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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION IN 

NON-REGULAR CASES, I: ORDER OF CONVERGENCE 

OF CONSISTENT ESTIMATORS* 

1. Introduction 

By Masafumi AKAHIRA 

University of Electro-Communications 

Suppose that Xl, X 2 , "', X .. , ... is a sequence of independent identically distributed 
(i.i.d.) random variables. We assume that a parameter space ® is an open set in a Euclidean 
p-space with a norm 11·11. In the textbook discussion of an asymptotic theory, it is 
usually shown that the asymptotically best (in some sense or other) estimator {T .. *} has 
the asymptotic distribution of order .../n, in the sense that the distribution of .../n(T .. * - (J) 
converges to some probability law (in most cases normal). There were the sporadic ex­
amples that the distribution of n(T .. * - (J) or .../ n log n(T .. * - (J) converges to some law 
(Woodroofe [7J) when X/s are i.i.d. random variables with an uniform distribution or 
a truncated distribution. The purpose of this paper is to give a systematic treatment 
for the problem whether for a given sequence {Cn}, cn(T .. * - (J) converges to some law, and 
what is the possible bound for such a sequence. In a location parameter case it will be 
shown that such a bound is explicitely given, and the above mentioned are too special 
cases of our result. The asymptotic distribution of cn(T .. * - (J) and the bound for it will be 
discussed in the subsequent paper (Akahira [1J), Also some results in terms of the 
asympotic distributions of estimators are given in Takeuchi [6]. 

Suppose that {Tn} is a (sequence of) consistent estimator(s). {T .. } is defined to be 
consistent with order {c .. }, where {e .. } is an increasing sequence of positive numbers (en 

tending to infinity) if for every E>O and every iJ of ®, there exist a sufficiently small 
positive number (] and a sufficiently large positive number L satisfying the following: 

lim sup po(n)({cnIITn-(JII~L})<E 
n-tco 0:110-.911<0 

A necessary condition for the existence of such an estimator is established, and the bounds 
of the order of consistency of estimators are obtained. As a special example, a location 
parameter case is discussed when the density function of x-f) satisfies the following: 
Assumption (A). f(x) >0 for a<x<b, 

. f(x) =0 for x::::;'a, x~b, 
Assumption (B). I(x) is twice continuously differentiable in the interval (a, b) and 

lim (x-a)l-a f(x) = A' , 
x-ta+O 

lim (b-X)l- fJ f(x)=B', 
x-tb-O 

where both a and {3 are positive constants satisfying a::::;'{3<oo, and A' and B' are positive 

finite numbers. 

* Received October 29, 1974. 
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION 9 

Assumption (C). A"= lim (x-:-a)2-alf'(x)1 and B"= lim (b-x)2-sl/'(x)1 are finite. For 
2 I f/( ). b d d x .... a+O x->b-O a:=: , x IS oun e . 
It is shown that the bound of {cn} is given by cn=n1/a ifO<a<2, cn=(nlogn)1/2 if a=2, 

cn=nl/2 if a>2, and the existence of estimators with such order of consistency is established. 

2. Notations and Definitions 

Let 32 be an abstract sample space whose generic point is denoted by x, ~ a O"-field of 
subsets of 32, and let @ be a parameter space, which is assumed to be an open set in a 
Euclidean p-space RP with a norm denoted 11·11. We consider a sequence of classes of 
probability measure {POi: 0 E@} (i= 1, 2, ... ) each defined over (I, ~). We shall denote 
by (I(n), ~(n» the n-fold direct products of (I, Q3) and the corresponding product measures 
by po(n)=P01X",XPOn' For each n= 1,2, "', the points of I(n) will be denoted by Xn=(Xl, 
"', xn) and the corresponding random variable by %n with the probability distribution po(n). 
An estimator of 0 is defined to be a sequence {Tn: n= 1, 2, ... } of ~(n)-measurable function 
Tn on I(n) into @ (n = 1, 2, ., .). 

Definition 2.1. An estimator {Tn: n= 1, 2, .. J is called (weakly) consistent if for every 
e >0 and every [} of @ 

lim po(n)({IITn -011 >e})=O. 

Definition 2.2. For an increasing sequence of positive numbers {Cn} (cn tending to in­
finity) an estimator {Tn : n = 1, 2, ... } is called consistent with order {cn } (or {cn}-consistent 
for short) if for every 8>0 and every 1J of @, there exist a sufficiently small positive 
number (J and a sufficiently large positive number L satisfying the following: 

lim sup po(n)({cnIITn-811:=:L})<8. (2.1) 
n->'" 0:110-..911<0 

It is easily seen that if {Tn} is a {cn}-consistent estimator, then {Tn} is a consistent 
estimator. Order {Cn} is called to be greater than order {Cn'} if lim cn'/cn=O. For any two 

j)Oin.t~ <J %wd <J' i'i'l @, HYcl'C 'Cxi~t~ 'a &--ril'At'C l'i'l'C'aS'Ul'C Pn sw~h th'dt""Po(WJ 'dnn Pi''I.'' 'dre abso­
lutely continuous with respect to jJm. Further for any points 0 and 0' in @ we define 

, _ \ I dPo(n) _ dP{},(n) I 
d,lO, 0 ) - );£(n) d/-ln d/-ln d/-ln 

=2 sup IPo(n)(B)-p{},(n)(B)I. (2.2) 
BE)B(n) 

It is easily seen that for each n, dn is a metric on @ independent of /-In. 

3. Necessary Conditions for Existences of Consistent Estimators 

In this section we shall obtain the necessary conditions for the existences of a consistent 
estimator and a {cn}-consistent estimator. 

The following is already known. (e.g. Hoeffding and Wolfowitz [4J). 

THEOREM 3.1. If there exists a consistent estimator, then for any two disjoint points 
01 and O2 in @, 

The proof is omitted. 
The following theorem shows that the necessary condition for the existence of a consistent 

estimator is that the limit of the Kullback information is infinite. 
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10 M. AKAHlRA 

THEOREM 3.2. Suppose that for each n, {Xn: dPo(n)/dj.1n>O} does not depend on (). 
If there exists a consistent estimator, then the following holds: for any two disjoint points 
{)l and {)z 

where In({)l, ()2) = ~{£{n)(dPO/tI)/dj.1t1) log (dP01 {tI)/dP02 {tI»dj.1t1. ; 

PROOF. We denote a consistent estimator by {T,I : n= 1, 2, .. }. Let 0<8< ;. Putting 
YtI = dP02(tI)/dP01 {tI) , we have from Theorem 3.1 for sufficiently large n, 

E(h (n)(! YtI -1 /)= ~iE(n)! YtI -l/dPo1 (tI) 

= d(P01 (II), Po'). (tI» 

'2:2- 28. (3.1) 
Putting YtI+=max{Y,,-l, O} and y,,-=max{l- Y", O}, we have for each n=l, 2, 

E (II)( Y: +) _ E (tI)( Y: -) = \ { dPOl (,,) _ dP02 (tI) } dj.1 
01 n 01 " jiE{tI) dj.1" dj.1n n 

=0 
and for sufficiently large n, 

E01 (,,)( Yn +)+ E01 (1I)(Yn -) =E01 {n)(1 Y" -11)'2:2 -28. 
Hence we obtain for sufficiently large n, 

E01 (,,)( Yn +)=E01 (n)(Y" -)'2:1- 8. 
Since 0::; Y,,-::;l and (3.2) hold, for sufficiently large n, 

I-8::;Eo1 (n)(y,,-)=1 Y,,-dP01{")(X) + \ ~1-dPOl(")(Xtl) 
j {Y,,-;;::l-Zo} j [YIl - <l-za} 

::;P01 (")({Y,,-'2:I- 28})+(1-28)P01{1l)({YIl -::; 1-28}) 
=20P(h ("i({Yn -'2:I-20})+ 1-20. 

Hence we have for sufficiently large n, 

pOl{n)({Y,,'2:I-28})'2:; . 

It follows from (3.3) that for sufficiently large n, 
1 .. (0 1 , ()2) =E01 ( .. )( -log Y,) 

Therefore we have 

=£0/")[ -log (1 + Y .. +)] -E01 (")[log (1- Yn-)] 

1 
>-£01{")(Y"+)-2log 20 

1 '2: -I-2 1og 28. 

limI .. ({)l, {)z)=oo. 
11"'''' 

Thus we complete the proof. 

(3.2) 

(3.3) 

THEOREM 3.3 If there exists a {c,,}-consistent estimator, then for every E>O and every 
() E@ there is a positive number t such that 

lim d,,({) , ()±fctl -
11)'2:2- E 

where 1=(1, "', 1)'. 

PROOF. Suppose that {T,,: n= 1, 2, .. } be a {cn}-consistent estimator. It follows 
from the definition of a {c,,}-consistent estimator that for every E>O and every () of @, 
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there exist positive numbers (J and L such that 

lim sup ps(nl({cnll Tn -zjW=::L})<e:/4. 
n"'O> ,9:IIS-OII<o 

Let t>2L be fixed. Since there exists no such that for any n>no, 
Cn>cno>t/(J, 

sup ps(nl({cnIlTn-~II2:L})<e:/4, 
,9:!lS-OII<tcno -1 

it follows that 

lim PO+tcn-1l(nl(cnIITn -{} -tcn -11112:L})<e:/4, 
n"'''' 

lim po(nl({cnIIT .. -{} 112:L})<e:/4. 
n .... '" 

From (3.4) we have 

lim Po +tcn-11(n)({Cn I I Tn - {} -tcn_l lll2:t- L})<e:/4. 
n->o> 

Since the following holds: 
dn({} , {} +tcn -11) =2 sup IPo+tcn-1(n)1(B) - po(n)(B)1 

BE)B(n) 

(3.4) 

(3.5) 

(3.6) 

2:2IPO+tcn-l(n)1({CnIITn -(}II2:L})- po(n)({cnIITn -{} I I 2:L}) I (3.7) 

11 

for all n, it is sufficient to show that the inferior limit of the last term of (3.7) is not 
smaller than 2 - e:. Because we have 

for all n, 
{Xn : cnIITn(x)-{} -tcn -1111 <t-L}c{xn : cnIITn(xn)-{}II2:L} 

lim PO+tcn-1l(n)({cnIITn -{} -tcn -1111 <t-L}) 

:::;lim PO+tcn-1l(nl({cnll Tn - {} II2:L}). 
n .... o> 

It follows from (3.6) and (3.8) that 

1- : :::;lim PO+tcn-11(n)({cnIITn-tJll2:L}). 
tJ-;'O) 

From (3.5) and (3.9) we obtain 
2-e:::::;lim 2IPo+tcn-l1(n)({Cnll Tn -{} II2:L})- Po(fl)({cnIITn - {} II2:L})I· 

Therefore we have 
lim dn(tJ, tJ + tcn-11)2:2-e:. 
,,-tco 

Similarly we also obtain 

Thus we complete the proof. 

(3.8) 

(3.9) 

4. Order of Convergence of {Cn}-Consistent Estimators for Location Parameter Cases 

Before discussing order of convergence of {cn}-consistent estimators in detail, we shall 
give a definition and lemmas. 

Definition 4.1. (Generalized from Gnedenko and Kolmogorov [3J). For each tJ E@, 
the sums 

Yn(tJ) =X1(tJ) + XltJ) + ... + Xn(tJ) 
of positive independent random variables X1(tJ), XltJ) , "', X ... (tJ) , ... are said to be uni­
formly relatively stable for constants Bn({}) if there exist positive constants BnCtJ) such that 

for any e:>0, Po (11) ({I ;:~g? -11>e:})~0 as n~oo uniformly in any compact subset of@. 
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12 M. AKAHIRA 

In the subsequent lemmas, we use the notation that for each k and each B E@, F{}k(X) 

is the distribution function of Xk(B). 

LEMMA 4.1. (Gnedenko and Kolmogorov [3J). For each BE@, let X1(B), X 2(B), 
X,,(B), ... be a sequence of positive independent random variables. The sums 

Y,,(B) =X1(B) + X 2(B) + ... + X,,(B) 
are uniformly relatively stable for constants B,.(B) , if there exists a sequence of positive 
constants B 1(B), B2(B), "', Bt.(B) , ... such that for any E>O, 

" 
\' \ en dF{}k(X)-+O 
L J£B,,({}) 

(4.1) 
k~l 

as n-+oo uniformly in any compact subset of @, ., 
1 \' \ £B,,({}) 

B,,(B) LJo X dF{}ix)-+ 1 (4.2) 
k=l 

as n-+oo uniformly in any compact subset of @. 

The following lemma is a generalization of Lindeberg's condition (see Gnedenko and 
Kolmogorov [3J). 

LEMMA 4.2. For each B E@, let X 1(B), X 2(B), "', X,,(B), ... be a sequence of independent 
random variables. 

The distribution laws of the sums 

converges to the normal law 

Y,,(B) X 1(B) + Xz(B) + ... + X,,(8) 
B,,(B) 

(J)(x) = 1 \"- e-y2 {2dy 
,,/2n L", 

uniformly in any compact subset of @, if there exists a sequence of constants B,,(f) such 
that lim B,,(B) = 00 uniformly in any compact subset of @ and for any E>O, 

.. 
\'\ dF{}k(X)-+O L J (1..-I>tB,,((})} 

(4.3) 
k=l 

as n-+oo uniformly in any compact subset of @, and 

(4.4) 

as n-+oo uniformly in any compact subsets of @. 

Now we assume that X/s are identically distributed i.e. P{}i=P{} (i= 1, 2, ... ). 
We suppose that every p{}(. )(B E@) is absolutely continuous with respect to ad-finite 

measure fl.. We denote the density dP{}/djJ. by f(.; 8) and by A(B)cI the set of points in 
the space of I for which f(x: B»O. Then we may write f(x: B)=XA({})(x)f(x : B), where 
XA({})(') denotes the indicator of A(B). 

LEMMA 4.3. If 
n 

1 r IT f(x; : B 2)djJ.(n) < co, 

i=l 

then for any two points Bl and 8 2 in @ and each n= 1, 2, 
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION 

PROOF. Since for any two points fJ 1 and fJ 2 in @ and each n= 1, 2, 

dPo .(n) TIn TIn TIn 
dpJn) = f(x;: fJj)= XACOj)f(x;: fJj) = X;€lA(Oj)(Xn) f(x;: fJj) 

;=1 ;=1 ;=1 

(j= 1, 2) 

from (2.1) we have 
d(P

Ol 
(n), P02 (n» 

~ II'" IX,!,A(o,,(x.) n f(x, : 8,) - ~g/(O,,(x,,) n f(x, : 8,)1 dt<'" 
;=1 j=l 

n n 

= \ n n TIf(x; : fJ 1)dj.J.(n) + \ n n TIf(x; : fJz)dj.J.(n) J x ACOl)- X A(02) j X A(02)- x A(Ol) 
;=1 ;=1 ;=1 ;=1 j=l ;=1 

n n 

+ \ n n I TIf(x; : 81) - TIf(xi : fJz)ldj.J.(n) 
j x ACOl) n x A(02) 
;=1 ;=1 ;=1 ;=1 

n n 

= 1- \ n Df(x; : fJ 1)dj.J.(n) + 1- \ n Df(x, : fJ 2)dj.J.(n) 
J x (A(Ol) nA(02» J x (A(Ol) nA(02» . 
;=1 ;=1 ;=1 ;=1 

n n 

+ \ n n I TIf(x; : fJ 1) - TIf(x; : fJz)ldj.J.(n) 
j x A(Ol) n x A(02) 
;=1 ;=1 ;=1 ;=1 

= [l-{Pol(A(fJz»}n] + [1-{Po2(A(fJ1»}"] 

+\ n " IIT"f(Xi:fJ1)-IT" feX;:fJ2)!dj.J.("l. 
j x AWl) n x A(2) 
;=1 ;=1 ;=1 ;=1 

Further it follows form the assumption and the Schwarz's inequality that 

" 
11 TI f(x; : fJ 2)dj.J.(n) 

;=1 

= [{\ f2(X : fJ 1)/f(x : fJ 2)dj.J.}
2 

-2{P01(A(fJz»}" + {Po2(A(fJ 1»}"] 1/2 
JAWl) nA(02) 

Thus we complete the proof. 
In order to use afterwards (4.5), we write 

L(fJ1, fJ 2)= 1-{Po1(A(fJ2»}" 
R(fJ1, O2)= 1-{Po2(A(fJ 1»}n 

M(fJ 1, 82)= [{\ f2(X : fJ1)/f(x : fJ2)dj.J.} " -2{P01(A(fJ2»}n + (Poi A(fJ 1»}n] 1/2 
JAWl) nA(02) 

-13-
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14 M. AKAHIRA 

and we shall note that 

M(fh, 02)~ \ n II!nn f(x; : 01)- nn f(x; : 02)]dp,("l. 
J x A(Ol) n x A(02) 
.=1 £=1 ;=1 iml 

Let X=Rl. Now we suppose that every Po(·)(OE®) is absolutely continuous with re­
spect to a Lebesgue measure m. Then we denote the density dP/dm by f(·: 0) and suppose 
f(x : 0) = f(x - 0). For the lemmas and theorems in sections 4 and 5 we make the following 
assumptions. 

Assumption (A). f(x»O for a<x<b, 
f(x)=O for x::::;a, x~b. 

Assumption (B). f(x) is twice continuously differentiable in the interval (a, b) and 
lim (x-a)l-af(x)=A' 

x .... a+O 

lim (b-X)l-Sf(x)=B' 
'x-4b-O 

where both a and {3 are positive constants satisfying a::::;{3<oo, and A' and B' are positive 
finite numbers. 

Assumption (C). A" = lim (x-a)2-a/ f'(x)/ and B" = lim (b- X)2-S/ f'(x)/ are finite. For 
a~2, fl/(x) is bounded. X"" a + 0 x->b-O 

For example we see that the beta distributions Be (a, m (0<a::::;{3::::;2 or 3<a::::;{3<oo) 
satisfy Assumptions (A), (B) and (C). 

LEMMA 4.4. Suppose that a density function f satisfies Assumptions (A), (B) and (C). 
If a=2, then the following hold: for any 8>0, 

n\ f(x-0)dx-70 (4.6) 
J{x: cCl(n log n)<_w2, 802) Jog f(x-Ol) 

as n-700 uniformly in 0 of ®, 

1 \ {-(fP/fJO Z) log f(x-O)} f(x-0)dx-71 (4.7) 
C1n log n J{x:O<-<a 2 t817 2 ) logf(x-l7l<eclnJognj 

1 ( A//2 B"2 ) A' '2 
as n-7OO uniformly in 0 of ®, where cl=2 ---.;p-+-W if {3=2, C1= 2A' if {3>2; 

PROOF. It follows from Assumptions (A), (B) and (C) that there exist no and 7}" such 
that for all n~no, 

(4.8) 
implies 

A' - ~ «x-a)-lf(x)<A' + ~, A" - ~ < I fl(X)/ <A" + ~ , 

B' -l«b-x)l- f3f(x)<B' +l B" -l«b-x)2- f3 lf'(x)I<BI/ +l. (4.9) 
n n' n n 

Let A-n=A' _l, An=A' +l, B_n=B' _l, Bn=B' +l, A-nil =A"- nl, A,/' =A" + n1 , 
n n n n 

B-n" =B" _l and Bn" =B" +l. 
n n 

Putting 

Iln=\{ f/Cx) {FCx)}2} f(x)dx, J x: ecln log n< - fCx) + fCx) n Ca, a+7J"o) 

12n = \{ f/Cx) {FCX) }2} f(x)dx, J x: CCln Jog n< - fCx) + fCx) n [a+7Jn ,b-7Jn o] 

-14-
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ASYMPTOTIC THEORY FOR ESTIMATION OF LOCATION 15 

13n = \ f'() {J'(X) }2} f(x)dx J {x: Uln log n< - f(x~ + f(x) n (b-7Jno, b) 

we have 

n l 
? f(x-{})dx 

J{x:u1nlogn<- :;2 IOgf(x-tl)} 

=nl{ f'ex) {f1(X)}2}f(x)dx J x:eqnlogn<--_+ --f(x) lCx) 
= n(Iln + 12n + 13n). (4.10) 

Since fl(X) and fl/(x) are bounded, 
lim n12n=0. (4.11) 

Since f"(x) is bounded, from (4.8) and (4.9) we have for sufficiently large n, 

nl1n=n\{ f'ex) r J'(x) }21 f(x)dx J x: eCIn log n < - f(x) + t f(x) ] n (a, a+ 7Jn o) 

<n~{ {All }2}f(x)dx+O(n- I(logn)-2) 
x: t'In log n < A_n(x"-a) 

A" ra+-n (t'In log n)-t 
=n Ja A-n An(x-a)dx+O(n-I(log n)-2) 

n A " =2: An A:
n 

(ccInlogn)-I+O(n-I(logn)-2). 

Hence we obtain 

-.- n A/I 
::;~~ 2: An A-n (CCln log n)-l 

= 21 A" /(ccI)-llim (log n)-I 
n-t al 

=0. (4.12) 

Repeating a similar argument, we have 
lim n13n=0. (4.13) 
n-tw 

It follows from (4.10), (4.11) and (4.12) that (4.6) holds. 

Putting 

I 1=\ . [_ f"(x) + { fl(X) }2]f(x)dx 
In J{x:O<--j~~~)+{~g]r<eClnIOgn}n(a,a+77no) f(x) f(x) , 

I 1=\ [_ f"(x) + {fl(x) }2]f(x)dx 
2n J{x: 0<- -j(~) +{ ~g] r <eCIn logn} n [a+7Jno, b-7)no] f(x) f(x) , 

I 1=\ . [_ f"(x) + { fl(x) }2]f(x)dX 
3n J {x: 0<-:- -j~~)) +{ ~2:] r <e'In logn} n (b-7Jno, b) f(x) f(x) . 

we have 

n \ 2 {-~ log f(x-{})} f(x-{})dx 
clnlogn J{x:O<- :{}2 logf(x-{})<ec1nlogn} f){} 

= 1 \ [_ f"(x) + {f'(X) }2]f(x)dx 
crIogn J{x:O<_f'(X) +{J'(X) }2<e'Inlogn} f(x) f(x) f(x) f(x) 

11 (lIn' + 12/ + 13/). 
Cl og n 

(4.14) 

-15-
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16 M. AKAHIRA 

Since f'ex) and f"(x) are bounded, 

lim / 12,,' =0. (4.15) 
ClOg n 

Since f"(x) is bounded, from (4.8) and (4.9) we have for sufficiently large n, 

1 I I 

C1 log n In 

_ 1 \ [ ff/(x) { f'ex) }2] 
- cdogn J{x:o<-j~S~) +{ ;2:; V<ec1nlogn}nCa, a+7J"o) - f(x) + f(x) f(x)dx 

< 1 \ [_ f"(x) + {f'(X) }2]f( )dx 
- cllogn J{x: AA-n;2 ._(_1_

2 
<tC1nlogn} (a, a+7Jll O) f(x) f(x) X 

" x-a) n 
1 ~1J" A" 2 1 

::; AO 1/ --"- • -dx+O(n-1) 
cllog n ---=.!L(tCjn logn)-1/2 A_" X 

An 

1 { A "2 ( A" l' 1 1 )} 
Cl log n A"_" log r;no -log A: + T 10g EC1 + T log n + T log log n 

+O(n-1). 

Hence we obtain 
-. - 1 ,A"2 
hm I lIn <~2 A" "-+,,, ClOg n - C1 

(4.16) 

Further we have 

1· 1 I I 
lID 1 1" -;;::;-;;; ClOg n 

2: lim 1 \ A /12 [_ f"(x) + {fl(X) }2jf(x)dx 
-;;::;-;;; C1 log n J {x: A-,,2(x-a)2 <tC}n log n} n (a, a+7Jno) f(x) f(x) 

1 ~7J"O A"2 1 2:lim A 1/ ---"- • -dx 
-;;::;-;;; c1logn -"-(cCJnlog/l)1/2 A" X 

A_" 

1 {A 112 ( A "1 1 =lim C I -A-" log 7J no -log-An +-2 log ECI +-2 log n 
,,->'" 1 og n" -" 

+ ~ log log n) } 
>~ 
- 2c l A" 

(4.17) 

It follows from (4.16) and (4.17) that 

llID
' 1 A"2 ---,---1 I-

n"'''' Cl log n In - 2cl A' . 
(4.18) 

Repeating a similar argument, we have 
B"2 

r 1 I' _{~ for /3=2, 
n~ Cl log n 3n - C1 

o for /3>2. 

(4.19) 

1 ( A"2 B"2 ) Hence it follows from (4.15), (4.18) and cl=T -y+-y 

that (4.7) holds. 
Thus the proof is completed. 

LEMMA 4.5. Suppose that a density function f satisfies Assumptions (A), (B) and (C). 
If a=2, then the following hold: for any E>O, 

n \ f(x - {})dx-t-O 
J{x:\ :olOgfCx-O) \>tC2cnIOgn)112} 

-16-
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as n-+oo uniformly in f} of @, and· 

I [~ { 8 } 2 2 -log f(x - (j) f(x - (j)dx 
c2 log n {x:! :0 logfCx-O)!<tC2Cnlogn)1/2} 8f} 

{~ ( 8 ) } 2J - -log f(x - f}) f(x - f})dx -+ I 
{x:1 :0 JogfCx-O) I <tc2Cn logn)1/2} 8f} 

as n-+oo {
I ( Af/2 B//2 )} t Af/ 

uniformly in (j of @ where C2= T -;[,"+13' if {3=2, C2= ..; 2A' if {3>2. 

The proof is omitted because it is given by the same way as that of lemma 4.4. 
The following lemma is already given in Takeuchi [5]. 

LEMMA 4.6. Suppose that a density function f satisfies Assumptions (A), (B) and (C). 
If a>2, then 

\ b {f'(X)}2 
Ja f(x) dx<oo. 

PROOF. Since f(a)=O and lim f(x)=O, by the second mean value theorem in a neigh-
X"" a + 0 

borhood of a, we have 

{f'(x)Y 2f'(~)ff/(~) =2f"(8 
f(x) f'(~) 

for a<~<x. Since f"(x) is continuous and bounded, {f(x)Ylf(x) is bounded in the 
neighborhood of a, and also that of b, and so is the integral. Thus the proof is completed. 

In the following theorem we shall show that there exist consistent estimators with 
different orders according to a of density functions in a family satisfying Assumptions (A» 
(B) and (C). 

THEOREM 4.1. Let Xl, X 2 , "', X n , ••• be a sequence of independent identically dis­
tributed random variables with a density function satisfying Assumptions (A), (B) and (C). 
For each a there exists a consistent estimator with the order given by Table I respectively> 
where M.L.E. is. the ma.y..1mun likelihood e'OtUr.l.at.oY of fJ, the exi'i::;ten.ce of WIDen is guaTanteed. 

since f is continuous and bounded. 

Table 1. 

order Cn {Cn} -consistent estimator 

O<a<2 nl/a {min Xi+ maxXi-(a+b)} /2 
l:::;,:::;n l:::;i:::;n 

a=2 (n log n)1/2 M.L.E. 

a>2 n1/2 M.L.E. 

PROOF. I) O<a<2. Let T,,(Xn)={minXi + maxXi -(a+b)}/2. It follows from As-
lS;iS;n lS;iS;n 

sumptions (A) and (B) that there are positive constants C and r such that 
C~(x-a)l-af(x) for all xE(a, a+r) 
C~(b-X)l-[3f(x) for all xE(b-r, b). 

Then we shall show that {Tn: n= I, 2, .. -} is a {n1/a}-consistent estimator. 
It is sufficient to know that for every e>O, we can choose L satisfying 

L>max{1 (~ log ; f/a: o}. 
-17-
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18 M. AKAHIRA 

Indeed, since the following holds: for each n= 1, 2, "', 
{Xn: Tn(xn)-fJ>Ln-1

/a and maxx;::;b+fJ} 
ISiSn 

c{xn :a+fJ+2Ln- 1
/
a <x;::;b+fJ(i=1, 2, "', n)}, 

we have for each n= 1, 2, "', 
po(n)({Tn- fJ>Ln- 1 /a}) 

=po(n)({Tn-fJ>Ln-1
/a and maxxi.:::;b+fJ}) 

IS;Sn 

.:::;po(n)({a+fJ+2Ln-1 / a <xi::;b+fJ (i=1, 2, ... )}) 

= {,b+O l(x-fJ)dx}n 
Ja+O+2Ln- 1/ a 

={\b I(x)dx}n 
Ja+2Ln- l / a 

= {1- ~:+2Ln-lla I(x)dx} n. 

Similarly we also obtain for each n= 1, 2, "', 
p{/n)({Tn-fJ< -Ln- 1 /a}) 

= {~:-2Ln-l/a I(x)dx} n 

= {1- \b I(x)dx}n. 
Jb-2Ln- 1/ a 

It follows from (4.20) and (4.21) for that each n= 1, 2, ''', 
po(n)({ITn- fJl > Ln-1 /a}) 

.:::; {1- \ a+2Ln-
1

/
a 
I(x)dx} n + {l- \ b f(x)dx} n. 

Ja Jb-2Ln- l / a 

Hence we have uniformly in fJ of @, 

lim po(n)( {I Tn - fJ I> Ln-11a}) 

::;lim {1- \ a+2Ln -lla I(x)dx} n + lim {1- \ b I(x)dx} n 
n"'''' Ja n"'ro Jb-2Ln- 1/ a 

.:::;2exp { 
C(2

a
L)a} 

<e. 
Therefore it is seen that {Tn} is {n1/a}-consistent. 

(4.20) 

(4.21) 

2) a=2. Since the M.L.E. is a consistent estimator (Wald [6J) and it is a root of 
n 

Z :fJ 10g/(xi-fJ)=0, (4.22) 
i=l 

there exist at least a consistent solution of (4.22). We denote it by Tn *. 

Let An=(nlogn)1/2 and put Ln(fJ, xn)=n/(Xi-fJ) for (}+a<xi<fJ+b (i=1, 2, "', n). 
i=l 

Using the mean value theorem, we have 

- c2 ~n2 [ :;2 log LnJ o=on*cA,,(Tn * - fJ) = C~n [:fJ log LnJ 0=0, (4.23) 

{
I ( A"2 B"2 )} 1/2 AI! 

where IfJ-fJn*I.:::;lfJ-Tn*/ and c= T ~+B' • if (3=2, c= vl2A' if /3>2. 

_(fJ2jfjfJ2) log Ln is the sums of positive i.i.d. random variables _(82/fjfJ2) log I(X1 - fJ), 
_(fj2jfjfJ2) log I(X2- fJ), ''', _(fj2jfjfJ2) log I(X" -fJ). If c2 A,,2 is taken as Bn(fJ) in lemma 4.1, 
then it follows from lemma 4.4. that the conditions (4.1) and (4.2) hold. From lemma 
4.1 we conclude that - (82 jfjfJ2) log Ln is uniformly relatively stable for constant c2 An2. Since 

-18-
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T,,* is uniformly consistent in any compact subset of @ (Wald [6J), fJ ll* converges in pro­
bability to fJ uniformly in any compact subset of @. Furthermore since (fj2jf)fJ2) log L,lfJ, Xn) 

is uniformly continuous is any compact subset of @, it is seen that (-1/c2 A,,2)[(02/afJ2) log 
L"Jo=oll* converges in probability to 1 uniformly in any compact subset of @. 

(O/afJ) log L" is the sums of i.i.d. random variables /0(X1-fJ)//(X1-fJ), /0(X2-fJ)//(X2 -fJ), 

.'., /o(Xn-fJ)//(X,,-fJ), where/o(X-fJ)=(O/afJ)f(X-fJ). If cA" is taken as BnCfJ) in lemma 
4.2, then it follows from lemma 4.5 that conditions (4.3) and (4.4) are satisfied. From 
lemma 4.2 we see that the distribution laws of (l/cA,,){(8/8fJ) log L,,} converges to the 

normal law (/J(x) = (l/.../2n )~:me-J2/2dy uniformly in anycompact subset of @. 

Since from (4.23) 

cA"(T,, * _ fJ) (l/cA,,)[(Ojf)fJ) log L"Jo=o 
( -1/c2 A,,2)[(02/8fJ2) log L,Jo=o,,* ' 

it follows that the distribution laws of cA,,(T,,* - fJ) co verges to the normal (/J(x) uniformly 
in any compact subset of @. 

In order to prove that {Tn *: n= 1, 2, ... } is a {A,,}-consistent estimators, it is sufficient 

to show that for any e>O we can choose L satisfying rCL 

(l/"'/2n)e- x2 /2dx>1-e and that 
tCL 

(2.1) holds. 

Since 
po(n)({A"ITn * - fJl2:L) 

=po(n)({cAnIT" * - fJl2:cL}) 

= 1-Po("}({cA"IT,,* -fJl <cL}) 
it follows that for every iJE@ there exists 0>0 such that 

lim sus Po(n}({A"IT,,*-fJl2:L}) 
" .... m 0:10-,91<0 

~
CL 

= 1- (l/.../2n)e- x2 /2dx 
-CL 

<eO 
Hence it is shown that {T" *} is {en log n)1/2}-consistent. 

3) a>2. It follows from Assumption (C) that Eo(Zo) =0 and Eo(Zoo)+Eo(Z02)=0, where 
Zo=(O/afJ)log/(x-fJ) and Zoo = (82/afJ2) log f(x-fJ). Further it is seen from lemma 4.6 
that Eo(Zl)< 00. Hence the distribution law of .../ nl (T" * - fJ) converges to the normal law 
(/J(x) uniformly in any compact subset of @, where I=Eo(Zi) (Cramer [2J). Therefore it 
is shown in the same way as the case a = 2 that {Tn *: n = 1, 2, .. -} is a {n1/2}-consistent 
estimator. Thus we complete the proof. 

5. Bounds for the Order of Convergence of Consistent Estimators 

In this section we shall show that for each a, there does not exist a consistent esti­
mator with the order greater than values as given in Table 1 of Theorem 4.1, that is, the 
order given by Table 1 is bound of the order of convergence of consistent estimators. 
Before proceeding to the next theorem, we shall prove the following lemmas. 

LEMMA 5.1. Let f be a density function satisfying Assumption (A). Suppose that for 
O<L1<b-a, there exists a measurable function g(.) on I such that g(x»O if a-il<:;.c<b, 

g(x)=O otherwise and ~i£g(x)dx= 1. Then 

d,,(fJ-il, fJ)::;;[{(b (/(x+il)_g(X»2 dx+1}" _lJ1/2 (5.1) 
Ja-.d g(x) 

-19-
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20 M. AKAHIRA 

[{~ b (f(x)-g(x))2 }" J1
/
2 

+ 0-( ) dx + 1 - 1 . a-A <> X 
PROOF. First we have 

d,,(fJ-£1, fJ) 

~ liE ",I n f(x;-O + LI) - n fIx ;-0)1 n .ix, 
;=1 ;~l ;=1 

:0; II",1n f(x;-O + LI) - n g(x, - 0)1 n .ix, + liE",1 n f(x;-O) - n g(x;-o)ln.ix' 
1=1 ;=1 ;=1 ;"'1 ;=1 1=1 

= (b ... (b In" f(X;~L1) -lin" g(X;)n" dx;+ (b •.• rb In" f(~~) _lin" g(X;)n" dx, 
Ja-A Ja-A g(x,) Ja-A Ja-A g(X,) 

;=1 1=1 i=l ;=1 ;=1 ,=1 

" "" 
~[):-A"'~:-A {n f~(::) Irn g(x;)n dx;T/2 

;=1 ,=1 ;=1 

" "" 
[b \b {TI f(Xi) }2n n J1/2 

+ a-A'" Ja-A· g(x;) -1 g(xJ dXi . 
;=1 .",1 ;=1 

(5.2) 

Furthermore we have 

" " " (b (b {n f(x,+£1) 
Ja- A Ja- A g(X,) 

I} 2 TI g(Xi) TI dXj 
;=1 

n n n n f1 

= rb 
•• .r b n { f(x;~ £1) } 2Dg(xi) n dx; _ 2\ b ... (b n!(xi + L1) Ddxi Ja- A Ja-A 11 g(x,) 11 Ja-A Ja-ti 

;=1 ;=1 1=1 ;=1 j=1 

" " 
+\b ... (b ng(x;)n dx; 

Ja-A Ja- A 
1=1 1=1 

= n:-ti { !~(::) r g(x)dx r -1 

=[(b {(!(x+£1)-g(x))+g(X)}2 dxJ"-I 
Ja-A g(x) 

=[(b {!(x+ L1t)g(X)}2 dx+2(b {!(x+L1)-g(x)}dX+\b g(x)dx] " -1 
Ja-ti g X Ja- A Ja-.d 

=[\b {!(X+L1)_g(x)}2 dX+1J" -1. (5.3) 
Ja-ti g(x) 

Similarly we have 

(b ... (b {fr f(x;) -1} 2n g(X;)n" dXI = [(b {!(x)- g(X)}2 dx+ IJ" -1. (5.4) 
Ja-.d Ja-.d 11 g(Xi) 11 Ja-.d g(X) 

1=1 1=1 ,=1 

It follows from (5.2), (5.3) and (5.4) that (5.1) holds. Thus we complete the proof. 
If the assumptions of Lemma 5:1 hold, we can define an information I such that 

1= (b {f(X+L1)_g(X)}2 dx. 
)a-.d g(x) 

-20-
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Henceforth for O<L1<b-a, we put g(x)= ~ {f(x+ L1) + f(x)}. Then it is easily seen that 

g( .) satisfies the assumption of Lemma 5.1. Since 

f(x+L1)-g(x) = ~{f(x+L1)- f(x)} 

and 
1 I 

f(x)-g(x)=T{f(x)- f(x + L1)}, 

it follows from (5.1) that 

dn«(j-L1, (})~2[{\b {f(x+L1)_g(X)}2 dx+1}1l_ 1]1/2=2{(I+1)n_ 1Y/2. (5.5) 
Ja-A g(x) , 

Henceforth we suppose that f(x) satisfies Assumptions (A), (B) and (C). Then there exist 
positive numbers Xi, K/ (i= 1, 2, 3) and /S such that 

0<K1~(X_a)1-af(x)~K2 

0<K1' ~(b - X)l-S f(x)~K2' 

(x-a)2-alf'(x)1 ~K3 

for a<x<a+/S, 

for b-/S<x<b, 

for a<x<a+/S, 

for b-/S<x<b, (b-X)2-SI fl(X)/ ~K3' 

0< /S < min {I, b ; a } • 

/S 
Let O<L1<T' 

Now we devide 1 into six parts 10 , 11, 12 , 13, 14 and 15 , that is, 
5 

1= 'ZIi , 
;=0 

where 
10= (a {f(x+L1)_g(X)}2 dx 

Ja-A g(x) , 
_~a+A {f(x+L1)-g(X)}Z 

/ 1 - ( ) dx, 
a g X 

_ ~a+t {f(x+L1)-g(X)}Z 
12 - ( ) dx, 

a+11 g X 

13= (b-£ {f(x+L1)- g(X)}Z dx 
Ja+e g(X) , 

_~b-A {f(x+L1)-g(X)}Z 
14 - ( ) dx, b-£ g X 

15= \b {f(x+L1)- g(X)}2 dx. 
Jb-11 g(X) 

(5.6) 
(5.7) 
(5.8) 
(5.9) 

LEMMA 5.2. For each a>O, the orders of 10, 11, 12 , 13 , 14, 15 and I are given by Table 2. 

Table 2 

10 I 

O<a<2 o (Lla) o (Lla) o (L/a) o (Lla) 

a=2 0(Ll2) O(L/Z) O(Ll2/log LID o (L/2) 
{O(Ll2) if (3~2 

O(Ll211og LID if (3 = 2 
O(LlS) O( LlZllog L/ /) 

a>2 o (Lla) ° (Lla) o (L/2) o (Ll2) 

PROOF. i) 10 and 11. It follows from (5.6) that 

10= ,a {f(x+LI)-g(X)}2 dx= ,e f(x+L1) dx=O(Lla). (5.10) 
Ja-A g(x) L-A 2 

Since 
_~e+A {f(x+L1)_g(X)}2 _ 

h- ( ) dx 
a g X 

,0+.1 {(f(x+L1)- f(x»/2}2 1 (a+ A 
= Ja {(f(x+L1) + f(x»/2}2-{(f(x + L1) + f(x»/2}dx~TJa {f(x+LI) + f(x)}dx, 

-21-
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it follows from (5.6) that 
h=O(Lta). 

ii) 12 • It follows by the mean value theorem that 
1

2
= ,a+ t {f(X+Lt)_g(X)}2 dx 

Ja+A' g(X) . 

= \a+t_{(f(x+Lt)- f(x»/2Ldx<lJa+ t {f(x+Lt)- f(X)}2 dx 
Ja+A' {{f(x+Lt) + f(x»/2}2 - 2 Ja+A' f(x) 

_ 1 ,a+ e 2 {f'(l;(x, Ll»}2 
-T Ja+A'Lt f(x) dx, 

where 
a + Ll<x<l;(x, Lt)<x+Lt<a+s+Lt. 

If 0<a<2, then it follows from (5.6), (5.8) and (5.12) that 

I < Lt2C dx<C 112 dx= C Lt2 xa-Sdx ~
a+e (l;-a)2a-4 ~a+< (x-aya-4 ~c 

2_ a+.a 1 (x-a)a-l - 1 a+A' (x-a)a-l 1 A' 

(5.11) 

(5.12) 

=~sa-2Lt2_~Lta (5.13) 
a-2 a-2' 

where C1 is some positive constant. If a=2, then it follows from (5.8) that f'(x) is bounded 
on (a, a+s). From (5.6) and (5.12) we have 

12:5:C2Lt2\a+
c 
{lj(x -a)}dx= Cz112(log s -log Lt), (5.14) 

Ja+A' 
where C2 is some positive constant. If a> 2, then it follows from (5.6), (5.8) and (5.12) 
that 

~
a+e (l;-a)Za-4 ~a+c (x-a+LI)Za-4 

12 :5:Cs LIz ( )a-l dx:5:CsLl2 ()a-l dx 
a+Li x-a a+Li x-a 

= CSLI2 ~: xa-s (1 + ~ ra-4dx:5:22a-4CsLl2 ~: xa-Sdx :5:22a-4Cssa-z iF _ !2:; CsLIa, (5.15) 

where Cs is some positive constant. Hence it follows from (5.13), (5.14) and (5.15) that 

12 = O(LI2 11og LID if a=2, 
{

O(LIa) if 0<a<2, 

o (,d2) if a>2. (5.16) 

iii) Is. Since f(x) and f'(x) are continuous functions on (a, b), it follows that 
13= \b- C {f(x+,d)-g(x)Y dx<lJ b-e {f(x+,d)- f(x)}2 dx 

Ja+c g(x) - 2 ja+< g(x) 

=lJ
b
-e ,d2{f'(l;(x, LI»}2 dX:5:C/ LI2\ b-e{l/f(x)}dx 

2 ja+ c f(x) JaH 
=C4,d2, 

where 
a+ s<x<l;(x, LI)<x+ LI<b-(sj2), 

and C/ and C4 are certain positive constants. Hence we have 
13 = O(LI2). 

iv) 14 • It follows by the mean value theorem that 

h= ~<- ~ ~
b-Li {f(x+,d)-g(x)}2 1 ~b-Li {f(x+L1)- f(x)}2 
b-C g(x) - 2 b-c f(x) 

=-1.\b-Li L12{f'(l;(x, Ll»}2 dx 
2 jb-e f(x) , 

where 
b-s<x<l;(x, LI)<x+LI<b-(s/2). 

If 0</3<2, then it follows from (5.7), (5.9) and (5.19) that 

-22-
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(5.20) 

(5.9) and (5.19) 

= C6LJ2 ~: x f3 -3dx 

_ {CsL12(log E -log LI) 

- C6L12_1_(Ef3-2 - LIf3-2) 
{3-2 

if {3=2, 

if (3>2, 

where C6 is some positive constant. Hence it follows from (5.20) and (5.21) that 

14 = {O(L12) if (3 =1= 2, 
O(LI2/log L1/) if {3=2. 

v) Is. It follows from (5.8) that 

5 

15= (b {f(x+LI)-g(x)Lbx 
Jb-,d g(x) 

= (b f(x) dx 
Jb-,d 2 

=O(LIf3). 

Since 1= '2/i, it follows from (5.10), (5.11), (5.16), (5.18), (5.22) and (5.23) that 
i~O 

if 0<a<2, 
if a=2, 
if a>2. 

Thus we complete the proof. 

REMARK. We also define an information 1* such that 

1*= (b {f(x+L1)- f(x)Ld ~ 
L f(x) x. 

Since 
{f(x+L1)- g(x)}2 < 1 {f(x+LI)- f(X)}2 

g(x) 2 f(x) for a<x<b, 

5 

it follows that k:5J/ (i=1, 2, 3, 4, 5), where 1*='2//, 
;=1 

*_ (a+,d {f(x+LI)- f(X)}2 
II - L f(x) dx, 

* __ ~a+e {f(x+ LI)- f(x)}2 
12 - f( ) dx, 

a+L1 X 

13*= (b-~ {f(x+LI)- f(x)}2 dx 
Ja+e f(x) , 

14*= \b-,d {f(x+L1)- f(X)}2 dx 
Jb-e f(x) , 

15*= (b {f(x+L1)- f(x)}2 dx. 
Jb-,d f(x) 

(5.21) 

(5.22) 

(5.23) 

It follows from the proof of Lemma 5.2 that for each a>O, the orders of 1/ (i=2, 3, 4, 5) 
given by Table 2 respectively. Furthermore if O<a.:::;l, then it follows from (5.6) that there 
exists a positive constant C7 such that 

0< f(x+LI) < KzCx+LI-a)ct-l K2 (1 +_LI_)ct-l <C 
f(x) K 1(x-a)ct-1 Kl x-a - 7 

for a<x<a+LI (5.24) 

and the following hold: 
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~:+A f(x)dx=O(Ja), 

~:+A f(x+J)dx=O(JiX). 

From (5.24) we have 
*_ (a+.6 {f(x+J)- f(X)}2 _ 

II - Ja f(x) dx 

= ~:+.6 {f(f~f)}2 dX_2~:+.6 f(x+ J)dx + ~:+.6 f(x)dx 

(5.25) 

(5.26) 

~(C72+ 1)~:+.6 f(x)dx-2~:+A f(x+J)dx (5.27) 

It follows from (5.25), (5.26) and (5.27) that 11*=0(Ja). Hence if O<a.::;l, the order of 
11* is equal to the order of II' 

From Lemmas 5.1 and 5.2 and (5.5) we get the following lemma. 

LEMMA 5.3. 

{

2[ {1 + 0(LJa)}n-1J 1 /2 

dn(8-J, 8)= 2[{1+0(J21logJ/)}n_l]1/2 
. 2[ {I + O(LF)}n -lJ l

/
2 

if 0<a<2, 
if a=2, 
if a>2. 

THEOREM 5.1. Let Xl, X 2 , "', X n , ••• be a sequence of independent identically distrib· 
uted random variables with a density function satisfying Assumptions (A), (B) and (C). 
For each a, the order given by Table 1 of Theorem 4.1 is the bound of the order of con· 
vergence of consistent estimators, that is, there does not exist a consistent estimator with 
the order greater than values as given by Table 1. 

PROOF. 
1) 0<a<2. From Lemma 5.3 we obtain for sufficiently large n and every t>O, 

dn(8 - tc,,-l, 8)'::;2[ {I + O((tcn -1)a)}n_1Jl/2. 

If order {Cn} is greater than order {n 1
/
a}, then limdn(8-tcn- 1

" 8)=0 for all t>O and all 
n->ro 

8 E®. Hence it follows from Theorem 3.3 that there does not a consistent estimator with 
the order greater than order {n1IiX}. 

2) a=2. From Lemma 5.3 we obtain for sufficiently large n and every t>O, 
dn(8 -tcn -I, 8)'::;2[{1 +0((tc,,-1)21log tcn - 11)}-lJl/2. 

If order {Cn} is greater than order {en log n)1/2}, then lim d(8 -tcn- 1
, 8)=0 for all t>O and 

n-+ oo 

all 8 E®. Hence it follows from Theorem 3.3 that there does not exist a consistent esti-
mator with the order greater than order {en log n)1/2}. 

3) a>2. From Lemma 5.3 we have for sufficiently large n and every t>O, 
dn(8 - tCn -I, 8)'::;2[ {1- O((tcn -1)2)}n -lJl/2. 

If order {Cn} is greater than {n 1
/
2
}, then limdl8"":'tcn- 1

, 8)=0 for all t>O and all 8E®. 
n-+'" 

Hence it follows from Theorem 3.3 that there does not exist a consistent estimator with 
the order greater than order {n1 / 2}. Thus we complele the proof. 

REMARK. Since A(8)=(a+8, b+8), it follows from Assumptions (A) and (B) that for 
every t>O and sufficiently large n 

{Po(A(8-tcn -l»}n= {1- (b-rO f(X-8)dx}" 
Jb+O-tcn-l 

=exp [n log {1- ~:_tc,,-l f(X)dx} ] 

-24-
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=exp [n {-7 tScrt -s +O(Crt -ZS)} J; 
{Po-ten -1(A(8»}n 

=exp [n { - ~ tacn -a+O(Cn -2a)} J, 
where M is some positive constant. From Lemma 4.3 we obtain the following results. 

If 0<a<2 and a<(3, then every 8 E@ and every t>O, 
1 M..a 

limL(8-tn--a, 8)=1-e- at , 

1 

limR(8-tn--a, 8)=0, 

for 0<a.::S1, 
for 1<a<2, 

for 0<a.::S1, 

for 1<a<2, 

25 

where C is some positive constant and K is some constant. If 0<a<2 and a=(3, then for 
every 8 E@ and every t>O, 

11M 

lim L(8 - tn-a, 8) = lim R(8 - tn-a, 8) = 1 - e-Cita, 
n->'" 

1 

lim dnC8 - tn-a, 8).::S2(ecta _1)1/2 

If a=2, then for every 8E@ and every t>O, 
1 1 

for O<a<l, 
for a=l, 
for 1<a<2, 

for O<a<l, 

for a=l, 

for 1<a<2. 

lim L(8 - ten log n)--z, 8) = lim R(8 - ten log nfT, 8) = 0, 

1 

lim M(t! -ten log nfz, 8)= CXJ, 

but 

where C is some positive constant. If a>2, then for every 8E@ and every t>O, 
1 1 

limL(8-tn-T , 8)=limR(8-tn-T , 8)=0, 

1 

lim M(8-tn-T , 8)=CXJ, 

but 

where c' is some positive constant. 

-25 -
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