and every & of ®, there exist a sufficiently small
positive number § and a sufficiently large positive number L satisfying the following:

Iim sup Py({e.||T.~0||=LP<e
n~e g:][0-911<8

A necessary condition for the existence of such an estimator is established, and the bounds
of the order of consistency of estimators are obtained. As a special example, a location
parameter case is discussed when the density function of x—@ satisfies the following:
Assumption (A). f(x)>0 for a<x<b,
f(x)=0 for x<a, x=0b,
Assumption (B). f(x) is twice continuously differentiable in the interval (a, b) and
Iim (x—a)'™® f(x)=A4",

x-a+0

Iimo(b—X)“B fG)=5,

x~4b—
where both « and j are positive constants satisfying a<f< o0, and A4’ and B’ are positive
finite numbers.

* Received October 29, 1974.
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Assumption (C). A= lim (x—a)*™?|f'(x)| and B"= hm (b x)?78| f'(x)| are finite. For
a>2, f"(x) is bounded. *7°

It is shown that the bound of {c,} is given by c,=n'# if 0<a<2, c,=(nlog n)*? if =2,
c,=ntl? if ¢>2, and the existence of estimators with such order of consistency is established.

2. Notations and Definitions

Let £ be an abstract sample space whose generic point is denoted by x, B a ¢-field of
subsets of %, and let ® be a parameter space, which is assumed to be an open set in a
Euclidean p-space R? with a norm denoted ||-]|. We consider a sequence of classes of
probability measure {P,; :0®} (i=1, 2, ---) each defined over (£, B). We shall denote
by (€™, B") the n-fold direct products of (¥, B) and the corresponding product measures
by Py =PyX---XPy,. For each n=1, 2, .-+, the points of £ will be denoted by x,=(x,
-+, x,) and the corresponding random variable by X, with the probability distribution P,™.
An estimator of @ is defined to be a sequence {7, : n=1, 2, ---} of B™-measurable function
T, on " into ® (n=1, 2, ---).

Definition 2.1. An estimator {7, :n=1, 2, ---} is called (weakly) consistent if for every
e>0 and every 6 of ®

lim P,"({||T,— 6] >¢})=0.

Definition 2.2. For an increasing sequence of positive numbers {c,} (c, tending to in-
finity) an estimator {7, :n=1, 2, ---} is called consistent with order {c,} (or {c,}-consistent
for short) if for every e>0 and every ¢ of ®, there exist a sufficiently small positive
number ¢ and a sufficiently large positive number L satisfying the following:

Iim sup Po‘")({c,‘ T.—08]|=L})<e. 2.1

e 02]10-911<
- It is easily seen that if {7,} is a {c.}-consistent estimator, then {7,} is a consistent
estimator. Order {c,.} is called to be greater than order {c,’} if hm ¢,/jc,=0. For any two

points € and 4/ in @, there exists o o-findte Tmeaswie u, Such Lha‘t Pg(‘”’)/ and Py are abso-
lutely continuous with respect to u,. Further for any points ¢ and §’ in ® we define

dPy™  dPy
a0, 0)=\ | G2
—2 sup |P,"(B)—Py™(B)|. 2.2)
BERH(n)

It is easily seen that for each n, d, is a metric on ® independent of ,.

3. Necessary Conditions for Existences of Consistent Estimators

In this section we shall obtain the necessary conditions for the existences of a consistent
estimator and a {c,}-consistent estimator.
The following is already known. (e.g. Hoeffding and Wolfowitz [4]).

TueoreM 3.1. If there exists a consistent estimator, then for any two disjoint points
6, and #, in @,
lim d,(6,, 62)=2.

nowo

The proof is omitted.
The following theorem shows that the necessary condition for the existence of a consistent
estimator is that the limit of the Kullback information is infinite.
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THEOREM 3.2. Suppose that for each n, {%,: dPy/du,>0} does not depend on 6.
If there exists a consistent estimator, then the following holds: for any two disjoint points
61 and 02 '
‘ Iifnl,,(ﬂl, §2)=00,

where I(6:, 02)= Sﬁ(n)(d}’ﬂlw/d/.z,‘) log (dPs,*|dPs,)d tt. |

Proor. We denote a consistent estimator by {7, : n=1, 2, ---}. Let 0<d< % Putting
Y.=dP,;,"[dPs, ™, we have from Theorem 3.1 for sufficiently large =,

B0, Y= 1=y | ¥ = 11aP,
=d(P01(”)y Pﬁg("))
=2-24. 3.1)

Putting ¥,*=max{Y,—1, 0} and Y,"=max{1—Y,, 0}, we have for each n=1, 2, .-,
B0 (X) = Eaf(¥,7) = |y [ R~
=0
and for sufficiently large n,
Ep (Y, )+ Ep (Y, )=E;,"(] Y, —1])=2-20.
Hence we obtain for sufficiently large n,
Ep (Y, *)=Ep"™ (Y, )=1-0. 3.2)
Since 0<Y, <1 and (3.2) hold, for sufficiently large n,

1= < Ey ™(Y,~)= i Y, dPs, () + S Y, dPy, (%)
{rn—=1-25} {v,~ <i-2s}

<Py, { Y, =1-20)+ (1 —28) Py W({ Y~ <1-28})
=20Py,"({Y,~=>1-28})+1-24.
Hence we have for sufficiently large n,

Po({ Y, >1— 26})2%. (3.3)

It follows from (3.3) that for sufficiently large n,
1(61, 02)=Ey, " (—log Y,)
= Ep, W[ —~log (1+ Y,*)]1—E,,"[log (1—-Y,")]

?_—Egl‘"’(Yn*)—%log 25

Z-—l——;—log 23.

Therefore we have
lim (6., 0;)=c0.

nro

Thus we complete the proof.

TueoOREM 3.3 If there exists a {c,}-consistent estimator, then for every ¢>0 and every
6 <® there is a positive number ¢ such that
lim d,(6, 0=xtc, ' 1)=2—¢

n-reo

where 1=(1, ---, 1)'.

PrOOF. Suppose that {T,:n=1, 2, -~} be a {c,)-consistent estimator. It follows
from the definition of a {c,}-consistent estimator that for every >0 and every 6 of @,
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there exist positive numbers ¢ and L such that
lim sup Py({cs)|Tn—2||=L})<¢/4.
<3

n-o 911 9-411
Let r>2L be fixed. Since there exists n, such that for any n>ny,
Cp>>Cay 18,
sup Py ({c,|| Tn—|=L))<e/4,

9:1[\9—0I|<tc"0—1
it follows that

Im Pype,-11(cal | To— 0 — te,~1|| = LY) <e/4, (3.4)

Iim Py ({c.|| T, — 0| =LY< e/4. (3.5
From (3.4) we have o

0m Py e, -1 (eal | Th— 0 —te, 1] | =1 — LY) < e/4. (3.6)

Since the following holds:
a0, 0+1c,”1)=2 sup |Py.sc,-1"1(B)—Py™(B)|
BER(n)

22| Py ste,-1M1({cal [Ta— 01| Z L) — Py ({eal [T —0||=LP)]  (3.7)
for all n, it is sufficient to show that the inferior limit of the last term of (3.7) is not
smaller than 2—e. Because we have
(& el [ Tu(®)— 0 — e, 1| <t — L} C{%, 1 el | Tu(x) —6||= L)
for all n,
Hm Py, 11 en) | T —0 —rc, 71| <t —L})

nro

<Hm Ppyse,-11"({cu] | Tu— 0] =L)). (3.8)

now

It follows from (3.6) and (3.8) that
l—%Slil;n Ppote,-1™({e] | Ta—0]|=L)). (3.9)

From (3.5) and (3.9) we obtain
2—e<lim 2| Py se,-1u({cnl | Tw— 01| = L}) — Py ({cu| | Tw — 61| = L})|.
Therefore we have
lim d(6, 6+1tc, '1)=2—e.

17+ 00

Similarly we also obtain
lim 4,(8, 0 —tc,”'1)=>2—c¢.

n-r oo

Thus we complete the proof.

4. Order of Convergence of {C,}-Consistent Estimators for Location Parameter Cases

Before discussing order of convergence of {c,}-consistent estimators in detail, we shall
give a definition and lemmas.
Definition 4.1. (Generalized from Gnedenko and Kolmogorov [3]). For each €@,
the sums
Y.(0)=X:(0)+ X2(0)+---+ X.(6)
of positive independent random variables X3(6), X2(6), -+, X.(8), --- are said to be uni-
formly relatively stable for constants B,(§) if there exist positive constants B,(f) such that

Y.(6)
() —_
for any >0, Py ({ B.(0) 1

>e})—>0 as n—co uniformly in any compact subset of @.
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In the subsequent lemmas, we use the notation that for each k and each 8@, Fs(x)
is the distribution function of X(8).

Lemma 4.1. (Gnedenko and Kolmogorov [3]). For each €@®, let X1(6), X(0), -,
X.(0), --- be a sequence of positive independent random variables. The sums
Y (0)=X:(0)+ X2(0)+ -+ X(6)
are uniformly relatively stable for constants B,(#), if there exists a sequence of positive
constants By(8), Bx(8), -+-, B,(f), --- such that for any £>0,

"

ZS;M dFp()—0 .1

as n—oco uniformly in any compact subset of @,
1 z eBy(8)
WZSO xa’ng(x)—-rl (4-2)
k=1

as n—co uniformly in any compact subset of @.
The following lemma is a generalization of Lindeberg’s condition (see Gnedenko and
Kolmogorov [3]).

LemMMA 4.2. For each §€®, let X1(0), X(6), ---, X,.(0), --- be a sequence of independent
random variables.
The distribution laws of the sums
X:(0)+XA0)+---+ X, (0
Y.(6)= (8)+ zéi;) (6)

converges to the normal law

1 (= _,
1] =——=_~& e~y 2g
(x) W y

uniformly in any compact subset of @, if there exists a sequence of constants B,(f) such
that lim B,(§)=cc uniformly in any compact subset of ® and for any >0,

B

”

2& dF ()0 (4.3)
= {1x1>eB,(0)}
as n—oco uniformly in any compact subset of @, and
-——1—2{& , xzdF‘,k(x)—G xdF,,,,(x)) 2}—»1 (4.4)
{BA6)}* LUtisi<en, 00 Mizi<es, 0

as n—oco uniformly in any compact subsets of @.

Now we assume that X;’s are identically distributed i.e. Pyu=P; (i=1, 2, --).

We suppose that every Py(-)}(6®) is absolutely continuous with respect to a ¢-finite
measure g. We denote the density dP,/du by f(-: 6) and by A(f8)CZ the set of points in
the space of ¥ for which f(x: 6)>0. Then we may write f(x:8)=Xap(x)f(x :8), where
X4 (+) denotes the indicator of A(4).

Lemma 4.3. If

T S 02) }”
” n i —1 S dp™ 3
Sflmﬁlm‘f{uﬁz){ Sxi 1 62) .=1f(x f)dun <o

i=1

then for any two points #; and f; in ® and each n=1, 2, ---,

— 12 —
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d(Py, ™, Py, <[1—{Ps(A62))}"1+ 1 —{Ps,(AB))}*]
* ’:{SA(ﬁl)ﬂAw )fZ(x 1O f(x ﬁz)d/,!,}”

— 2P (AGNY+ (PO )]

Proor. Since for any two points #, and §, in @ and each n=1, 2, -,

APy _T] i . i .
d/j‘]”) =Hf(JC.' Iﬁj)=HZA(oj)f(Xi :19,')=X.,g1,1(oj;(f,,)ﬂf(x; 105 (=1, 2)
i=1 i=1 a i=1

from (2.1) we have .
d(P01(")> POQ(”)

% a2 [ £055 00 =% aon (5[ £ 1 02
i=1 j=1

=§,, ] Hf(x;:l%)d,u‘"’-}-&n ) nf(x;:ﬁz)d,u‘"’
iflA(ol)—iflA(ﬁz)i=l H)

X A(fg)- X A(61)
=1 i=1

d‘u(n)

ﬂf(«\’i : ﬁl)“ﬂf(xi 10,)

X ” n
X A6y N X A(fg)
i=1 i=1

- 1~§ ) [[ 7 0 +1 ~S ) [[ 70x: 0
ALV EXUALRIITY _
i= = i= =

S,’_’_‘;{‘(mméﬁ(ag) .Ulf(Xi 3‘91)"H1f(x; 2 02)|dp
=[1—{Ps,(A(0=2))}"1+[1 —{Pp,(4(6:))}"]
E“i}].Awl)n'%lsz) Hlf'(Xi: ﬁl)— H;fl(x; : 02) dﬂ(”).

Further it follows form the assumption and the Schwarz’s inequality that

d,u(”)

ﬂf(xi : 01)_ﬂf(x£ 1 02)

X i n
X A(01) N X A(0y)
i=1 i=1

”

H‘H —1 Iﬂlf(x; : 02)dp™

i=1

=§ n n
X Al N X Al09)
i=1 i=1

R

= B X Aty ni:;?lwg) { =1% B 1} Zﬂlf(x.- : 02)d'u(ﬂ)} "

i=1 i

({1, S 0907 5 0} = 2P AN+ (P CAONY]
Thus we complete the proof.
In order to use afterwards (4.5), we write
L(0, 62)=1—{P,,(4(0:2))}"
R(G:, 02)=1—{P,,(A(8:))}"
n 1/2
M@, 09=| | S22 017k 0~ 2Py (AG) -+ (Pon(AGY) ]

A0 NAGY

— 13 —

4.5)

13
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and we shall note that

du™,

Mo, 09=| mf(x; s —[[ £ 00
{flAml) n{fld(ﬁg) -1 o1

Let £=R'. Now we suppose that every Py(-)}(§ ®) is absolutely continuous with re-
spect to a Lebesgue measure m. Then we denote the density dP/dm by f(-:8) and suppose
flx:0)=f(x—8). For the lemmas and theorems in sections 4 and 5 we make the following
assumptions.

Assumption (A). F(x)>0 for a<x<b,

f(x)=0 for x<a, x=b.
Assumption (B). f(x) is twice continuously differentiable in the interval (e, b) and
1irl+lu(x—a)‘“°‘f(X)=A’
‘ Iigno(b——x)l'Bf(x)-—:B’
where both « and P are positive constants satisfying @ <<f< oo, and 4’ and B’ are positive
finite numbers.

Assumption (C). A’'=lim (x—a)? %] f'(x)| and B'' = lim (b—x)*~8] f/(x)| are finite. For
a=>2, f"(x) is bounded. ° oo

For example we see that the beta distributions Be (a, 8) 0<a<B<2 or 3<a<LB< o)
satisfy Assumptions (A), (B) and (C).

LemMA 4.4, Suppose that a density function f satisfies Assumptions (A), (B) and ).
If a=2, then the following hold: for any >0,
ng Flx—0)dx—0 (4.6)
{z: ce1(n log m<~ (0% 80%) log F(z-0)}
as n—oo uniformly in § of @,
1

anlogn g {:0<~(§/80% log 7 (x-) <eorn log n}

{—(©%/00%) log f(x—0)}f(x —0)dx—1 (4.7)

. . 1 Al/2 BIIZ AIIZ
as n—oo uniformly in 8 of @, where Cls—f(T-{—T) if =2, =57 if f>2:

Proor. It follows from Assumptions (A), (B) and (C) that there exist n, and %, such
that for all n=>n,,

0<x—a<yg,, 0<b—x<y,, (4.8)
implies
/__;l_ -1 ’ _1_ //___1_ 1 12 _l_
A-L<emarifw<a+t, -1 poo<ar+ L,
B Lc-msp<nrl, Br-Lapxps i<+l @)
Let A=A —~, dy=A'+L, BB -~ B-B+L a7 =ar—L gr_gryl
n n n n n n
1 1

B_,/'=B'"—— and B, =B"+—.
n n
Putting

1= fx)dx,

{x: ecinlogn< — ?I(S;) +{ ?/((3 }2} n (@, a+7ng)

12,.=§ Fx)dx,

. _JS® PEORE —
{x.tclnlogn< ¥iO) +{ 5O) } }n[a-i-nn y b—nn4]

— 14 —
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fu=| Fx)dx
n LW [ IE
{ricomtogn< LD+ (LI @mtor)

we have

Sfix—08)dx

ng 32
{x: ecinlogn< — 567 logf(x-ﬂ)}

=ng , Sf(x)dx
. P L [ F
{rreantogna L0+ (L2}

=n(Iln+IZn+I3n)- (410)
Since f’(x) and f'/(x) are bounded,

lim nl,=0. (4.11)

noeo

Since f’"(x) is bounded, from (4.8) and (4.9) we have for sufficiently large n,
nIl,,=nS

_L® @0 fGx)dx
{x ecynlog n< ¥O) + 7S } }ﬂ(a, a+7ng)

<n E w1 O (log 1))
x: ecwlogn( (x—-a) } }
Un (:clnlogn) 3
g A (x —a)dx+0(n(log n)~?)
—%A,, ﬁ (ecinlog m)~*+0O(n~Ylog n)~2).
Hence we obtain
Tn—nnlln
<Iim = 5 A (601” log n)~!
=—2—A”/(ec1)“1 lim (log n)~*
=0. (4.12)
Repeating a similar argument, we have
lim nls,=0. (4.13)
It follows from (4.10), (4.11) and (4.12) that (4.6) holds.
Putting
. f ”(X) f()
Iln,=8 F( FORK: { } f(x)dx
{x 0< — e +{ L } <ecmlogn}n(a, a+7ng) li f(x) f()
_f ”(X) S1(x) }
B = , F)dx
S S 2 s
frrc g g3 <o tostona T U7
. I/(x) (
IS"'=S ROINRACRE L5 { f( ).
{x 0<_ e +{ 5O } <ec1nlogn}n(b—ﬂno,b) [ f(x)
we have

n

62
cnlogn g{ 0<_ “‘é‘gz—IOg f(X—ﬂ)}f(x—ﬁ)dx

_ 1 _S@ (S0
cxlogng{x < 2O (50 }2<mmgn}[ 7o+ e} s

(' + Lo’ +15,'). (4.14)

Iog J(x—¢@) <ecinlog n} {

o logn

— 15 —
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Since f’(x) and f’’(x) are bounded,

S S
irg T L, =0. (4.15)
Since f"’(x) is bounded, from (4.8) and (4.9) we have for sufficiently large n,
N S
o logn i
1 _S@ { ]
& logn e 04 262 <camons) o oo TR (TG [0
f "(X) { }
. — . _
T o IOgn g A S 2 = a)z <tcmlogn} (a, a+7]n0){ f(x) f( ‘) f(X)dx
5o A” 2 1. -1
~a logn EA n” (ecyn log m)=112 A, xd’w—o('I )

A,,”Z I 1 A rr 1 : l 1
cllogn{A_,, (ogayﬂn og A +?logscl+—2—10gn+-i—loglogn)}
+0(n™).
Hence we obtain

J— . A/IE
lim e ' S5

(4.16)

Further we have

N
%}f{: cilogn L
: 1 Sr(x) Sl ?
S 2
e aulogn Je “;gxz 57 <¢c,nxogn}n(a,a+vno) J(x) + S(x) Jx)dx
” 112
znm——L-&” ‘ A1
o= C1 logn (er;nlogn)“z A,, X
1 (A 4 1 1
__1;1?1;-—61 Togn { i <log Nne—108 A +510g ecl-}-«z—logn

+%Iog log n>}

AIIZ
> (4.17)
It follows from (4.16) and (4.17) that
lim —— 1,/ =2 4.18
T Togn L= 20,4 (4.18)
Repeating a similar argument, we have
BIIZ
m— L {W for =2, (4.19)
e C1lOgn
0 for >2.
- 1 A/IZ B/12 R A
Hence it follows from (4.15), (4.18) and c1=7( ”E'“) it g=2, cl-—ﬂ—,— if B>2

that (4.7) holds.
Thus the proof is completed.

LeMMA 4.5. Suppose that a density function f satisfies Assumptions (A), (B) and (C).
If =2, then the following hold: for any >0,

n x—0)dx—0
S{x:i—a%logf(x—o) >-.-c2(nlogn)“2}f( )

— 16 —
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as n—co uniformly in § of @, and-

o1 "fae—0)d
<ttz(n}ogn)112} {_67’7 ng(x—ﬁ)} f(x-— ) X

6 2
_6% log f(x—6) ‘ <ecy(nlog n)llz} (W log f(X - 6))f(x_ ﬁ)dx} :lél

A2 B2 3 . A .
%._<—A_"+T>} if p=2, Cz=m if f>2.

The proof is omitted because it is given by the same way as that of lemma 4.4.
The following lemma is already given in Takeuchi [5].

el
¢t logn {x:

“{X{x;

as n—co uniformly in 8 of @ where c2={

L tog f(x~0)

Lemma 4.6. Suppose that a density function f satisfies Assumptions (A), (B) and (C).
If «>2, then

R euc)
Sn 700 dx< o,

Proor. Since f(@)=0 and lim f(x)=0, by the second mean value theorem in a neigh-
4]

borhood of a, we have
1Y _ 21" ESE) _
o e e

for a<f<x. Since f’/(x) is continuous and bounded, {/(x)}?/f(x) is bounded in the
neighborhood of @, and also that of 4, and so is the integral. Thus the proof is completed.

In the following theorem we shall show that there exist consistent estimators with
different orders according to « of density functions in' a family satisfying Assumptions (A),
(B) and (C).

THEOREM 4.1. Let Xi, X, -+, X,, --- be a sequence of independent identically dis-
tributed random variables with a density function satisfying Assumptions (A), (B) and (C).
For each « there exists a consistent estimator with the order given by Table 1 respectively,
where M.L.E. is the maximun likelihood estimeater of 4, the existence of which is guaranteed
since f is continuous and bounded.

Table 1.
@ order ¢s {cn} -consistent estimator
O<a<2 nlle { min X;+ max X;—(a+5)} /2
1<ign 1gign
a=2 (nlog n)tiz M.L.E.
a>2 nii2 M.L.E.

PrROOF. 1) 0<a<2. Let T,(X,)={min X;+ max X;—(a+5)}/2. It follows from As-
1<isn 1<i<n

sumptions (A) and (B) that there are positive constants C and ¢ such that
C<(x—a)'2f(x) for all xe(a, a+7)
C<(b—x)"8f(x) for all x&e(b—r7, b).

Then we shall show that {7, :n=1, 2, ---} is a {n'/*}-consistent estimator.

It is sufficient to know that for every >0, we can choose L satisfying

1 a l e’ }
L>max{—2—(—c~log e) , Op.

—17 —
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Indeed, since the following holds: for each n=1, 2, -,
{%,: T(%,)—6>Ln™*¢ and max x;<b+ 0}

I<i<n
c{x, ra+0+2Ln el <b+603i=1, 2, -, n)},
we have for each n=1, 2, ---,
Py ({T,— 6> Ln~t})
=Py"({T,—8§>Ln"% and max x;<b+06})

1<i<n

<P"({a+0-+2Ln Vel <b+0 (i=1, 2, --)})
b+ n
3{8 f(x—a)dx}

a+f+2Ln- 12

-{{ o
a+2Ln-a

a+2Ln~1la #

={1-] e, (4.20)
Similarly we also obtain for each n=1, 2, ---,
Py ({T,— < — Ln-t1))
—oLn—lla "
={&” 2 f(x)a'x}

b .
={1_S f(x)dx} . (4.21)
b-2Ln—le
It follows from (4.20) and (4.21) for that each n=1, 2, -,
Py({|Ty— 0| > Ln™11%})

a+2Lu~1/a n b "
s{l—& f(x)dx} +{1—S f(x)dx} .
a b-2Ln-1a
Hence we have uniformly in 8 of @,
lim Pp"({|T,—6|>Ln~12})
a+2Ln~1/ n b #
slim{l——g P f(x)dx} +13m{1—§ f(x)dx}
7B o a noo b-ZLn"l/”‘
<2 exp{_.._.c_(z_LX_}
o
<e.

Therefore it is seen that {7} is {n'/#}-consistent.
2) a=2. Since the M.L.E. is a consistent estimator (Wald [6]) and it is a root of

”

Zotog fxi—6)=0, 4.22)

i=1
there exist at least a consistent solution of (4.22). We denote it by T,*.
Let A,=(nlogn)*’ and put L8, £)=[]/(xi—6) for O-ra<x;<O+b (i=1, 2, -, n).
i=1

Using the mean value theorem, we have

__ 1 [o e o 178

C?A,2 [802 log Ln]0=o"*CA:;(Tn ﬁ)__CAn [:—‘—‘aﬁ log L,,}g=g, (4.23)
12 172\ 1/2 1"

where |0 —6,%|<|0—T7.*| and c={%(~42,—+53—,—)} " if =2, c=—-———éA__/ if B>2.

—(0?/66*) log L, is the sums of positive i.i.d. random variables —(8%/66%) log f(X1—0),
—(0%/06%) log f(X>—8), -, —(0%/06%) log f(X,—8). If ¢*4,? is taken as B,(f) in lemma 4.1,
then it follows from lemma 4.4. that the conditions (4.1) and (4.2) hold. From lemma
4.1 we conclude that —(0%/66%) log L, is uniformly relatively stable for constant ¢24,%. Since
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T,* is uniformly consistent in any compact subset of @ (Wald [6]), #,* converges in pro-
bability to # uniformly in any compact subset of ®. Furthermore since (8%/0602)log L.(6, X.)
is uniformly continuous is any compact subset of @, it is seen that (—1/c®4,2)[(6?/06%) log
L,Jp-0,» converges in probability to 1 uniformly in any compact subset of @.

(0/06) log L, is the sums of i.i.d. random variables f(X1—8)//(X1—8), fo(X:—0)/f(X.—8),
vy Jo(X— 0 F(X,—8), where fi(X—8)=(0/06)f(X—6). If cA, is taken as B,(f) in lemma
4.2, then it follows from lemma 4.5 that conditions (4.3) and (4.4) are satisfied. From
lemma 4.2 we see that the distribution laws of (1/cA,){(0/06)log L,} converges to the
normal law 0(x)=(1/«/§;r—)g e~?*?dy uniformly in anycompact subset of @.

Since from (4.23)

; (1/cA,)[(0/00) log L. Jp=0
*__ =
AT = =11 4,007 108 Lodsmors*
it follows that the distribution laws of cA.(T,*—#) coverges to the normal @(x) uniformly
in any compact subset of @.
In order to prove that {7,*: n=1, 2, ---} is a {A,}-consistent estimators, it is sufficient
CcL
to show that for any >0 we can choose L satisfying g (1//27)e **2dx>1—¢ and that
-CL

(2.1) holds.
Since

Py ({A,|T,*—8|=L)
=Py ({cA,|T,*— 0] =cL))
=1—Py"({cA,|T.*—68|<cL})
it follows that for every J*® there exists §>0 such that
Iim sus <5P0<">({A,,[T,,* —6)=L))

ne g:lg-9|

cL -
—1-" (h/zme-rdx
—-CL

<e.
Hence it is shown that {7,*} is {(nlog n)'/?}-consistent.

3) a>2. It follows from Assumption (C) that Ey(Z,;)=0 and Ey(Zys)+ ExZ,%)=0, where
Z,=(0/00)log f(x—0) and Z,,=(0?/00%)1og f(x—0@). Further it is seen from lemma 4.6
that E,(Z,%)<co. Hence the distribution law of /7 (T,*—8) converges to the normal law
(¥(x) uniformly in any compact subset of ®, where I=FE,(Z,*) (Cramér [2]). Therefore it
is shown in the same way as the case a=2 that {7,*: n=1, 2, ---} is a {n!/?}-consistent
estimator. Thus we complete the proof.

5. Bounds for the Order of Convergence of Consistent Estimators

In this section we shall show that for each «, there does not exist a consistent esti-
mator with the order greater than values as given in Table 1 of Theorem 4.1, that is, the
order given by Table 1 is bound of the order of convergence of consistent estimators.
Before proceeding to the next theorem, we shall prove the following lemmas.

Lemma 5.1. Let f be a density function satisfying Assumption (A). Suppose that for
0<4<b—a, there exists a measurable function g(-) on % such that g(x)>0 if a—4<x<b,

g(x)=0 otherwise and g ag(x)dx=1. Then

dy(6—4, a)smb ) (f(”g‘g)‘g(x”z dx+1}"—1]”2 .1)

a-

—_19 —
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e e

Proor. First we have
d(6—4, )

= g(n)mf(%_ﬁ'*'d)— ﬂf(xf’“@)mdxi

!/\

Hf(x - Hg(x ﬁ)mdx-ka()mf(x —6)— Hg(x ﬁ)mdx

de + = g def

[ P P E

b

mﬂx +)- Hg(“

(xi) - Hg(xi)

-4

I

4

Jao
b
0.
[

IA

x & e
& {ﬂ §§f§ 1} ﬂ"(xf)ﬂdxs‘]m- (5.2)

Furthermore we have

L o]
- Aﬂ{ﬂ;(j)m} Hg( )de o
+Y S ﬂg(x)ﬂdx

{f(x-i—d)
-4l glx)
b+ 4) - g(x))+g(x)} dx] B
-4

|
|
[ e sy o2
L.

13

Il

} g0oax]

I

y () S s (X+A>—g<x)}dx+ﬂz_dg(x)dx]”—1

b {fxe+ D) —g(x))?
S ax +1] ~1. (5.3)

{
l
[
[

!

Similarly we have

degb { ﬁﬁi;*} Hg(x)ﬂdx Sb dﬂ%éfﬁLd +1} ~1. (5.4

It follows from (5.2), (5 3) and (5. 4) that (5 1) holds. Thus we complete the proof.
If the assumptions of Lemma 5.1 hold, we can define an information I such that
I=S” (/D) —g0} .
a-4 g(x)

—_20 —
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Henceforth for 0<4<b—a, we put g(x)z—%—{ Sx+D+f(x)}. Then it is easily seen that

g(+) satisfies the assumption of Lemma 5.1. Since

S+ D) =gy =2 S+ D)= f)}
and »

@) =g =5 LS~ fex+ 2},
it follows from (5.1) that

b 2 /2

4,64, 0)32[{8 {f (H;()x) g i +1} 1] =2@s =10 6.9
a-4

Henceforth we suppose that f(x) satisfies Assumptions (A), (B) and (C). Then there exist

positive numbers K;, K;' (i=1, 2, 3) and e such that

<K <(x—a)2f(x)<K, for a<x<a+e, (5.6)
0< K/ <(b—x)Bf(x)<Ky/ for b—e<x<b, (5.7)
(x—a)*2 ff(0)| <K, for a<x<a+e, (5.8)
(b—x)*7B| f1(x0)| <K5' for b—e<x<<b, (5.9)
0<e<min {1, b;"}.
Let 0<A<—;—.
Now we devide [ into six parts I, I, I, I3, I, and Is, that is,
5
I=3>L,
i=0
where
_{v {f&t+H—gx)}* e {fxtDH—g}
Io—- dx ]1
a—-4 g(x) a g(x)
are { flx+4)— g(X)}2 e { flx+4)— g()C)}‘a
L= 13
a+d glx) a+e g(x)
A {flx+A)— g0} _ S+ g(}f)}2
L= dx, L=
bt g(x) b-4 g(x)
LemMmMmA 5.2. For each a>0, the orders of I, I, I, I3, I, I; and I are given by Table 2.
Table 2
@ I I Iz I Is Is I
0<a<2 | 049 | O 0(4%) 0(4%)

O(4?) if B=2
<{0(42] log 4]) if B=2
a>2 O(4%) O(42) O(4?) o(4?)

a=2 | O 02 | Oo(2llog 4))| O(42) 0(48) | 0(47|log 4])

Proor. i) I and I,. It follows from (5.6) that

_{ LGrH gy (0 SGHD 4 oo
I"_SM 2(x) S,,_f—"“'z dx=0(4. (5.10)
Since
g"”’ et =g}
a g(x)

o4 {(flx+4)— f(x))]2F -
| S A e+ 4 e dx = LT S )+ SO,

—_21 —
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it follows from (5.6) that
L=0(4"). (5.11)
ii) L. It follows by the mean value theorem that
et ) g0y,

et d glx) -

X {UGE DTN 4 L[ U DS

hd {(f(X+A)+f(X))/2}2 atd S(x)

a+5 4 2

where
a+d<x<E(x, H<x+4<at+e+4.
If 0<a<2, then it follows from (5.6), (5.8) and (5.12) that

a a a4 ateg —a 204
Izsg“ £C, L(E————))—Edescmz&M %%m—l—dx cng xa=3x
c

G
I - S-S Y T
a—Zea 4 a—2

where C; is some positive constant. If ¢=2, then it follows from (5.8) that f’(x) is bounded
on (a, a+e). From (5.6) and (5.12) we have
IzsCzdz& {1)(x — a)}dx = Co¥(log € —log 4), (5.14)

where C, is some positive constant. If o>2, then it follows from (5.6), (5.8) and (5.12)
that

A=, (5.13)

o—4 ate —_— -4
IzSCs& P Sl NSO 42& KClch )
a+d (X ) a+ 4 (X“"a)

3 2e-4
—cut’| xa*3(1+-4)
4 X

where C; is some positive constant. Hence it follows from (5.13), (5.14) and (5.15) that

2a—-4
deZZ"‘”*‘CaAEXex“‘?’deZZ““Cge““"dz— SCutl®, (5.15)
) —

0(4%) if 0<a<2,
L=lo(#|log 4))  if a=2,
o) if a>2. (5.16)

iii) I;. Since f(x) and f'(x) are continuous functions on (a, b), it follows that

(AL DY g L[ LS DS
2

a+¢€ O'(X) P g(x)
_ (e 2 f(Ex, D)) o
_Tgm Fx) dx<C/L S {I/f(X)}dx
=G .17)

where
ate<x<E(x, H<x+4<b—(e/2),
and Cy and C; are certain positive constants. Hence we have
L=0(4%). (5.18)
iv) I,. It follows by the mean value theorem that

14=§”“” {fec+DH—g))y ; 1 gb 4 {fat H=f)

P g(x) 2 Jo-e Sx)
_ 1 (e A Ex, A))}2
-5 G (5-19)

where
b—e<x<E(x, H<x+4<b—(e/2).
If 0<pB<2, then it follows from (5.7), (5.9) and (5.19) that

—_22 —
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- B-4 2B-4(e
14_<_Csdzg B=DF h<c AZ( ) S x1-8dx
e (b—x) 4

_ G e L, G (__)23 e

- 2_8 284 4 2__6 2 4 s (520)
where C; is some positive constant. If 2<f, then it follows from (5.7), (5.9) and (5.19)
that

b-4 28-4 b 284
I4<S Cedz———‘g—)—_-“deCsdzg 4b—x)

(b—x)F1 e (b—x)fT ¥
=C5AZS xP-3dx
4
CsAz(log e—log 4) if B=2,
T\Cos? B (eﬁ “2— [8-2) if f>2, (5.21)
where C;s is some positive constant. Hence it follows from (5.20) and (5.21) that
_ {O(AZ) if B=2,
Tlo|log 4)  if B=2. (5.22)
v) Is. It follows from (5.8) that
e At DgC)
=
b-4 g(x)
_r S
e
=0(4%). (5.23)
5
Since I=\I;, it follows from (5.10), (5.11), (5.16), (5.18), (5.22) and (5.23) that
i=0
o4 if 0<a<2,
I=10(4|log 4)) if @a=2,
o4 if a>2.

Thus we complete the proof.

REMARK. We also define an information I* such that

P LA DS

G
Since
{f(x+f()x—) g0} ; {f(x+;1()x) SOP por acx<s,
it follows that L<L* (i=1, 2, 3, 4, 5), where I"‘=i1,»*,
e[ {GHD—FOY e - G+ H—fD
' &) S W &)
e L+ D)= Y o (T4 {fx+DH— fF
w={ 70 = o
15*=§b Lt D=f)
b s FG)

It follows from the proof of Lemma 5.2 that for each a>>0, the orders of I* (i=2, 3, 4, 5)
given by Table 2 respectively. Furthermore if 0<<a <1, then it follows from (5.6) that there
exists a positive constant C; such that

Sx+4) - Kex+d—a)*? ( 4 >“‘1
0< o = KG—ar & == <C; for a<x<a+d (5.24)
and the following hold:
— 23 —
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&“”f(x)dx=o<m>, (5.25)

| fet dyax=o0wm. (5.26)
From (5.24) we have ‘

g“" G+ DH—f)
)

Yu {f(x—i—d)} dx— S“ Af(x+d)dx+&c+df(x)dx

<(Cr+ 1)& f(x)dx—zgauf(x—ul)dx (5.27)

It follows from (5.25), (5.26) and (5.27) that L,*=0(4%. Hence if 0<a <1, the order of
I* is equal to the order of I.
From Lemmas 5.1 and 5.2 and (5.5) we get the following lemma.

LemMma 5.3.
{1+ 0o — 1712 if 0<a<2,
d(0—4, 8)=12[{1+0(4*|log 4])}*— 1] if a=2,
{14+ 04— 172 if a>2.

TueoreM 5.1. Let X3, X, ---, X,, --- be a sequence of independent identically distrib-
uted random variables with a density function satisfying Assumptions (A), (B) and (C).
For each «, the order given by Table 1 of Theorem 4.1 is the bound of the order of con-
vergence of consistent estimators, that is, there does not exist a consistent estimator with
the order greater than values as given by Table 1.

PROOE.
1) 0<a<2. From Lemma 5.3 we obtain for sufficiently large n and every >0,

d(0—1c,”, 0)<2[{1+O0((tc, )*p»—11'1.
If order {c.)} is greater than order {n‘/"‘} then hrn d.(0 —tc,™,, 6)=0 for all >0 and all
f=®. Hence it follows from Theorem 3.3 that there does not a consistent estimator with
the order greater than order {n'/%}.
2) a=2. From Lemma 5.3 we obtain for sufficiently large n and every >0,
a0 —tc, b, O)<2[{1+0((tc, Y)?|log e, ) F— 171~

If order {c,} is greater than order {(nlog n)!/?}, then hm d(f —tc,™, )=0 for all >0 and
all #=®. Hence it follows from Theorem 3.3 that there does not exist a consistent esti-
mator with the order greater than order {(nlog n)'/*}.

3) «a>2. From Lemma 5.3 we have for sufficiently large » and every >0,
df0—rtc,”t, 6)<2[{1—0W(te, ) — 112
If order {c,} is greater than {n””} then Iml d,(0 —tc,”?, §)=0 for all 1>>0 and all 6@.

Hence it follows from Theorem 3.3 that there does not exist a consistent estimator with
the order greater than order {n*?}. Thus we complele the proof.

REMARK. Since A(f)=(a+0, b+0), it follows from Assumptions (A) and (B) that for
every >0 and sufficiently large »

Pucao—re,y={1-1"  f—ojax’

o) [n log {1 — &:‘tc”_lf(x)dxu

— 24 —
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=exp [n {—%fﬂcﬂ‘ﬁ-i-o(cn'”’)}};
{Pp-te, 1 (AO)}
=exp [n {-——g—t"cn"’-i-O(Cn'm)H,
where M is some positive constant. From Lemma 4.3 we obtain the following results.
If 0<a<2 and 0(<B, then every §&® and every >0,

M
lim L(g—tn"a, §)=1—e a**,

11mR(0——1‘n @, §)=0,

5= {(emd_ze~a‘a+1)1/2 for 0<a<l,

_f a
Him M6 —tn” o for 1<a<2,

s

M
lim d,(6 —tn™=, 6)<1—e @ (e 2e"e® £ 1)12  for 0<a<l,

N o

I 1
limd, (0 —tn"=, 0)<2(e*—1)'12 for 1<a<2,

where ¢ is some positive constant and K is some constant. If 0<<a@<2 and a=p, then for
every §€® and every >0,
1 M,
Iim L(§ —tn~«, {9)—11mR(6—tn @, f)=1—e"at,

n-s o n-rco

M
) J(e’“d—e“?’a)”z for 0<a<1,
lim M(6—in"«, 6)= for a=1,
" [oo for 1<a<2,

I’u’er,,(a—zn w, H<2(l—e a‘)+(efff"—e E‘“)w for 0<a<1,

n-re

im. d,,(ﬁ—tn‘l, 6)<2(1—e™7) _ for a=1,

B

hmd(ﬁ—-tn @, 0)<2(e"—1)H2 for 1<a<2.

-0

If @=2, then for every §&® and every >0,
1 1
lim L(§ —t(nlogn) %, §)=lim R(A—1t(nlogn) 2, 6)=0,

noro

1
lim M(@—t(nlogn) 2, §)=cc

n-veo

but
I 1 1
Iimd,(0—t(nlogn)™Z, 6)<2(e—1)7,

B

where ¢ is some positive constant. If @>2, then for every §=® and every >0,

1 1
lim L(—tn" %, §)=lim R(6—tn"%, §)=0,

= 7o

1
lim M(0~tn"%, )=

but

o 1
md(0—tn7

@

where ¢’ is some positive constant.

, 0)<2(e —1)
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