
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013
1029

PAPER Special Section on Data Engineering and Information Management

Satisfiability of Simple XPath Fragments under Duplicate-Free
DTDs∗

Nobutaka SUZUKI†a), Member, Yuji FUKUSHIMA††, and Kosetsu IKEDA†††, Nonmembers

SUMMARY In this paper, we consider the XPath satisfiability problem
under restricted DTDs called “duplicate free”. For an XPath expression q
and a DTD D, q is satisfiable under D if there exists an XML document
t such that t is valid against D and that the answer of q on t is nonempty.
Evaluating an unsatisfiable XPath expression is meaningless, since such
an expression can always be replaced by an empty set without evaluating
it. However, it is shown that the XPath satisfiability problem is intractable
for a large number of XPath fragments. In this paper, we consider simple
XPath fragments under two restrictions: (i) only a label can be specified as
a node test and (ii) operators such as qualifier ([]) and path union (∪) are
not allowed. We first show that, for some small XPath fragments under the
above restrictions, the satisfiability problem is NP-complete under DTDs
without any restriction. Then we show that there exist XPath fragments,
containing the above small fragments, for which the satisfiability problem
is in PTIME under duplicate-free DTDs.
key words: XML, XPath, satisfiability

1. Introduction

XPath has been a common query language for XML, and
several query/transformation languages such as XSLT and
XQuery are also based on XPath. For an XPath expression
q and a DTD D, q is satisfiable under D if there exists an
XML document t such that t is valid against D and that the
answer of q on t is nonempty. Evaluating an unsatisfiable
XPath expression is meaningless, since such an expression
can always be replaced by an empty set without evaluating
it. However, it is shown that the satisfiability problem is
intractable for a large number of XPath fragments [1], [2].
Therefore, it is important to find XPath fragments for which
the satisfiability problem can be solved efficiently.

Let us show a simple example of an unsatisfiable XPath
expression. Consider the following DTD.

<!ELEMENT students (undergraduate|graduate)+>

Manuscript received July 2, 2012.
Manuscript revised October 29, 2012.
†The author is with the Faculty of Library, Information and

Media Studies, University of Tsukuba, Tsukuba-shi, 305–8550
Japan.
††The author is with Yahoo Japan Corporation, Minato-ku,

Tokyo, 107–6211 Japan.
†††The author is with the Graduate School of Library, Informa-

tion and Media Studies, University of Tsukuba, Tsukuba-shi, 305–
8550 Japan.

∗This work is based on an eariler work: Satisfiability
of simple xpath fragments in the presence of dtds, in Pro-
ceeding of the eleventh international workshop on Web in-
formation and data management (WIDM’09) c©ACM, 2009.
http://doi.acm.org/10.1145/1651587.1651594

a) E-mail: nsuzuki@slis.tsukuba.ac.jp
DOI: 10.1587/transinf.E96.D.1029

<!ELEMENT undergraduate (name,email)>

<!ELEMENT graduate (name,email,supervisor?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT supervisor (#PCDATA)>

Let q = //supervisor/parent :: undergraduate/name
be an XPath query. Then q would return the names of un-
dergraduate students that have a supervisor. However, it is
easy to see that q is unsatisfiable since an undergraduate
element cannot have any supervisor element as a child.
Clearly, we should detect unsatisfiable XPath expressions
prior to evaluating them.

Although the above example is quite simple, current
XML documents and schemas are becoming very large and
complex. Thus, when a user obtains an empty result of a
query, it is often difficult for the user to tell whether the
query is unsatisfiable or it is satisfiable but the target XML
document happens to have no answer to the query. If we
have an efficient algorithm for the XPath satisfiability prob-
lem, the user can easily tell whether he/she has to correct the
query.

In this paper, we focus on simple XPath fragments us-
ing child (↓), descendant-or-self (↓∗), parent (↑), following-
sibling (→+), and preceding-sibling (←+) axes under two re-
strictions; (i) only a label can be specified as a node test and
(ii) operators such as qualifier ([]) and path union (∪) are
not allowed. We first consider two simple XPath fragments
XP{↓,↑} and XP{↓,→

+,←+}, where XP{↓,↑} stands for the XPath
fragments using only child and parent axes under the above
restrictions. We show that, even for these small fragments,
the satisfiability problem is NP-complete under DTDs with-
out any restriction. We show on the other hand that, under
duplicate-free DTDs, satisfiability for XP{↓,↑,→

+,←+} can be
solved in polynomial time. Here, a DTD D is duplicate free
if no content model of D uses the same label more than once,
and most real-world DTDs are duplicate free [3]. Then we
consider incorporating descendant-or-self axis. We show
that satisfiability for XP{↓,↑,↓

∗} is NP-complete even under
duplicate-free DTDs. On the other hand, we show that satis-
fiability for XP{↓,↑,↓

∗,→+,←+} can be solved in polynomial time
under duplicate-free DTDs if an XPath expression contains
only a constant number of descendant-or-self axes.

Beyond the earlier work [1], [2], several other eminent
studies have investigated the XPath satisfiability problem.
Hidders considered the XPath satisfiability problem with-
out DTD [4]. Lakshmanan et al. considered the satisfia-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

1030
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

bility problem for tree pattern queries with and without
DTDs [5]. Their tree patten queries and the XPath fragments
in this paper are incomparable, e.g., the former supports
node equalities but the latter does not, while the former does
not fully capture following-sibling and preceding-sibling
axes. Montazerian et al. proposed two classes of restricted
DTDs, duplicate-free DTDs and covering DTDs, and they
showed that satisfiability for several XPath fragments can
be solved in polynomial time under these DTDs [3]. Their
XPath fragments support qualifier, union, and wildcard
node test, but not parent, following-sibling, or preceding-
sibling axis. Figueira investigated satisfiability for XP{↓,↓

∗,=}
without DTD and showed that the problem is EXPTIME-
complete [6]. Ishihara et al. proposed subclasses of cover-
ing DTDs and investigated the tractability of XPath satisfi-
ability under the subclasses [7], [8]. Finally, this paper is a
revised version of Ref. [9]. This paper provides (i) proofs of
the correctness of our algorithms, (ii) a proof of the running
time of the algorithm for XP{↓,↑,↓

∗,→+,←+} and (iii) a discus-
sion relaxing the restriction to our XPath fragment, as well
as a number of revisions to the original version.

The rest of this paper is organized as follows. Sec-
tion 2 gives some preliminaries. Section 3 shows the NP-
completeness of satisfiability for XP{↓,↑} and XP{↓,→

+,←+}.
Section 4 presents a polynomial-time algorithm that solves
satisfiability for XP{↓,↑,→

+,←+} under duplicate-free DTDs.
Section 5 shows the NP-completeness of satisfiability for
XP{↓,↑,↓

∗}. Section 6 presents an algorithm that solves satisfi-
ability for XP{↓,↑,↓

∗,→+,←+} under duplicate-free DTDs. Sec-
tion 7 summarizes the paper.

2. Definitions

An XML document is modeled as a node-labeled ordered
tree (attributes are omitted). A text node is omitted, in other
words, we assume that each leaf node has a text node im-
plicitly. For a node n in a tree, by l(n) we mean the label of
n, representing the element name of n. In what follows, we
use the term tree when we mean node-labeled ordered tree.

Let Σ be a set of labels. Then a regular expression over
Σ is defined as follows.

• ε and a are regular expressions, where a ∈ Σ.
• Let e1, e2, · · · , en be regular expressions. Then r =

(e1e2 · · · en) and r′ = (e1|e2| · · · |en) are regular expres-
sions. Each ei is a subexpression of r and r′.

• Let e be a regular expression. Then r = e∗ is a regular
expression. e is a subexpression of r.

For sets L, L′ of strings over Σ, the concatnation of L and
L′ is defined as LL′ = {w1w2 | w1 ∈ L,w2 ∈ L′}. Then
L0 = {ε} and Li = Li−1L for i ≥ 1. The language of a regular
expression r, denoted L(r), is defined as follows.

• L(ε) = {ε} and L(a) = {a}, where a ∈ Σ.
• Let e1, e2, · · · , en be regular expressions. Then

L(e1e2 · · · en) = L(e1)L(e2) · · · L(en) and
L(e1|e2| · · · |en) = L(e1) ∪ L(e2) ∪ · · · ∪ L(en).

• Let e be a regular expression. Then L(e∗) =
⋃

i≥0 L(e)i.

A DTD is a tuple D = (d, s), where d is a mapping
from Σ to the set of regular expressions over Σ and s ∈ Σ
is the start label. For a label a ∈ Σ, d(a) is the content
model of a. A tree t is valid against D if (i) the root of t
is labeled by s and (ii) for each node n in t l(n1) · · · l(nm) ∈
L(d(l(n))), where n1 · · · nm are the children of n. Let r be a
regular expression and Σ(r) be the set of labels appearing in
r. Then r is duplicate free if each label in Σ(r) occurs exactly
once in r. A DTD D is duplicate free if for each content
model d(a) of D, d(a) is duplicate free. For example, let
D = (d, s), where d(s) = (a∗b)|a? and d(a) = d(b) = ε. Then
D is not duplicate free due to d(s).

A location step is of the form axis :: l, where (i) axis
is either ↓ (the child axis), ↓∗ (the descendant-or-self axis),
↑ (the parent axis), →+ (the following-sibling axis), or ←+
(the preceding-sibling axis), and (ii) l is a label. An XPath
query (query for short) is /ls1/ls2 · · · /lsn, where lsi is a lo-
cation step. Let XP be the set of XPath queries. We denote
a fragment of XP by listing the axes supported by the frag-
ment. For example, XP{↓,↓

∗} denotes the set of queries using
only child and descendant-or-self axes.

Let t be a tree and q be a query. We say that t satis-
fies q, denoted t � q, if the answer of q on t is nonempty.
If there is a tree t such that t is valid against a DTD D and
that t � q, then q is satisfiable under D. For an XPath frag-
ment XPS , the XPath satisfiability problem for XPS , denoted
SAT(XPS), is to decide, for a DTD D and a query q ∈ XPS ,
if q is satisfiable under D.

3. Simple XPath Fragments for which Satisfiability is
Intractable

In this section, we show that the XPath satisfiability prob-
lem is NP-complete for two simple XPath fragments under
DTDs without any restrictions.

Ref. [1] shows that SAT(XP{↓,↑}) is NP-complete if a
wildcard is allowed as a node test. The following theo-
rem shows a slightly more strong result; SAT(XP{↓,↑}) is NP-
complete even if only a label is allowed as a node test.

Theorem 1: SAT(XP{↓,↑}) is NP-complete.

Proof: For a query q and a tree t valid against a DTD, it can
be determined in polynomial time whether the answer of q
on t is nonempty [10]. Thus the problem is in NP.

To show that the problem is NP-hard, we reduce 3SAT
to the XPath satisfiability problem. Let

φ = C1 ∧C2 ∧ · · · ∧Cn

be an instance of 3SAT, where Ci is a clause consisting of
three literals. Let x1, x2, · · · , xm be the variables appearing
in φ. From this instance we construct an instance of the
XPath satisfiability problem.

Let Σ = {s} ∪ {c1, c2, · · · , cn} (ci � c j whenever i � j).
DTD D = (d, s) is defined as follows.

d(s) = (T1|F1)(T2|F2) · · · (Tm|Fm),

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1031

Fig. 1 A tree used in the proof of Theorem 1.

d(ci) = ε, (1 ≤ i ≤ n)

where label ci ∈ Σ corresponds to clause Ci, and Ti and Fi

stand for sequences of labels defined as follows.

• Ti represents the clauses in φ that contain positive lit-
eral xi. That is, if Ci1, · · · ,Cik are the clauses contain-
ing positive literal xi, then Ti = ci1 · · · cik. In other
words, Ti consists of the clauses that become true by
setting xi = true.

• Fi represents the clauses in φ that contain negative lit-
eral ¬xi. That is, if Ci1, · · · ,Cik are the clauses contain-
ing negative literal ¬xi, then Fi = ci1 · · · cik.

Figure 1 presents a tree valid against D. Then query q is
defined as follows.

q = /↓:: s/↓:: c1 (1)

/↑:: s/↓:: c2/↑:: s/↓:: c3/ · · · /↑:: s/↓:: cn

Thus, t � q if the root of t is labeled by s and has a child
labeled by ci for every 1 ≤ i ≤ n. In the following, we show
that φ is satisfiable iff q is satisfiable under D.

Only if part: Assume that φ is satisfiable. Then there is
a truth assignment α for x1, · · · , xm satisfying φ. By using α
we construct a tree t valid against D as follows.

• For every 1 ≤ i ≤ m, if α(xi) = true, then the ith group
in t is set to Ti (Fig. 1), otherwise the ith group is set to
Fi.

Since all clauses C1, · · · ,Cn become true under α, the root
s has at least one child labeled by ci for every 1 ≤ i ≤ n.
Hence t � p.

If part: Assume that q is satisfiable under D. Then
there is a tree t valid against D such that the root of t is
labeled by s and has a child labeled by ci for every 1 ≤ i ≤ n.
Let α be a truth assignment defined as follows (1 ≤ i ≤ m).

α(xi) =

{
true if the ith group matches Ti,
f alse if the ith group matches Fi.

Since the root s has a child labeled by ci for every 1 ≤ i ≤ n,
clauses C1, · · · ,Cn become true under α. �

Without upward axis, the satisfiability problem is NP-
complete if both→+ and←+ are allowed.

Theorem 2: SAT(XP{↓,→
+,←+}) is NP-complete.

Proof: We can show that the problem is in NP similarly to
Theorem 1. We show that this problem is NP-hard by a re-
duction from 3SAT. Let φ = C1∧C2∧· · ·∧Cn be an instance

Fig. 2 A tree used in the proof of Theorem 2.

of 3SAT, and let x1, x2, · · · , xm be the variables occurring in
φ. Without loss of generality, we assume that n is an even
number. From this instance, we construct an instance of the
XPath satisfiability problem.

DTD D = (d, s) is defined as follows.

d(s) = b(T1|F1)(T2|F2) · · · (Tm|Fm)b,

d(b) = ε,

d(ci) = ε, (1 ≤ i ≤ n)

where Ti and Fi are defined similarly to Theorem 1. Fig-
ure 2 shows a tree t valid against D, where the leftmost and
rightmost nodes labeled by b are “boundary” nodes. Query
q is defined as follows.

q = / ↓:: s/ ↓:: b (2)

/→+:: c1/→+:: b (3)

/←+:: c2 :: /←+:: b (4)
...

/→+:: cn−1/→+:: b

/←+:: cn

For a tree t valid against D, q checks if the root of t has a
child labeled by ci for every 1 ≤ i ≤ n, as follows.

1. By line (2), goes down to the left boundary node.
2. By line (3), moves to right and find a node labeled by

c1, then goes to the right boundary node.
3. By line (4), moves to left and find a node labeled by c2,

goes to the left boundary node, and so on.

Now we can show that φ is satisfiable iff p is satisfiable
under D, similarly to Theorem 1. �

Thus, under DTDs without any restrictions the XPath
satisfiability problem is unlikely to be solved efficiently even
for the above simple XPath fragments. In the next section,
we show an XPath fragment, containing the above frag-
ments, for which satisfiability can be solved in PTIME under
duplicate-free DTDs.

4. Algorithm for XPath Fragment without Descendant-
or-Self Axis under Duplicate-Free DTDs

In this section, we present a polynomial-time algorithm for
solving SAT(XP{↓,↑,→

+,←+}) under duplicate-free DTDs.
Before presenting the algorithm formally, we give a

1032
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

preliminary definition. Let q be a query. A traverse tree
of q is a tree representing the “walking path” of q such that
each node n has the set I(n) of indexes of the location steps
accessing n. For example, Fig. 3 presents a traverse tree
of q = /a/b/c/ ↑:: b/d/e/ →+:: f , where I(n1) = {1},
I(n2) = {2, 4}, I(n3) = {5}, I(n4) = {6}, I(n5) = {7},
I(n6) = {3}. Formally, a traverse tree of q ∈ XP{↓,↑,→

+,←+} is
defined as follows.

• The case where |q| = 1: Let q = /ax :: lb. If ax =↓,
then an edge n′ → n such that l(n′) = root, l(n) = lb,
I(n′) = ∅, and that I(n) = {1} is the traverse tree of q.

• The case where |q| > 1: Let q = q′/ax :: lb, where q′
is a query with |q′| = |q| − 1. Let t be a traverse tree of
q′ and n be the “context node” in t, i.e., |q′| ∈ I(n). We
have four cases according to ax.

1. The case where ax =↓:
a. If n has a child n′ labeled by lb, then the tree

obtained from t by adding |q| to I(n′) is a tra-
verse tree of q, or

b. A tree obtained from t by adding a new node
n′ with I(n′) = {|q|} as a child of n is a tra-
verse tree of q.

2. The case where ax =↑:
a. If the parent n′ of n is labeled by lb, then the

tree obtained from t by adding |q| to I(n′) is a
traverse tree of q.

3. The case where ax =→+:

a. If n has a right sibling n′ labeled by lb, then
the tree obtained from t by adding |q| to I(n′)
is a traverse tree of q, or

Fig. 3 An example of traverse tree.

Fig. 4 Trees created by the algorithm in Sect. 4.

b. The tree obtained from t by adding a new
node n′ with I(n′) = {|q|} and l(n′) = lb as
a right sibling of n is a traverse tree of q.

4. The case of ax =←+ is defined similarly to Case
(3).

Let t be a traverse tree. A supertree of t is recursively de-
fined as follows.

• Let t′ be the tree obtained by dropping I(n) for each
node n in t. Then t′ is a supertree of t.

• Let t′ be a supertree of t. Then a tree obtained by
adding a leaf node n with l(n) ∈ Σ to t is a supertree
of t.

We say that a traverse tree t of q is valid against D if there
is a supertree t′ of t such that t′ is valid against D and that t
and t′ share the same root and its child.

In short, for a query q and a duplicate-free DTD D, the
algorithm constructs, along the location steps of q, a traverse
tree of q valid against D. The algorithm returns “unsatisfi-
able” if D is violated during constructing a traverse tree. If
no location step of q violates D, the algorithm returns “sat-
isfiable”. Let us give an example (Fig. 4). Let

q = / ↓:: a/ ↓:: b/ ↑:: a/ ↓:: c/→+:: d/→+:: e

be a query and D = (d, a) be a DTD, where d(a) = bc(d|e)
and d(b) = d(c) = d(d) = d(e) = ε. The algorithm first
creates a single node labeled by root (Fig. 4 (a)) and then
modifies it step-by-step. Each tree in Fig. 4 represents the
traverse tree constructed by the location steps encountered
so far. For example, in Fig. 4(a,b), according to location step
“↓:: a” a node n1 labeled by a is inserted as the child of n0.
Each tree has one marked node that represents the “context
node” in the tree. In Fig. 4, each marked node is circled.
When the algorithm encounters a location step violating D,
then the algorithm returns “unsatisfiable”. For example, in
Fig. 4 (f) according to location step “→+:: e” the algorithm
tries to insert a node labeled by e as the right sibling of n4,
but it is impossible to insert such a node due to the definition
of d(a). Hence “unsatisfiable” is returned.

Now we present the “main” algorithm. Each subrou-
tine in lines 5 to 11 (shown later) modifies input tree t ac-
cording to location step axis[i] :: label[i] and returns the
modified tree. If the location step violates D, then nil is re-
turned.

Input: A query q=/axis[1] :: label[1]/ · · · /axis[m] :: label[m]

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1033

and a duplicate-free DTD D = (d, s).
Output: “satisfiable” or “unsatisfiable”.

begin
1. Create a node n labeled by “root”.

Let t be the tree consisting only of n.
Assume that d(root) = s.

2. Mark n.
3. for i = 1 to m do
4. if axis[i] = ‘↓’ then
5. t ← do child(t, label[i]);
6. else if axis[i] = ‘↑’ then
7. t ← do parent(t, label[i]);
8. else if axis[i] = ‘→+’ then
9. t ← do following-sibling(t, label[i]);
10. else if axis[i] = ‘←+’ then
11. t ← do preceding-sibling(t, label[i]);
12. end
13. if t = nil then
14. return “unsatisfiable”;
15. end
16. end
17. return “satisfiable”;

end

In the following, we present the subroutines. First, to
present do child, we need a definition. Let n be a node in
t with children n1, · · · , nk and l be a label. We say that a
node labeled by l is insertable as a child of n if there are
words w1,w2 such that w1lw2 ∈ L(d(l(n))) and that w1w2 is
a supersequence of l(n1) · · · l(nk). In line 4 below, “mark n′”
means that the mark on n is moved to n′, since a tree has
exactly one marked node at all times.

do child(t, l)
begin

1. Let n be the marked node in t.
2. if a node labeled by l is insertable

as a child of n then
3. Add a new node n′ labeled by l as a child of n.
4. Mark n′.
5. return t;
6. else if n has a child n′ labeled by l then
7. Mark n′.
8. return t;
9. else
10. return nil;
11. end

end

The order of the if statements on lines 2 and 6 is significant,
since if the order of the two if statements are exchanged,
then the correctness of the algorithm cannot be guaranteed.
Actually, the proof of the correctness of the algorithm heav-
ily depends on the fact that the algorithm creates a new node
whenever possible, as shown in the proof of Lemma 2 given
later.

Let us present how to check if a node labeled by l is
insertable as a child of n. Let n be a node, n1, · · · , nk be the
children of n, and l be a label. Then a node labeled by l is
insertable as a child of n iff k = 0 and l appears in d(l(n)),
or, k ≥ 1 and one of the following two conditions holds for
every 1 ≤ i ≤ k (the proof of the correctness of this condition
is omitted).

1. d(l(n)) contains a subexpression (e1e2 · · · eh) such that
for some f , g ∈ {1, 2, · · · , h} with f � g e f contains
l(ni) and eg contains l.

2. d(l(n)) contains a subexpression e∗ such that e contains
l and l(ni).

Intuitively, the above two condition mean that l and l(ni) can
“coexist” for 1 ≤ i ≤ k, i.e., there is a string in L(d(l(n))
containing l as well as l(n1), l(n2), · · · , l(nk).

Here, let us briefly show the reason why we cannot de-
termine efficiently whether a node labeled by l is insertable
as a child of n under non-duplicate-free DTDs. Since an
XML tree is an ordered tree, we have to determine the or-
der of the children of n. If d(l(n)) is duplicate free, then
it is easy to determine such an order since for each child
ni, d(l(n)) contains at most one label that coincides with
l(ni) and thus the position of ni can be determined easily.
On the other hand, if d(l(n)) is not duplicate free, then we
have to find an appropriate order of the permutations of
{l(n1), l(n2), · · · , l(nk), l}, which cannot be solved efficiently.
For example, consider the tree in Fig. 1. The order of the
leaf nodes visited by q defined in (1) is a permutation of
{c1, c2, · · · , cn}, which cannot be found efficiently by Theo-
rem 1.

Second, do parent can be defined easily, as follows.

do parent(t, l)
begin

1. Let n be the marked node in t.
2. if n has no parent or

the parent of n is not labeled by l then
3. return nil;
4. else
5. Mark the parent of n.
6. return t;
7. end

end

Finally, let us present do following-sibling
(do preceding-sibling is defined similarly). Let n be a node
with children n1, · · · , nk and l be a label. We say that a node
labeled by l is insertable as a right sibling of ni if there are
words w1,w2 such that w1lw2 ∈ L(d(l(n))) and that for some
j ≥ i w1 is a supersequence of l(n1) · · · l(n j) and w2 is a su-
persequence of l(n j+1) · · · l(nk).

do following-sibling(t, l)
begin

1. Let n be the marked node in t.
2. if a node labeled by l is insertable

as a right sibling of nthen
3. Add a new node n′ labeled by l as a right sibling

of n.
4. Mark n′.
5. return t;
6. else if n has a right sibling n′ labeled by l then
7. Mark n′;
8. return t;
9. else
10. return nil;
11. end

end

Similarly to do child, the order of the if statements on liens 2
and 6 cannot be exchanged. In line 2, whether a node labeled
by l is insertable as a right sibling of n can be checked in a
similar manner to check if a node labeled by l is insertable
as a child of n, used in do child (since D is duplicate free,

1034
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

whether label l can be a right sibling of l′ can be checked
easily).

In the following, we show the correctness and the time
complexity of the algorithm. First, we show the correctness
of the algorithm, as follows.

1. We show that, for a query q ∈ XP{↓,↑,→
+,←+} and a

duplicate-free DTD D, there is a traverse tree of q valid
against D iff q is satisfiable under D (Lemma 1).

2. We show that any traverse tree t of q valid against D is
obtained by “folding” the traverse tree of q constructed
by the algorithm (Lemma 2).

3. By using the two lemmas, we show that the algorithm
constructs a traverse tree of q valid against D (i.e., the
algorithm returns “satisfiable”) iff q is satisfiable under
D (Theorem 3).

Lemma 1: Let q ∈ XP{↓,↑,→
+,←+} be a query and D be a

duplicate-free DTD. Then there is a traverse tree of q valid
against D iff q is satisfiable under D.

Proof (sketch): The only if part holds trivially. Suppose
that q is satisfiable under D. Then there is a tree t valid
against D such that the answer of q is nonempty. Thus there
must be a “walking path” of q on t, which represents a tra-
verse tree of q valid against D. �

Lemma 2: Let D be a duplicate-free DTD, q ∈
XP{↓,↑,→

+,←+} be a query, and t be the value of “variable t”
in line 13 of the “main” algorithm for (q,D). Then we have

1. t is a traverse tree of q valid against D whenever t � nil,
and

2. if there is a traverse tree t′ of q valid against D, then
t � nil and there is a total and surjective function
h : N → N′ satisfying the following condition, where
N and N′ are the sets of nodes of t and t′, respectively
(Fig. 5 presents an example of function h by dashed
arcs between t and t′).

• For every node n′ in t′, I(n′) = I(ni) ∪ · · · ∪ I(n j),

Fig. 5 An example of function h.

where ni, · · · , n j is the nodes in t such that h(ni) =
· · · = h(n j) = n′.

Proof (sketch): Condition (1) follows from the construction
of the algorithm. Condition (2) follows from the following
observation.

• do child, do following-sibling, and do preceding-
sibling creates a new node whenever possible, but

• during constructing a traverse tree, a new node may not
be created even if it is possible, that is, Cases (1-a) and
(3-a) of the definition may be selected instead of Cases
(1-b) and (3-b), when ↓ and→+ axes are encountered,
respectively.

�
We now have the following theorem.

Theorem 3: Let q ∈ XP{↓,↑,→
+,←+} be a query and D be a

duplicate-free DTD. Then the algorithm returns “satisfiable”
iff q is satisfiable under D.

Proof: If the algorithm returns “satisfiable”, then by the
construction of the algorithm we can show that the tree
created by the algorithm for (q,D) is a traverse tree valid
against D.

In the following, we show that if the algorithm returns
“unsatisfiable”, then q is unsatisfiable under D. Suppose that
the algorithm returns “unsatisfiable”. This implies that there
is no traverse tree of q valid against D. Suppose contrarily
that the algorithm returns “unsatisfiable” but that there is a
traverse tree t′ of q valid against D. Then the algorithm con-
structs a tree t � nil such that Condition (2) of Lemma 2
holds for t and t′. But this is a contradiction since the algo-
rithm returns “unsatisfiable”, i.e., the value of t in line 13 of
the “main” algorithm must be nil. Hence q is unsatisfiable
under D by Lemma 1. �

Then we show the complexity of the algorithm.

Theorem 4: The algorithm runs in O(|q|(|q| + |D|)) time,
where |q| denotes the number of location steps in q and |D|
is the description length of D.

Proof (sketch): Let t be the tree created by the algorithm.
The size of t is in O(|q|). For each node n in t, the run-
ning time of do {child, parent, following-sibling, preceding-
sibling} is in O(|q| + |D|). �

5. XPath Fragment with Descendant-or-Self Axis

In this and the next sections, we consider XPath fragments
with descendant-or-self axis. In this section, we show that
SAT(XP{↓,↑,↓

∗}) is NP-complete even under duplicate-free
DTDs.

Theorem 5: SAT(XP{↓,↑,↓
∗}) is NP-complete under duplicate-

free DTDs.

Proof: We can show that the problem is in NP similarly
to Theorem 1. We show the NP-hardness of the problem by
reducing 3SAT to this problem. Let φ = C1∧C2∧· · ·∧Cn be
an instance of 3SAT, and let x1, x2, · · · , xm be the variables

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1035

occurring in φ. Without loss of generality, we assume that
for any 1 ≤ i ≤ n and any 1 ≤ j ≤ m, Ci does not contain
both positive literal x j and negative literal ¬x j at the same
time.

From φ we construct an instance of the XPath satisfi-
ability problem. First, DTD D = (d, s) is constructed as
follows.

d(s) = c

d(c) = (c|e)x

d(e) = ε

d(x) = y(x|b)

d(y) = (y|b′)(c1| · · · |cn+1)

d(b) = ε

d(b′) = ε
d(ci) = ε (1 ≤ i ≤ n + 1)

It is clear that D is duplicate free.
Query q is a sequence of the following 2 + 2m + n sub-

queries.

q = q1 qT1 qF1 · · · qTm qFm q2 qcheck1 · · · qcheckn .

In brief, q checks the satisfiability of φ as follows. First,
q1 qT1 qF1 · · · qTm “constructs” a tree t presented in Fig. 6.
Then q2 qcheck1 · · · qcheckn checks the satisfiability of φ over
t.

Let us give the subqueries of q. First, q1 is defined as
follows. q1 traces subtree (A) of Fig. 6.

q1 = /s/c/c/e/↑:: c/↑:: c/↑:: s.

Then we define qTi and qFi (1 ≤ i ≤ m). qTi is defined as
follows.

qTi = /↓∗:: c (5)

Fig. 6 Tree t constructed by q1 qT1 qF1 · · · qTm .

/x/ · · · /x︸���������︷︷���������︸
ilocation steps

(6)

/y/ci1/↑::y/y/ci2/↑::y/ · · · /y/cin/↑::y/b′ (7)

/↑:: y/ · · · /↑:: y︸��������������︷︷��������������︸
n location steps

(8)

/↑:: x/ · · · /↑:: x︸���������������︷︷���������������︸
i location steps

(9)

/↑:: c/↓∗:: e/↑:: c/↑:: c/↑:: s (10)

In (7), labels ci1 , · · · , cin represent the clauses in φ that con-
tain positive literal xi (the clauses becoming true by setting
xi = true). We assume that, if φ contains only k < n
such clauses, then cik+1 = · · · = cin = cn+1, where cn+1 is
a “dummy”. For example, if φ = C1 ∧ C2 ∧ C3 ∧ C4, i = 1,
and x1 occurs in C1 and C3, then we obtain the following

/y/c1/↑:: y/y/c3/↑:: y/y/c5/↑:: y/y/c5/↑:: y/b′,

where labels c1 and c3 represent clauses C1 and C3, respec-
tively, and c5 is a dummy label. qTi works as follows.

1. By (5), nondeterministically selects one of the two c-
nodes in (A) of Fig. 6.

2. By (6), moves down to the x-node at either (xi) or (x′i)
in Fig. 6.

3. By (7), “constructs” a subtree tTi (Fig. 7 (a)) as the left
subtree of the x-node in step 2 above, then by (8) goes
back to the x-node.

4. By (9) and (10), goes back to the root node labeled by
s.

qFi is defined similarly to qTi , as follows.

qFi = /↓∗:: c (11)

/x/ · · · /x︸���������︷︷���������︸
ilocation steps

/y/c′i1/↑::y/y/c′i2/↑::y/ · · · /y/c′in/↑::y/b′ (12)

/↑:: y/ · · · /↑:: y︸��������������︷︷��������������︸
n location steps

/↑:: x/ · · · /↑:: x︸���������������︷︷���������������︸
i location steps

/↑:: c/↓∗:: e/↑:: c/↑:: c/↑:: s

Fig. 7 (a) subtree tTi and (b) subtree tFi .

1036
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

In (12), c′i1 , · · · , c′in represent the clauses in φ that contain
negative literal ¬xi. If φ contains only k < n such clauses,
then we set c′ik+1

= · · · = c′in = cn+1. qTi works similarly to
qTi , except that qFi constructs a subtree tFi instead of tTi as
the left subtree of the x-node at (xi) or (x′i) (Fig. 7 (b)). Note
that by the assumption {ci1 , · · · , cin } ∩ {c′i1 , · · · , c′in } ⊆ {cn+1}.
This implies that the labels of leaf nodes in tTi must be dif-
ferent from those of tFi , i.e., tTi and tFi cannot “overlap”.
Therefore, the c-nodes selected by qTi and qFi ((5) and (11))
must be distinct for every 1 ≤ i ≤ m.

Let us define q2 and qchecki . First, q2 selects the upper c-
node in (A) of Fig. 6 and moves to its right child (the x-node
at (x1)).

q2 = /c/x

Then qchecki is defined as follows (1 ≤ i ≤ n).

qchecki = /↓∗:: ci (13)

/↑:: y/↓∗:: b′ (14)

/↑:: y/ · · · /↑:: y︸��������������︷︷��������������︸
n location steps

/↑:: x (15)

/↓∗:: b /↑:: x/ · · · /↑:: x︸���������������︷︷���������������︸
m location steps

(16)

By (13), qchecki checks if the x-node at (x1) has a descendant
labeled by ci, then by (14)-(16) goes back to the x-node.
Therefore, q2 qcheck1 · · · qcheckn checks whether the x-node at
(x1) has a descendant labeled by ci for every 1 ≤ i ≤ n.

Now we show that φ is satisfiable iff q is satisfiable
under D.

Only if part: Assume that φ is satisfiable. Then there
is a truth assignment α for x1, · · · , xm that satisfies φ. We
can construct a tree t as shown in Fig. 6 that satisfies the
following conditions for every 1 ≤ i ≤ m.

• If α(xi) = true, the left subtree of the the x-node at (xi)
is tTi .

• If α(xi) = f alse, the left subtree of the the x-node at
(xi) is tFi .

Since α satisfies φ, the x-node at (x1) has a descendant
ci for every 1 ≤ i ≤ n. Hence t passes the check of
q2qcheck1 , · · · , qcheckn .

If part: Assume that q is satisfiable under D. Then
there is a tree t valid against D such that t � q. By the
construction of q and D, t is of the form presented in Fig. 6
and satisfies q2, qcheck1 , · · · , qcheckn . Thus, the x-node at (x1)
has a descendant ci for every 1 ≤ i ≤ n. It is easy to show
that the following truth assignment α satisfies φ.

α(xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
true if the left subtree of the x-node

at (xi) is tTi ,
f alse if the left subtree of the x-node

at (xi) is tFi .

�

6. Algorithm for XPath Fragment with Descendant-or-
Self Axis

In this section, we present an algorithm for solving
SAT(XP{↓,↑,→

+,←+,↓∗}) under duplicate-free DTDs.
We first extend the definition of traverse tree so that

it can handle descendant-or-self axes. We use dashed edge
n′ � n, which means that n is a descendant of n′. Formally,
a traverse tree of q ∈ XP{↓,↑,↓

∗,→+,←+} is defined as follows.

• The case where |q| = 1: Let q = /ax :: lb.

– If ax =↓, then an edge n′ → n such that l(n′) =
root, l(n) = lb, I(n′) = ∅, and that I(n) = {1} is the
traverse tree of q.

– If ax =↓∗, then an edge n′ � n such that l(n′) =
root, l(n) = lb, I(n′) = ∅, and that I(n) = {1} is the
traverse tree of q.

• The case where |q| > 1: Let q = q′/ax :: lb, where q′
is a query with |q′| = |q| − 1. Let t be a traverse tree of
q′ and n be the “context node” in t, i.e., |q′| ∈ I(n). We
have five cases according to ax.

1. The case where ax =↓: Any tree obtained from t
by Case (1) of the previous definition in Sect. 4 is
a traverse tree of q.

2. The case where ax =↓∗:
a. If l(n′) = lb for some descendant n′ of n, then

the tree obtained from t by adding |q| to I(n′)
is a traverse tree of q, or

b. Let n′ be a descendant in t. The tree obtained
by adding an edge n′ � nnew to t is a tra-
verse tree of q, where nnew is a new node with
l(nnew) = lb and I(nnew) = {|q|}.

3. The case where ax =↑:
a. If the edge entering n is not a dashed edge,

then the tree obtained from t by Case (2) of
the previous definition in Sect. 4 is a traverse
tree of q.

b. Otherwise, let n′ � n be the edge entering n.

i. If l(n′) = lb, then the tree obtained from
t by replacing n′ � n with n′ → n and
adding |q| to I(n′) is a traverse tree of q,
or

ii. The tree obtained from t by replacing
n′ � n with a path n′ � nnew → n is a
traverse tree of q, where nnew is a new
node with l(nnew) = lb and I(nnew) =
{|q|}.

4. The case where ax =→+:

a. If the edge entering n is not a dashed edge,
then any tree obtained by Case (3) of the pre-
vious definition in Sect. 4 is a traverse tree of
q.

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1037

b. Otherwise, let t′ be a tree obtained by mod-
ifying t by Case (3-b) above. The tree ob-
tained from t′ by adding a new node nnew as a
right sibling of n is a traverse tree of q, where
l(nnew) = lb and I(nnew) = {|q|}.

5. The case of ax =←+ is defined similarly to Case
(4) above.

The validity of a traverse tree t of q ∈ XP{↓,↑,↓
∗,→+,←+} against

D is defined similarly to Sect. 4, except that any dashed edge
in t is replaced by an appropriate path containing no dashed
edge.

We extend the algorithm in Sect. 4 so that it handles
descendant-or-self axes. Let t be a traverse tree, n be the
marked node in t, and l be a label. There may be more than
one node reachable from n via location step ↓∗:: l, and we
have to check the satisfiability for each such node. Accord-
ingly, for each such node n′ the algorithm makes a copy t′
of t and mark the node corresponding to n′ in t′, then check
the satisfiability of each copied tree. We use a variable T to
hold a set of such trees, and the algorithm returns “unsatis-
fiable” if T becomes empty. Also, each subroutine returns a
set of trees obtained by modifying input tree t according to
location step axis[i] :: label[i]. Let us first present the main
algorithm.

Input: A query q = /axis[1] :: label[1]/ · · · /axis[m] :: label[m]
and a duplicate-free DTD D = (d, s).

Output: “satisfiable” or “unsatisfiable”.
begin

1. Create a node n labeled by “root”.
Let t be the tree consisting only of n.
Assume that d(root) = s.

2. Mark n.
3. T ← {t};
4. for i = 1 to m do
5. T ′ ← ∅;
6. for each t ∈ T do
7. if axis[i] = ‘↓’ then
8. T ′ ← T ′ ∪ do child′(t, label[i]);
9. else if axis[i] = ‘↓∗’ then
10. T ′ ← T ′ ∪ do descendant-or-self′(t, label[i]);
11. else if axis[i] = ‘↑’ then
12. T ′ ← T ′ ∪ do parent′(t, label[i]);
13. else if axis[i] = ‘→+’ then
14. T ′ ← T ′ ∪ do following-sibling′(t, label[i]);
15. else if axis[i] = ‘←+’ then
16. T ′ ← T ′ ∪ do preceding-sibling′(t, label[i]);
17. end
18. end
19. T ← T ′;
20. if T = ∅ then
21. return “unsatisfiable”;
22. end
23. end
24. return “satisfiable”;

end

Let us present the subroutines in lines 8 to 16. First,
do child′ just calls do child defined in Sect. 4.

do child′(t, l)
begin

1. t ← do child(t, l);
2. if t � nil then

3. return {t};
4. end
5. return ∅;

end

To give do descendant-or-self′, we need some defini-
tions. Let t be a tree, n be a node in t, and n′ be a descen-
dant of n. By Lt(n, n′), we mean the sequence of labels on
the path from n to n′ in t. For example, Lt(n2, n4) = bcd
in Fig. 9 (a). Let p be a path. By tail(p) we mean the last
node of p. By t +n′ p we mean the tree obtained by append-
ing p to t at n′ (Fig. 9 (b)). For a sequence L of labels, n′
is a potential branch point w.r.t. (t, n, L) if there is a path
p = n1 → · · · → nk such that n1 is insertable as a child
of n′, d(l(ni)) contains l(ni+1) for every 1 ≤ i ≤ k − 1, and
that Lt′ (n, tail(p)) = L, where t′ = t +n′ p. For example, in
Fig. 9 (b) n3 is a potential branch point w.r.t. (t, n2, bcabd).

do descendant-or-self′(t, l) returns a set of trees ob-
tained by the following (a) and (b).

(a) Let n be the marked node in t. We have to consider
the descendants of n labeled by l in t. Thus, for each
descendant n′ of n labeled by l, we make a copy t′ of t
and mark the node corresponding to n′ in t′.

(b) We also have to consider nodes “outside” t. Let L be
a sequence of labels whose last label is l, n′ be a po-
tential branch point w.r.t. (t, n, L), and p be a path such
that L = Lt+n′ p(n, tail(p)). Then tail(p) is potentially
a descendant of n labeled by l. To remember such a
node, we make a new node nnew labeled by l and add a
dashed edge n′ � nnew to t.

Now let us present do descendant-or-self′. (a) is done in
lines 3 to 8 and (b) is done in lines 9 to 17.

do descendant-or-self′(t, l)
begin

1. T ′ ← ∅;
2. Let n be the marked node in t.
3. N ← {n′ | n′ is a descendant of n labeled by l};
4. for each n′ ∈ N do
5. Create a copy t′ of t.
6. Mark the node corresponding to n′ in t′.
7. Add t′ to T ′.
8. end
9. B← {n′ | L is a sequence of labels whose last label is

l, n′ is a potential branch point w.r.t. (t, n, L)};
10. if B � ∅ then
11. Create a new node nnew labeled by l.
12. for each n′ ∈ B do
13. Add a dashed edge n′ � nnew to t.
14. end
15. Mark nnew.
16. Add t to T ′.
17. end
18. return T ′;

end

For example, let

q = /a/b/↑:: a/c/ f︸������������︷︷������������︸
q′

/↑:: c/ ↑:: a/↓∗:: f /↑:: b/→+:: g

and D = (d, a) be a DTD, where d(a) = f ?bc, d(b) =
f |(bg?), d(c) = f , d(f) = d(g) = ε. Let t be the tree shown in

1038
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

Fig. 8 Trees created by the algorithm in Sect. 6.

Fig. 9 An example of a potential branch point.

Fig. 8 (a), which is constructed by the algorithm for (q′,D).
Then do descendant-or-self′(t, f) returns a set of two trees
shown in Fig. 8 (b). In lines 3 to 8 the left tree in Fig. 8 (b) is
created. Consider lines 9 to 17. Among the descendants of
n1 in t, n1, n2, and n3 can have a descendant labeled by f due
to D. n1 and n2 are potential branch points w.r.t. (t, n1, a f)
and (t, n1, ab f), respectively, but n3 is not since n3 already
has a child n4 labeled by f . Thus we obtain B = {n1, n2} and
the right tree in Fig. 8 (b) is created.

We next present do parent′. Let n be the marked node
in t. If there is no dashed edge entering n, then it suffices to
call do parent defined in Sect. 4. Otherwise, let n′ � n be a
dashed edge entering n. do parent′ does the following.

(a) If n′ is labeled by l and n is insertable as a child of n′,
then n′ can be the parent n. Thus n′ � n is replaced by
n′ → n and n′ is marked.

(b) If a node labeled by l can be a proper descendant of n′
as well as the parent of n, then a new node nnew labeled
by l is inserted as the parent of n, that is, n′ � n is
“expanded” to n′ � nnew → n.

Let us present do parent′. (a) is done in lines 9 to 14 and (b)
is done in lines 15 to 21. In line 15, we say that a dashed
edge n′ � n can be expanded by a node labeled by l if
we can construct a path n1 → · · · → nk−1 → nk such that
l(n1) = l(n′), l(nk−1) = l, l(nk) = l(n), and that d(l(ni)) con-
tains l(ni+1) for 1 ≤ i ≤ k − 1.

do parent′(t, l)

begin
1. T ′ ← ∅;
2. Let n be the marked node in t.
3. if there is no dashed edge entering n then
4. t ← do parent(t, l);
5. if t � nil then
6. Add t to T ′.
7. end
8. else
9. for each dashed edge n′�n such that n′ is labeled

by l and that n is insertable as a child of n′ do
10. Create a copy t′ of t.
11. Replace n′ � n by n′ → n in t′.
12. Delete every dashed edge entering n in t′.
13. Add t′ to T ′.
14. end
15. if t contains a dashed edge n′ � n that can be

expanded by a node labeled by l then
16. Delete every dashed edge n′�n of t that cannot

be expanded by a node labeled by l.
17. Create a new node nnew labeled by l.
18. Insert nnew as the parent of n.
19. Mark nnew.
20. Add t to T ′.
21. end
22. end
23. return T ′;

end

For example, let tl and tr be the left and right trees in
Fig. 8 (b), respectively. The result of do parent′(tl, b) is
empty, since the parent of n4 in tl is labeled by c and nil
is returned in line 4. On the other hand, do parent′(tr, b)
returns a set of the two trees shown in Fig. 8 (c); (i) by re-
placing n2 � nnew with n2 → nnew in line 11 the left tree in
Fig. 8 (c) is obtained, and (ii) by inserting a new node n′new
as the parent of nnew in line 18 the right tree in Fig. 8 (c) is
obtained. In both cases, dashed edge n1 � nnew is deleted.

Finally, let us present do following-sibling′. Let n be
the marked node in t. If there is no dashed edge enter-
ing n, then it suffices to call do following-sibling defined in
Sect. 4. Assume that there is a dashed edge entering n. We
have to first identify the parent of n, and then create a right
sibling of n labeled by l. Thus, (a) do following-sibling′ first
constructs trees in which the parents of n are identified (lines
9 to 12), then (b) for each tree t′′ found in (a) the subroutine
inserts a new node labeled by l as a right sibling of n (lines
13 to 18). In line 9 the subroutine finds the labels that can

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1039

be the parent of n.

do following-sibling′(t, l)
begin

1. T ′ ← ∅;
2. Let n be the marked node in t.
3. if there is no dashed edge entering n then
4. t ← do following-sibling(t, l);
5. if t � nil then
6. Add t to T ′.
7. end
8. else
9. L←{l′ |w1l(n)w2 l w3 ∈ L(d(l′)) for some words

w1,w2,w3}.
10. for each l′ ∈ L do
11. Create a copy t′ of t.
12. T ′′ ← do parent′(t′, l′);
13. for each t′′ ∈ T ′′ do
14. Create a new node nnew labeled by l.
15. Let n′ be the node in t′′ corresponding to n.
16. Add nnew to t′′ as a right sibling of n′.
17. Mark nnew.
18. Add t′′ to T ′.
19. end
20. end
21. end
22. return T ′;

end

For example, let t′l and t′r be the left and right trees in
Fig. 8 (c), respectively. do following-sibling′(t′l , g) returns
an empty set, since n2 cannot have any sibling labeled by g
due to d(a) = f ?bc and thus do following-sibling(t′l , g) re-
turns nil in line 4. Consider do following-sibling′(t′r, g). In
line 9, we obtain L = {b}. In line 12, we obtain two trees
shown in Fig. 10, and for each of the trees a new node la-
beled by g is inserted as the right sibling of n′new (Fig. 8 (d)).

Example 1: Let q = /↓∗:: b/→+:: c/ ↑:: a and D = (d, s)
be a DTD, where d(s) = a|a′, d(a) = d(a′) = bc, d(b) =

Fig. 10 Trees obtained in line 12 of do following-sibling’.

Table 1 Syntax of XP′.
XP′ ::= ”/” LocationStep | ”/” LocationStep XP′

LocationStep ::= Axis ”::” Label | Axis ”::” Label PredSequence
Axis ::= ”↓” | ”↑” | ”↓∗” | ”→+” | ”←+”

Label ::= (any label in Σ)
PredSequence ::= ”[” RelativePath ”]” | ”[” RelativePath ”]” PredSequence

RelativePath ::= ChildLocationStep | ChildLocationStep ”/” RelativePath
ChildLocationStep ::= ”↓”::Label | ”↓”::Label PredSequence

d(c) = ε. Figure 11 presents the trees created by the algo-
rithm for each location step of q. Since L = {a, a′} in line
9 of do following-sibling′, two trees are created by location
step “→+:: c”. Then the right tree of the two trees is deleted
according to location step “↑:: a” since l(nnew) � a. �

We have the following results (the proofs are shown in
the Appendix).

Theorem 6: Let q ∈ XP{↓,↑,↓
∗,→+,←+} be a query and D be a

duplicate-free DTD. Then the algorithm returns “satisfiable”
iff q is satisfiable under D. �

Theorem 7: Let q ∈ XP{↓,↑,↓
∗,→+,←+} be a query, D be a

duplicate-free DTD, and c be a constant number. If q con-
tains at most c descendant-or-self axes, then the algorithm
runs in O((|q| · |Σ|)c · |q|2 · |D|2) time. �

Thus, under duplicate-free DTDs, the algorithm runs
in polynomial time if the number of descendant-or-self axes
in a query is bounded by a constant. Here, suppose that we
have no restriction on D. Then by Theorems 1 and 2 it is
unlikely that the algorithm runs in polynomial time even if
the number of descendant-or-self axes in a query is constant.

7. Conclusion

In this paper, we first showed that SAT(XP{↓,↑}) and
SAT(XP{↓,→

+,←+}) are NP-complete under non-restricted
DTDs but that SAT(XP{↓,↑,→

+,←+}) is in PTIME under
duplicate-free DTDs. We next showed that SAT(XP{↓,↓

∗,↑})
is NP-complete under duplicate-free DTDs and proposed an
algorithm for solving SAT(XP{↓,↓

∗,↑,→+,←+}) under duplicate-
free DTDs.

However, there are many things to do as future works.
First, this paper presents no experimental result. Thus we
need to implement the algorithms and conduct experiments
to examine the efficiency of our algorithm. Second, this
paper considered only DTDs as a schema language. It is
important to consider the satisfiability problem under more
powerful schema languages such as regular tree grammar.

Fig. 11 A tree “cancelled” by an upward axis.

1040
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

Third, The XPath fragments considered so far are restricted
in the sense that only a label is allowed as a node test and
no qualifier is supported. This restriction can be relaxed
slightly. If a query q has qualifiers using only child axes,
then q can be rewritten into an equivalent query without
qualifier. For example, consider the following query

/a/b[c/d[e]]/ f

This can be rewritten into the following equivalent one.

/a/b/c/d/e/↑:: d/↑:: c/↑:: b/ f .

Thus, our algorithms can be applied to a query in a more
general XPath fragment, formally shown as XP′ in Table 1.
XP′ is the same as XP in Sect. 2 except that XP′ can have
qualifiers using only child axes.

References

[1] M. Benedikt, W. Fan, and F. Geerts, “XPath satisfiability in the pres-
ence of dtds,” J. ACM, vol.55, no.2, 2008.

[2] F. Geerts and W. Fan, “Satisfiability of XPath queries with sibling
axes,” Proc. DBPL, pp.122–137, 2005.

[3] M. Montazerian, P.T. Wood, and S.R. Mousavi, “XPath query sat-
isfiability is in PTIME for real-world DTDS,” Proc. XSym, pp.17–
30, 2007.

[4] J. Hidders, “Satisfiability of XPath expressions,” Proc. DBPL,
pp.21–36, 2003.

[5] L.V.S. Lakshmanan, G. Ramesh, H. Wang, and Z.J. Zhao, “On test-
ing satisfiability of tree pattern queries,” Proc. VLDB, pp.120–131,
2004.

[6] D. Figueira, “Satisfiability of downward XPath with data equality
tests,” Proc. PODS, pp.197–206, 2009.

[7] Y. Ishihara, T. Morimoto, S. Shimizu, K. Hashimoto, and T.
Fujiwara, “A tractable subclass of DTDs for XPath satisfiability with
sibling axes,” Proc. DBPL, pp.68–83, 2009.

[8] Y. Ishihara, S. Shimizu, and T. Fujiwara, “Extending the tractabil-
ity results on XPath satisfiability with sibling axes,” Proc. XSym,
pp.33–47, 2010.

[9] N. Suzuki and Y. Fukushima, “Satisfiability of simple XPath frag-
ments in the presence of DTDs,” Proc. WIDM, pp.15–22, 2009.

[10] G. Gottlob, C. Koch, and R. Pichler, “The complexity of XPath
query evaluation,” Proc. PODS, pp.179–190, 2003.

Appendix: Proofs for Theorems 6 and 7

Theorem 6 can be proved by three steps similar to the proof
for Theorem 3. First, the following lemma holds similarly
to Lemma 1.

Lemma 3: Let q ∈ XP{↓,↑,↓
∗,→+,←+} be a query and D be a

duplicate-free DTD. Then there is a traverse tree of q valid
against D iff q is satisfiable under D. �

Then the following lemma corresponds to Lemma 2.
Since the algorithm in this section constructs a set of trees
instead of a single tree, the following lemma is extended
accordingly.

Lemma 4: Let D be a duplicate-free DTD, q ∈

XP{↓,↑,↓
∗,→+,←+} be a query, and T be the set of trees obtained

by the algorithm for (q,D). Then the following holds.

1. For any t ∈ T , t is a traverse tree of q valid against D.
2. For every traverse tree t′ of q valid against D, there is

a tree t ∈ T such that there is a total and surjective
function h : N → N′ satisfying the following, where N
and N′ are the sets of nodes of t and t′, respectively.

• For every node n′ in t′, I(n′) = I(ni) ∪ · · · ∪ I(n j),
where ni, · · · , n j is the nodes in t such that h(ni) =
· · · = h(n j) = n′.

Proof: Condition (1) follows from the construction of the
algorithm. We show by induction on |q| that Condition (2)
holds.

Basis: |q| = 1. Let q = /ax :: lb, where ax ∈ {↓, ↓∗} and
lb is a label. Suppose first that ax =↓. Let t = n′ → n, where
l(n′) = root, l(n) = lb, I(n′) = ∅, and I(n) = {1}. If lb = s,
then t is the traverse tree of q valid against D and T = {t},
thus Condition (2) holds. Otherwise, there is no traverse
tree of q valid against D by definition. Suppose next that
ax =↓∗ and let t = n′ � n, where l(n′) = root, l(n) = lb,
I(n′) = ∅, and I(n) = {1}. If lb is reachable from s in D, then
t is the traverse tree of q valid against D, and T = {t} by the
construction of the algorithm. Here, for labels a, b ∈ Σ, b is
reachable from a if (i) a = b or (ii) b occurs in d(c) for some
label c reachable from a. Otherwise, there is no traverse tree
of q valid against D.

Induction: Assume as an induction hypothesis that if
|q| < i, then Condition (2) holds. Consider the case where
|q| = i. Let q = q′/ax :: lb, where q′ is a query with |q′| =
i−1. Let Tq′ be the set of trees obtained by the algorithm for
(q′,D). Moreover, let t′ be a traverse tree of q′ valid against
D, and let n be the “context node” in t′, i.e., |q′| ∈ I(n). We
have five cases according to ax. In the following, we show
the cases where ax =↓ and ax =↑ (the other cases can be
shown similarly).

The case where ax =↓: If a node labeled by lb is not
insertable as a child of n and n has no child labeled by lb,
then any traverse tree of q obtained from t′ is invalid against
D. Conversely, suppose first that a node labeled by lb is
insertable as a child of n. Let t′2 be the tree obtained from t′
by inserting a node labeled by lb as a child of n. Moreover,
let t be the tree in Tq′ “corresponding” to t′, i.e., t is the tree
such that Condition (2) holds for t and t′ (t must be exist by
the induction hypothesis), and t2 be the tree obtained from
t by inserting a node labeled by lb as a child of the node n2

corresponding to n, i.e., h(n2) = n. Then by the construction
of the algorithm we can show that t2 ∈ T and that Condition
(2) holds for t2 and t′2 since Condition (2) holds for t and t′.
Suppose next that a node labeled by lb is not insertable as a
child of n but n has a child labeled by lb. In this case, we
can show that Condition (2) holds similarly to above.

The case where ax =↑: Suppose first that the edge en-
tering n is not a dashed edge. Let n′ be the parent of n in t′,
and let t′2 be the tree obtained from t′ by adding i to I(n′).
If lb � l(n′), then by definition t′2 is not a traverse tree of q.

SUZUKI et al.: SATISFIABILITY OF SIMPLE XPATH FRAGMENTS UNDER DUPLICATE-FREE DTDS
1041

Otherwise, t′2 is a traverse tree of q valid against D. Let t
be the tree in Tq′ corresponding to t′ (t must be exist by the
induction hypothesis), and let t2 be the tree obtained from t
by adding i to I(n2), where n2 is the node corresponding to
n′, i.e., h(n2) = n′. Then by the construction of the algo-
rithm we can show that t2 ∈ T and that Condition (2) holds
for t2 and t′2 since Condition (2) holds for t and t′. Suppose
next that the edge entering n is a dashed edge. If (i) n is
not insertable as a child of n′ and (ii) n′ � n cannot be ex-
panded by a node labeled by lb, then any tree obtained from
t′ by Case (3) cannot be valid against D. Consider first (i)
and suppose that n is insertable as a child of n′, and let t′2 be
the tree obtained from t′ by replacing n′ � n with n′ → n.
Moreover, let t be the tree in Tq′ corresponding to t′ and t2 be
the tree obtained from t by replacing n′2 � n2 with n′2 → n2,
where h(n′2) = n′ and h(n2) = n. Then by the construction
of the algorithm we can show that t2 ∈ T and that Condition
(2) holds for t2 and t′2 since Condition (2) holds for t and t′.
Second, (ii) can be shown in a similar way. �

Now Theorem 6 can be shown as follows. First, if
the algorithm returns “satisfiable”, then it is easy to show
that the tree created by the algorithm is a traverse tree valid
against D, with each “shared” node created in lines 11 to
14 of do descendant-or-self′ extracted. Suppose next that
the algorithm returns “unsatisfiable”. Then T = ∅ for (q,D).
This implies that there is no traverse tree of q valid against D
by Condition (2) of Lemma 4. Thus q is unsatisfiable under
D by Lemma 3.

Consider next Theorem 7. Assume that q contains
c descendant-or-self axes. Let us first consider the num-
ber of trees created by the algorithm. Since q contains c
descendant-or-self axes, we can denote

q = /p0/↓∗:: l1/p1/↓∗:: l2/p2/ · · · /↓∗:: lc/pc,

where pi is a sequence of zero or more location steps using
↓, ↑, →+, and ←+ axes and li is a label. For 1 ≤ i ≤ c, let
ki be the number of→+ and←+ axes in pi. Then pi can be
denoted

pi = /pi,1/si,1/pi,2/ · · · /si,ki/pi,ki+1,

where pi, j is a sequence of zero or more location steps using
↓ and ↑ axes, and si, j is a location step whose axis is→+ or
←+.

We show that due to pi the number of trees kept
by the algorithm is increased by a factor of O(|Σ|). In
the following, we consider the case where i = 1 (the
other cases can be shown similarly). For an index j with
1 ≤ j ≤ k1, suppose that the algorithm has a tree t1, j
when the algorithm tries to process s1, j ∈ {→+,←+}. Let
nk be the marked node in t1, j. If no dashed edge enters
nk, then no new tree is created by do following-sibling′/
do preceding-sibling′. On the other hand, if the edge en-
tering nk is a dashed edge, then O(|Σ|) trees are created by
do following-sibling′/do preceding-sibling′ (see lines 9 to
12 of do following-sibling′). Let p′1 be the subquery of p1

following s1, j, that is,

p′1 = /p1, j+1/s1, j+1/p1, j+2/ · · · /s1,k1/p1,k1+1.

If none of the ancestors of nk is marked during processing
p′1, then no new tree is created since at any time the edge
entering the marked node cannot be a dashed edge. Suppose
on the other hand that the parent of nk is marked by process-
ing some upward location step in p′1, say ↑:: l. Then all the
trees created from t1, j as above except one are deleted by
do parent′ since the subroutine deletes every tree such that
the parent of nk is not labeled by l (lines 3 to 7 of do parent′).
That is, as shown above by s1, j O(|Σ|) trees are created but
the increase by s1, j is “cancelled” by the upward location
step (see Example 1 below). A similar argument can be ap-
plied to the rest of location steps in p′1. Therefore, from one
tree O(|Σ|) new trees are created by processing p1.

For a tree t and a location step ↓∗:: li, O(|t|) trees are
created by do descendant-or-self′(t, li), and the size of any
tree created by the algorithm is bounded by the number of
location steps in q. Thus O((|q| · |Σ|)c) trees are created by
processing q.

Finally, do descendant-or-self′ is the most time-
consuming subroutine and let us consider its time complex-
ity. In the subroutine, computing the set B in line 9 is the
most complex. To obtain B, we first find set R(l) = {l′ |
l is reachable from l′ in D}, which takes O(|D|) time. Then
for a descendant n′ of n, n′ ∈ B iff for some label l′ ∈ R(l),
l′ appears in d(l(n′)) and a node labeled by l′ is insertable
as a child of n′. Since |R(l)| ∈ O(|D|) and whether a node
labeled by l′ is insertable as a child of n′ can be determined
in O(|d(l(n′))|) time, whether n′ ∈ B can be determined in
O(|D|2) time. Since the size of input tree t is in O(|q|), line 9
can be done in O(|q| · |D|2) time, which is the time complex-
ity of do descendant-or-self′ for input (t, l). Thus lines 5 to
22 of the main algorithm runs in O((|q| · |Σ|)c · (|q| · |D|2)) time
for each i = 1, · · · ,m. Consequently, the algorithm runs in
O(|q| · (|q| · |Σ|)c · (|q| · |D|2)) = O((|q| · |Σ|)c · |q|2 · |D|2) time.
Thus the theorem holds.

Nobutaka Suzuki received his bache-
lor’s degree in information and computer sci-
ences from Osaka University in 1993, and his
M.E. and Ph.D. degrees in information science
from Nara Institute of Science and Technology
in 1995 and 1998, respectively. He was with
Okayama Prefectural University as a Research
Associate in 1998–2004. In 2004, he joined
University of Tsukuba as an Assistant Professor.
Since 2009, he has been an Associate Professor
of Graduate School of Library, Information and

Media Studies, University of Tsukuba. His current research interests in-
clude database theory and structured documents.

1042
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.5 MAY 2013

Yuji Fukushima received his bachelor’s
and M.C. degrees in library and information sci-
ence from University of Tsukuba in 2007 and
2009, respectively. From 2009, he has joined
Yahoo Japan Corporation. His current research
interests are data transformation and XPath sat-
isfiability.

Kosetsu Ikeda received his bachelor’s de-
gree in library and information science from
University of Tsukuba in 2011. He has been
an M.C. student of Graduate School of Library,
Information and Media Studies, University of
Tsukuba. His current research interests are
XML query processing and Web data manage-
ment.

