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Abstract

The first and second order large-deviation efficiency is discussed for an exponential family

of distributions. The lower bound for the tail probability of asymptotically median unbiased

estimators is directly derived up to the second order by use of the saddlepoint approximation.

The maximum likelihood estimator (MLE) is also shown to be second order large-deviation effi-

cient in the sense that the MLE attains the lower bound. Further, in certain curved exponential

model, the first and second order lower bounds are obtained, and the MLE is shown not to be

first order large-deviation efficient.
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1 Introduction

Under suitable regularity conditions, the asymptotic efficiency of estimators including higher

order has been investigated from the viewpoint of the concentration probability around the

true parameter (see, e.g. Akahira and Takeuchi, 1981, 2003, Pfanzagl and Wefelmeyer, 1985,

Ghosh, 1994). In such a case the Edgeworth expansion of the distribution of estimator plays an

important part. For example, it is shown that the modified maximum likelihood estimator is

third order asymptotically efficient in some class of estimators under regularity conditions.

On the other hand, from the viewpoint of large-deviation, the asymptotic efficiency can be

also considered. For example, the Bahadur efficiency is well known. Indeed, for any consistent

estimator θ̂n of an unknown real-valued parameter θ and any ε > 0, the tail probability

α
(
θ̂n, θ, ε

)
:= Pθ,n

{
|θ̂n − θ| > ε

}
tends to zero as n → ∞. Under suitable conditions it is shown that the rate of convergence is

exponential and has an asymptotic expansion of the form

α
(
θ̂n, θ, ε

)
= e−nβ(θ̂n,θ,ε)

(
c0 +

c1

n
+ · · ·

)
,

where β(θ̂n, θ, ε) is positive and ci’s are constants. Here the constant β(θ̂n, θ, ε) is called an expo-

nential rate. Bahadur (1971) shows that the upper bound for the exponential rate of consistent
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estimators is given by use of the amount of the Kullback-Leibler (K-L) information and discusses

its attainment under suitable regularity conditions, which is called the Bahadur efficiency (see

also Fu, 1973). Using the asymptotic expansion of the amount of the K-L information, the

Bahadur type second order efficiency is also considered by Fu (1982) (see also Akahira, 1995).

Recently, from a different viewpoint from the Bahadur efficiency, the concept of first and sec-

ond order large-deviation efficiency has been discussed by Akahira (2006). In the concept it is

essential to consider the asymptotic relative ratio of the tail probability of any asymptotically

median unbiased estimator to the first order lower bound up to the second order. Indeed, the first

and second order lower bound for the tail probability of asymptotically median unbiased estima-

tors are directly derived by use of the saddlepoint approximation. In this paper the derivation

is introduced according to Akahira (2006), and for an exponential family of distributions, the

lower bound is obtained up to the second order and the maximum likelihood estimator (MLE)

is shown to be second order large-deviation efficient in the sense that the MLE attains the lower

bound. Further, in certain curved exponential model, the lower bound is given up to the second

order and the MLE is shown not to be first order large-deviation efficient.

2 Definitions

Suppose that X1, X2, · · · , Xn, · · · is a sequence of independent and identically distributed

(i.i.d.) random variables with a probability density function (p.d.f.) f(x, θ) with respect to a

σ-finite measure µ, where θ ∈ Θ and Θ is an open interval in R1. Put X := (X1, · · · , Xn). If

an estimator θ̂n := θ̂n(X) of θ satisfies

Pθ,n{θ̂n ≤ θ} =
1
2

+ o(1), Pθ,n{θ̂n ≥ θ} =
1
2

+ o(1),

as n → ∞, then θ̂n is called asymptotically median unbiased (AMU for short) for θ. Let A be

a class of all the AMU estimators of θ.

Definition(Akahira, 2006). If there exists an AMU estimator θ̂∗n = θ̂∗n(X) such that for any

θ̂n ∈ A, any θ ∈ Θ and any a > 0

Pθ,n{|θ̂n − θ| ≥ a} ≥ Pθ,n{|θ̂∗n − θ| ≥ a}{1 + o(1)}

=: Bn(a, θ){1 + o(1)} (2.1)

as n → ∞, then θ̂∗n is called first order large-deviation efficient (LDE). If there exists an AMU

estimator θ̂∗∗n = θ̂∗∗n (X) such that for any θ̂n ∈ A, any θ ∈ Θ and any a > 0

Pθ,n{|θ̂n − θ| ≥ a}
Bn(a, θ)

≥ 1 +
b1(a, θ)

n
+ o

(
1
n

)
(2.2)

as n → ∞ and θ̂∗∗n attains the lower bound in (2.2) up to the order o(1/n), then θ̂∗∗n is called

second order LDE, where Bn(a, θ) is given by (2.1) and b1(a, θ) is certain constant.

In order to discuss the higher order LDE, it is necessary to get the lower bound for the

two-sided tail probability Pθ,n{|θ̂n − θ| > a} of θ̂n(∈ A) up to the higher order.
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3 First and second order lower bounds for the tail probability

Let θ0 be any fixed value in Θ. Then we consider a problem of testing the hypothesis H : θ =

θ0 + a, against the alternative K : θ = θ0, where a > 0. Let φ∗(X) be the most powerful (MP)

test of level 1/2 + o(1). Letting θ̂n ∈ A and putting

Aθ̂n
:= {x|θ̂n(x) ≤ θ0 + a},

we see that the indicator χAθ̂n
(x) is a test of level 1/2 + o(1), where x := (x1, · · · , xn). Since

Eθ0(φ
∗) ≥ Eθ0 [χAθ̂n

] = Pθ0,n{θ̂n ≤ θ0 + a}

for large n, it follows that

Pθ0,n{θ̂n − θ0 > a} ≥ 1 − Eθ0(φ
∗). (3.1)

In order to obtain the lower bound, i.e., the right-hand side of (3.1), it is seen from the funda-

mental lemma of Neyman-Pearson that a test with the rejection region of type

Z̄(θ0) :=
1
n

n∑
j=1

Zj(θ0) > c

is MP, where

Zj(θ0) := log(f(Xj , θ0)/f(Xj , θ0 + a)) (j = 1, · · · , n)

and c is a constant chosen such that the asymptotic level of the test is 1/2 + o(1). Then

c = Eθ0+a[Z1(θ0)] + o(1) =: µ + o(1) (say). Note that Z1, · · · , Zn are i.i.d. and

µ = −
∫ ∞

−∞

{
log

f(x, θ0 + a)
f(x, θ0)

}
f(x, θ0 + a)dµ(x) =: −I(θ0 + a, θ0) < 0,

where I(θ0 + a, θ0) is the amount of Kullback-Leibler information. Since

Eθ0(φ
∗) = Pθ0,n{Z̄(θ0) > c},

it follows from (3.1) that for large n

Pθ0,n{θ̂n − θ0 > a} ≥ 1 − Pθ0,n{Z̄(θ0) > c} = Pθ0,n{Z̄(θ0) ≤ c}. (3.2)

for a > 0. In order to obtain the asymptotic expansion of the tail probability of Z̄(θ0) in (3.2),

we use the saddlepoint approximation (Jensen, 1995). Let

MZ1(θ0)(t; θ0) := Eθ0 [exp{tZ1(θ0)}], KZ1(θ0)(t; θ0) := log MZ1(θ0)(t; θ0)

for all t in some open interval involving the origin, that is, they are the moment generating

function (m.g.f.) and the cumulant generating function (c.g.f.) of Z1(θ0), respectively. Let t̂(a)

be a solution of t of the equation (∂/∂t)KZ1(θ0)(t; θ0) = µ. In a similar way to the case a > 0, we
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have a lower bound in the case a < 0. Since θ0 is arbitrary in Θ, henceforth we write θ instead

of θ0.

From (3.2) and the saddlepoint approximation we have the following.

Theorem 3.1(Akahira, 2006). For any θ̂n ∈ A, any θ ∈ Θ and any a > 0, it holds that for large

n

Pθ,n{θ̂n − θ > a}

≥ 1
λ

Mn
Z1

(t̂)e−nµt̂

[
B0(λ) +

sgn(t̂)√
n

ζ3(t̂)
6

B3(λ) +
1
n

{
ζ4(t̂)
24

B4(λ) +
ζ2
3 (t̂)
72

B6(λ)
}

+O

(
1
n2

)]
, (3.3)

where λ =
√

n
∣∣t̂∣∣ √

K ′′
Z1

(t̂), ζ3(t) := κ3,θ+a(Z1)/{K ′′
Z1

(t)}3/2, ζ4(t) := κ4,θ+a(Z1)/{K ′′
Z1

(t)}2

with third and fourth cummulants κ3,θ+a(Z1) and κ4,θ+a(Z1) of Z1 = Z1(θ) , and

B0(λ) : = λeλ2/2{1 − Φ(λ)},

B3(λ) : = −
{

λ3B0(λ) − 1√
2π

(λ3 − λ)
}

,

B4(λ) : = λ4B0(λ) − 1√
2π

(λ4 − λ2),

B6(λ) : = λ6B0(λ) − 1√
2π

(λ6 − λ4 + 3λ2).

For the case a < 0, we also obtain a similar lower bound to (3.3) for the tail probability

Pθ,n{θ̂n−θ < a}. If there exists an AMU estimator attaining the lower bound for the asymptotic

relative ratio of the two-sided tail probability Pθ,n{|θ̂n − θ| > a} to the first order lower bound

up to the order o(1/n), then it is second order LDE.

4 The second order LDE for an exponential family of distribu-

tions

Suppose that X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random variables with a p.d.f. f(x, θ)

(w.r.t. the Lebesgue measure) which belongs to an exponential family of distributions, i.e.

f(x, θ) = exp{θx + C(θ) + S(x)} (4.1)

for x ∈ X ⊂ R1, where θ ∈ Θ and Θ is an open interval of R1, C(·) is a four times differentiable

real-valued function of Θ, and S(·) is a real valued function on X .

In a similar way to Section 3, we obtain the lower bound for the tail probability. Since, for

a > 0

Zj(θ) = log(f(Xj , θ)/f(Xj , θ + a)) = C(θ) − C(θ + a) − aXj

for j = 1, · · · , n, the m.g.f. of Z1(θ) is given by

MZ1(θ)(t; θ) = Eθ[exp{tZ1(θ)}]
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= exp[{t{C(θ) − C(θ + a)} + C(θ) − C(θ − at)].

Since the c.g.f. of Z1(θ) is

KZ1(θ)(t; θ) := log MZ1(θ)(t; θ) = t{C(θ) − C(θ + a)} + C(θ) − C(θ − at),

it follows that

∂

∂t
KZ1(θ)(t; θ) = C(θ) − C(θ + a) + aC(1)(θ − at). (4.2)

On the other hand we have

µ := Eθ+a[Z1(θ)] = Eθ+a[C(θ) − C(θ + a) − aX1] = C(θ) − C(θ + a) + aC(1)(θ + a). (4.3)

From (4.2) and (4.3) we have t̂ = −1 as a solution of the equation (∂/∂t)KZ1(θ)(t; θ) = µ. Since

KZ1(θ)(t; θ + a) = log MZ1(θ)(t; θ + a) = log Eθ+a[exp{tZ1(θ)}]

= t{C(θ) − C(θ + a)} + C(θ + a) − C(θ + a − at),

it follows that the second, third and fourth cumulants are

κ2,θ+a(Z1(θ)) = Vθ+a(Z1(θ)) =
∂2

∂t2
KZ1(θ)(0; θ + a) = −a2C(2)(θ + a) > 0,

κ3,θ+a(Z1(θ)) =
∂3

∂t3
KZ1(θ)(0; θ + a) = a3C(3)(θ + a),

κ4,θ+a(Z1(θ)) =
∂4

∂t4
KZ1(θ)(0; θ + a) = −a4C(4)(θ + a),

respectively, where, for each j = 2, 3, 4, C(j)(θ) are the j-th derivative of C(θ). From Theorem

3.1 we have the following.

Theorem 4.1 For any θ̂n ∈ A, any θ ∈ Θ and any a > 0

Pθ,n{θ̂n − θ > a}
Bn(a, θ)

≥ 1 +
exp{(na2/2)C(2)(θ + a)}

a
√

− nC(2)(θ + a)
{

1 − Φ
(
a
√

− nC(2)(θ + a)
)} {

4
n

+ O

(
1
n2

)}
(4.4)

as n → ∞, where

Bn(a, θ) :=
{

1 − Φ
(

a
√

− nC(2)(θ + a)
)}

· exp
[
n

{
C(θ) − C(θ + a) + aC(1)(θ + a) − a2

2
C(2)(θ + a)

}]
,

4 :=
1

24
√

2π{C(2)(θ + a)}2

[
12
a

C(3)(θ + a) − 3C(4)(θ + a) +
5{C(3)(θ + a)}2

C(2)(θ + a)

]
.

The proof is straightforward from Theorem 3.1, since B0(λ) ≈ 1/
√

2π, B3(λ) ≈ −3/(
√

2πλ),

B4(λ) ≈ 3/
√

2π and B6(λ) ≈ −15/
√

2π, as λ → ∞. In a similar way to Theorem 4.1, the lower

bound for the probability Pθ,n{θ̂n − θ < a} for a < 0 is also obtained.
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Theorem 4.2 The maximum likelihood estimator (MLE) θ̂ML is second order LDE.

Proof Without loss of generality, we assume that θ = 0. First, since, for a > 0

P0,n{θ̂ML > a} = P0,n

 1
n

n∑
j=1

∂

∂a
log f(Xj , a) > 0

 ,

it follows from (4.1) that

P0,n{θ̂ML > a} = P0,n{X̄ > −C(1)(a)}, (4.5)

where X̄ := (1/n)
∑n

i=1 Xi. On the other hand we have from (4.1)

Z̄(0) :=
1
n

n∑
j=1

Zj(0) =
1
n

n∑
j=1

log
f(Xj , 0)
f(Xj , a)

= C(0) − C(a) − aX̄. (4.6)

Letting

c := Ea[Z1(0)] = C(0) − C(a) − aEa(X1) = C(0) − C(a) + aC(1)(a), (4.7)

we obtain from (4.5) to (4.7)

P0,n{θ̂ML > a} = P0,n

{
X̄ >

1
a
(−c + C(0) − C(a))

}
= P0,n{c > C(0) − C(a) − aX̄}

= 1 − P0,n{Z̄(0) ≥ c},

which implies that the equality in (3.2) holds, hence the MLE θ̂ML satisfies the equality in (3.3)

and (4.4). In the case when a < 0, we also have a similar result to the case a > 0. Therefore

the MLE is second order LDE. ¤

5 The lower bound for the tail probability in certain curved

exponential model

Suppose that X1, X2, · · · , Xn, · · · is a sequence of independent and identically distributed

random variables according to a normal distribution N(2θ, θ2), where θ > 0, which belongs to a

curved exponential family of distributions.

First, in order to obtain the bound for the tail probability of asymptotically median unbiased

estimators of θ, we consider a problem of testing the hypothesis H : θ = θ0 + a, against the

alternative K : θ = θ0, where θ0 is arbitrarily fixed and a > 0. Since

Z1(θ0) = log f(X, θ0) − log f(X, θ0 + a)

= − log θ0 −
1

2θ2
0

(X − 2θ0)2 + log(θ0 + a) +
1

2(θ0 + a)2
{X − 2(θ0 + a)}2,
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we have

µ : = Eθ0+a[Z1(θ0)]

= log
θ0 + a

θ0
− 1

2θ2
0

{Eθ0+a[{X − 2(θ0 + a)}2] + 4a2} +
1
2

= log
θ0 + a

θ0
− 1

2θ2
0

{(θ0 + a)2 + 4a2} +
1
2

= log
θ0 + a

θ0
− 5

2

(
a

θ0

)2

− a

θ0
. (5.1)

Under the hypothesis H : θ = θ0 + a, the m.g.f. of Z1(θ0) is given by

MZ1(θ0)(t, θ0 + a) := Eθ0+a[etZ1(θ0)]

= Eθ0+a

[
exp

{
t

(
log

θ0 + a

θ0
− 1

2θ2
0

(X − 2θ0)2 +
1

2(θ0 + a)2
(X − 2(θ0 + a))2

)}]
=

(
θ0 + a

θ0

)t 1√
2π(θ0 + a)

∫ ∞

−∞
exp

{
− t

2θ2
0

(x − 2θ0)2 +
t − 1

2(θ0 + a)2
(x − 2(θ0 + a))2

}
dx

=
(

θ0 + a

θ0

)t 1√
2π(θ0 + a)

∫ ∞

−∞
exp

{
− t

2θ2
0

(u + 2a)2 +
t − 1

2(θ0 + a)2
u2

}
du

=
(

θ0 + a

θ0

)t
√

A

θ0 + a
exp

{
a2t

θ2
0

(
2At

θ2
0

− 2
)}

(5.2)

for all t > −θ2
0/{a(a + 2θ0)}, where

A :=
θ2
0(θ0 + a)2

a(a + 2θ0)t + θ2
0

.

Since, by (5.2),

KZ1(θ0)(t, θ0 + a) = log MZ1(θ0)(t, θ0 + a)

= t log
θ0 + a

θ0
− 1

2
log

a(a + 2θ0)t + θ2
0

θ2
0(θ0 + a)2

− log(θ0 + a) +
2a2t

θ2
0

{
(θ0 + a)2t

a(a + 2θ0)t + θ2
0

− 1
}

,

it follows that

K
(1)
Z1(θ0)(t, θ0 + a) :=

∂

∂t
KZ1(θ0)(t, θ0 + a)

= log
θ0 + a

θ0
− a(a + 2θ0)

2(a(a + 2θ0)t + θ2
0)

+
2a2

θ2
0

{
(a + θ0)2t

a(a + 2θ0)t + θ2
0

− 1
}

+
2a2(a + θ0)2t

(a(a + 2θ0)t + θ2
0)2

, (5.3)

K
(2)
Z1(θ0)(t, θ0 + a) :=

∂2

∂t2
KZ1(θ0)(t, θ0 + a)

=
a2(a + 2θ0)2

2(a(a + 2θ0)t + θ2
0)2

+
2a2(a + θ0)2

(a(a + 2θ0)t + θ2
0)2

+
2a2(a + θ0)2(θ2

0 − a(a + 2θ0)t)
(a(a + 2θ0)t + θ2

0)3
,

K
(3)
Z1(θ0)(t, θ0 + a) :=

∂3

∂t3
KZ1(θ0)(t, θ0 + a)

= −a3(a + 2θ0){(a + 2θ0)2 + 6(a + θ0)2}
{a(a + 2θ0)t + θ2

0}3
− 6a3(a + θ0)2(a + 2θ0){θ2

0 − a(a + 2θ0)t}
{a(a + 2θ0)t + θ2

0}4
,
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K
(4)
Z1(θ0)(t, θ0 + a) :=

∂4

∂t4
KZ1(θ0)(t, θ0 + a)

=
3a4(a + 2θ0)2{(a + 2θ0)2 + 6(a + θ0)2}

{a(a + 2θ0)t + θ2
0}4

+ 6a4(a + θ0)2(a + 2θ0)2
{

1
(a(a + 2θ0)t + θ2

0)4
+

4(θ2
0 − a(a + 2θ0)t)

(a(a + 2θ0)t + θ2
0)5

}
.

Hence the cumulants of Z1(θ0) under H : θ = θ0 + a are given as follows.

µ =Eθ0+a[Z1(θ0)] = K
(1)
Z1(θ0)(0, θ0 + a) = log

θ0 + a

θ0
− 5a2

2θ2
0

− a

θ0
,

Vθ0+a(Z1(θ0)) = K
(2)
Z1(θ0)(0, θ0 + a) =

9
2

(
a

θ0

)4

+ 10
(

a

θ0

)3

+ 6
(

a

θ0

)2

,

κ3,θ0+a(Z1(θ0)) = K
(3)
Z1(θ0)(0, θ0 + a) = −

(
a

θ0

)3 (
a

θ0
+ 2

)(
13a2

θ2
0

+
28a

θ0
+ 16

)
,

κ4,θ0+a(Z1(θ0)) = K
(4)
Z1(θ0)(0, θ0 + a) = 3

(
a

θ0

)4 (
a

θ0
+ 2

)2
{

17
(

a

θ0

)2

+
36a

θ0
+ 20

}
.

Under the alternative K : θ = θ0, the m.g.f. of Z1(θ0) is given by

MZ1(θ0)(t, θ0) = Eθ0 [e
tZ1(θ0)]

= Eθ0

[
exp

{
t

(
log

θ0 + a

θ0
− 1

2θ2
0

(X − 2θ0)2 +
1

2(θ0 + a)2
(X − 2(θ0 + a))2

)}]
=

(
θ0 + a

θ0

)t 1√
2πθ0

∫ ∞

−∞
exp

{
− t + 1

2θ2
0

(x − 2θ0)2 +
t

2(θ0 + a)2
(x − 2(θ0 + a))2

}
dx

=
(

θ0 + a

θ0

)t 1
θ0

{
exp

2a2t(B̃t + 1)
(θ0 + a)2

}∫ ∞

−∞

1√
2π

exp
{
− 1

2B̃(θ0 + a)2
(u + 2aB̃t)2

}
du

=
(

θ0 + a

θ0

)t+1 θ0√
a(a + 2θ0)t + (θ0 + a)2

exp

{
2a2t(B̃t + 1)

(θ0 + a)2

}
(5.4)

for all t > −(θ0 + a)2/{a(a + 2θ0)}, where

B̃ =
θ2
0

a(a + 2θ0)t + (θ0 + a)2
.

Since

KZ1(θ0)(t, θ0) := log MZ1(θ0)(t, θ0)

= (t + 1){log(θ0 + a) − log θ0} + log θ0 −
1
2

log(a(a + 2θ0)t + (θ0 + a)2) +
2a2t(B̃t + 1)

(θ0 + a)2
,

it follows that

∂KZ1(θ0)(t, θ0)
∂t

= log
θ0 + a

θ0
− a(a + 2θ0)

2(a(a + 2θ0)t + (θ0 + a)2)

+
2a2

(θ0 + a)2
(B̃′t2 + 2B̃t + 1), (5.5)
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where B̃′ = ∂B̃/∂t. Since

B̃′ = − aθ2
0(a + 2θ0)

{a(a + 2θ0)t + (θ0 + a)2}2
,

it follows from (5.5) that

∂KZ1(θ0)(t, θ0)
∂t

= log
θ0 + a

θ0
− a(a + 2θ0)

2{a(a + 2θ0)t + (θ0 + a)2}

+
2a3θ2

0(a + 2θ0)t2

(θ0 + a)2{a(a + 2θ0)t + (θ0 + a)2}2
+

4a2θ2
0t

{a(a + 2θ0)t + (θ0 + a)2}2

+
2a2

(θ0 + a)2
. (5.6)

Since, by (5.1),
∂KZ1(θ0)(−1, θ0)

∂t
= log

θ0 + a

θ0
− 5a2

2θ2
0

− a

θ0
= µ,

it is seen that t = t̂ = −1 is a solution of the quation

∂KZ1(θ0)(t, θ0)
∂t

= µ.

From (5.6) we have

∂2KZ1(θ0)(t, θ0)
∂t2

=
a2(a + 2θ0)2

2{a(a + 2θ0)t + (θ0 + a)2}2

+
2a3θ2

0(a + 2θ0)[2t{a(a + 2θ0)t + (θ0 + a)2}2 − 2a(a + 2θ0)t2{a(a + 2θ0)t + (θ0 + a)2}]
(θ0 + a)2{a(a + 2θ0)t + (θ0 + a)2}4

+
4a2θ2

0[{a(a + 2θ0)t + (θ0 + a)2}2 − 2a(a + 2θ0)t{a(a + 2θ0)t + (θ0 + a)2}]
{a(a + 2θ0)t + (θ0 + a)2}4

,

which yields

∂2KZ1(θ0)(−1, θ0)
∂t2

=
9a4

2θ4
0

+
10a3

θ3
0

+
6a2

θ2
0

. (5.7)

Hence, from (3.3), for any θ̂n ∈ A and any a > 0, it holds that for large n

Pθ,n{θ̂n − θ > a} ≥ B0(λ)
λ

Mn
Z1(θ)(t̂, θ)e

−nµt̂

[
1 +

sgn(t̂)√
n

ζ3(t̂)
6

B3(λ)
B0(λ)

+
1
n

{
ζ4(t̂)
24

B4(λ)
B0(λ)

+
ζ2
3 (t̂)
72

B6(λ)
B0(λ)

}
+ O

(
1
n2

)]
, (5.8)

where λ :=
√

n|t̂|
√

(∂2/∂t2)KZ1(θ)(t̂, θ), ζ3(t) := κ3,θ+a(Z1(θ))/{(∂2/∂t2)KZ1(θ)(t, θ)}3/2, ζ4(t) :=

κ4,θ+a(Z1(θ))/{(∂2/∂t2)KZ1(θ)(t, θ)}2. From (5.7) we have

λ = β

√
n

(
9
2
β2 + 10β + 6

)
,

9



where β = a/θ. Since B̃ = 1 for t = −1, it follows from (5.4) that

MZ1(θ)(−1, θ) = Eθ[e−Z1(θ)] = 1

Since

B0(λ)
λ

Mn
Z1(θ)(t̂, θ)e

−nµt̂ =
1
λ

enµλeλ2/2{1 − Φ(λ)}

= {1 − Φ(λ)} exp
[
n

{
log(1 + β) − 5

2
β2 − β

}
+

n

2
β2

(
9
2
β2 + 10β + 6

)]
, (5.9)

it follows from (5.8) that for any θ̂n ∈ A

Pθ,n{θ̂n − θ > a} ≥

{
1 − Φ

(
a

θ

√
n

(
9a2

2θ2
+

10a

θ
+ 6

))}

·
[
exp

{
n

(
log

(
1 +

a

θ

)
− 5

2

(a

θ

)2
− a

θ

)
+

n

2

(a

θ

)2
(

9a2

2θ2
+

10a

θ
+ 6

)}]{
1 + O

(
1
n

)}
as n → ∞. From (5.9) and Mills’ ratio we have for a fixed small β = a/θ,

B0(λ)
λ

Mn
Z1(θ)(t̂, θ)e

−nµt̂ ≈ 1
λ

φ(λ) exp
(

nµ +
λ2

2

)
=

exp[n{log(1 + β) − 5
2β2 − β}]√

2πβ
√

n(9
2β2 + 10β + 6)

≈ 1√
2π

√
6nβ

e−3nβ+O(nβ3)

= φ(
√

6nβ)
1√
6nβ

(1 + O(nβ3))

≈ 1 − Φ(
√

6nβ), (5.10)

as n → ∞. Hence we obtain for a fixed small a > 0,

Pθ,n{θ̂n − θ > a} ≥
{

1 − Φ
(√

6n
a

θ

)} {
1 + O

(
1
n

)}
. (5.11)

In a similar way to the case a > 0, we have for a fixed small |a| (a < 0)

Pθ,n{θ̂n − θ < a} ≥ Φ
(√

6n
a

θ

) {
1 + O

(
1
n

)}
as n → ∞. Hence we obtain for a fixed small a > 0

Pθ,n{|θ̂n − θ| > a} ≥ 2
{

1 − Φ
(√

6n
a

θ

)}
{1 + o(1)}

as n → ∞.

Next, we obtain the second order lower bound for the tail probability of AMU estimators θ̂n.

Since t̂ = −1, it follows from Theorem 3.1 that

ζ3(−1) = κ3,θ+a(Z1(θ))
/ {

∂2

∂t2
KZ1(θ)(−1; θ)

}3/2

10



=
{

∂3

∂t3
KZ1(θ)(0; θ + a)

} / {
∂2

∂t2
KZ1(θ)(−1; θ)

}3/2

= −β3(β + 2)(13β2 + 28β + 16)(
9
2β4 + 10β3 + 6β2

)3/2
= −(β + 2)(13β2 + 28β + 16)(

9
2β2 + 10β + 6

)3/2

=
1√
6

(
−16

3
+

4
3
β +

193
9

β2

)
+ O(β3), (5.12)

ζ4(−1) = κ4,θ+a(Z1(θ))
/ {

∂2

∂t2
KZ1(θ)(−1; θ)

}2

=
{

∂4

∂t4
KZ1(θ)(0; θ + a)

} / {
∂2

∂t2
KZ1(θ)(−1; θ)

}2

=
3β4(β + 2)2(17β2 + 36β + 20)(

9
2β4 + 10β3 + 6β2

)2 =
3(β + 2)2(17β2 + 36β + 20)

36
(
1 + 5

3β + 3
4β2

)2

=
20
3

− 32
9

β +
8
3
β2 + O(β3) (5.13)

for small β. From (5.8), (5.10), (5.12) and (5.13) we obtain

Pθ,n{θ̂n − θ > a} ≥
{

1 − Φ(
√

6nβ)
}[

1 +
1

2λ
√

n
ζ3(−1) +

1
n

{
1
8
ζ4(−1) − 5

24
ζ2
3 (−1)

}
+ O

(
1
n2

)]
,

(5.14)

where

λ = β

√
n

(
9
2
β2 + 10β + 6

)
with β = a/θ, and ζi(−1) (i = 3, 4) are given by (5.12) and (5.13). From (5.12) to (5.14) we

have for a fixed small a > 0

Pθ,n

{
θ̂n − θ > a

}
1 − Φ

(√
6na/θ

) ≥ 1 − 1
9n

(
4θ

a
− 53

18

)
+ O

(
1
n2

)
(5.15)

as n → ∞.

6 MLE in the curved exponential model

In this section, we obtain the tail probability of the maximum likelihood estimator (MLE)

θ̂ML of θ and investigate whether the MLE attains the bound or not. First let

ψ(x, θ) =
∂

∂θ
log f(x, θ).

Then the MLE is given as the solution of the equation

n∑
j=1

ψ(Xj , θ) = 0.

11



Since f(x, θ) is the density of the normal distribution N(2θ, θ2), the MLE is uniquely determined

by

θ̂ML = −X̄ +

√√√√X̄2 +
1
n

n∑
i=1

X2
i ,

where X̄ = (1/n)
∑n

i=1 Xi. Since

W = ψ(X, a) =
∂

∂a
log f(X, a) =

1
a3

{(X − 2a)2 + 2a(X − 2a) − a2}

=
1
a3

{(X − a)2 − 2a2},

it follows that the m.g.f. of W is given by

M(t,a) := Eθ(etW )

=
∫ ∞

−∞

1√
2πθ

exp
{(

t

a3
− 1

2θ2

)
x2 +

(
2
θ
− 2t

a2

)
x − t

a
− 2

}
dx

=
∫ ∞

−∞

1√
2πθ

exp

{
−a3 − 2θ2t

2a3θ2

(
x +

2aθ(a2 − θt)
2θ2t − a3

)2

− 2(a2 − θt)2

a(2θ2t − a3)
− t

a
− 2

}
dx (6.1)

for all t < a3/(2θ2). Putting β := a/θ and y := t/θ, we have

M(t, a) =
β3/2√

β3 − 2y
exp

{
2(β2 − y)2

β(β3 − 2y)
− y

β
− 2

}
=: M0(y, β),

which yields

K0(y, β) = log M0(y, β) =
3
2

log β − 1
2

log(β3 − 2y) +
2(β2 − y)2

β(β3 − 2y)
− y

β
− 2 . (6.2)

Note that

∂

∂t
K(t, a) =

∂

∂t
K0

(
t

θ
,
a

θ

)
=

1
θ
K ′

0

(
t

θ
,
a

θ

)
=

1
θ
K ′

0(y, β),

∂2

∂t2
K(t, a) =

∂2

∂t2
K0

(
t

θ
,
a

θ

)
=

1
θ2

K ′′
0

(
t

θ
,
a

θ

)
=

1
θ2

K ′′
0 (y, β),

where K ′
0(y, β) = (∂/∂y)K0(y, β) and K ′′

0 (y, β) = (∂2/∂y2)K0(y, β).

From (6.2) we have

K ′
0(y, β) =

1
β3 − 2y

+
4(β2 − y)(y − β3 + β2)

β(β3 − 2y)2
− 1

β

= − 1
β(β3 − 2y)2

{8y2 − 2β(4β2 − 1)y + β4(β + 5)(β − 1)}.

Putting z := β3 − 2y, we solve the equation (∂/∂y)K0(y, β) = 0, i.e.

0 = 8y2 − 2β(4β2 − 1)y + β4(β + 5)(β − 1)

= 2(β3 − 2y)2 − β(β3 − 2y) − β4(β − 2)2

= 2z2 − βz − β4(β − 2)2. (6.3)

12



Since z > 0, the solution of the equation on z is given by

z =
β

4
(1 +

√
1 + 8β2(β − 2)2) =: z0,

which yields

y =
β

8
(4β2 − 1 −

√
1 + 8β2(β − 2)2) =: y0

corresponding to z = z0. Then it follows from (6.2) that

K0(y0, β) =
3
2

log β − 1
2

log(β3 − 2y0) +
2(β2 − y2

0)
βz0

− y0

β
− 2 .

Now, the tail probability of the MLE is approximated by

Pθ,n{θ̂ML > a} = 1 − Φ
(√

− 2nK0(y0, β)
)

+
1√
2π

enK0(y0,β)

{
1

y0

√
nK ′′

0 (y0, β)
− 1√

− 2nK0(y0, β)
+ o

(
1√
n

)}

(see Lugannani and Rice, 1980, Jensen, 1995 and Barndorff-Nielsen and Cox, 1989). Putting

a + θ instead of a in (6.2), we have

Pθ,n{θ̂ML − θ > a}

=1 − Φ
(√

− 2nK0(y0, 1 + β)
)

+
1√
2π

enK0(y0,1+β)

{
1

y0

√
nK ′′

0 (y0, 1 + β)
− 1√

− 2nK0(y0, 1 + β)
+ o

(
1√
n

)}

=
1√
2π

enK0(y0,1+β)

{
1

y0

√
nK ′′

0 (y0, 1 + β)
+ o

(
1√
n

)}
(6.4)

as n → ∞. Here,

K ′′
0 (y0, 1 + β) =

2
z2
0

{
1 +

2
z0

(β + 1)3(β − 1)2
}

(6.5)

with

1
z0

= −
1 −

√
1 + 8(β2 − 1)2

2(β + 1)3(β − 1)2
. (6.6)

Since, for small β √
1 + 8(β2 − 1)2 = 3 − 8

3
β2 + O(β4),

it follows from (6.2) that

K0(y0, 1 + β) = −3β2 + O(β3). (6.7)

From (6.5) and (6.6) we have for small β

K ′′
0 (y0, 1 + β) = 6

{
1 − 2β +

31
9

β2 + O(β3)
}

. (6.8)

13



Then it follows from (6.4), (6.7) and (6.8) that for a fixed small a

Pθ,n

{
θ̂ML − θ > a

}
= 1 − Φ

(√
6nβ

)
+

1√
6n

φ
(√

6nβ
) {

1 +
25
18

β + o(1)
}

=
{

1 − Φ
(√

6nβ
)}[

1 +
1√
6n

φ
(√

6nβ
)

1 − Φ
(√

6nβ
) {

1 +
25
18

β + o(1)
}]

(6.9)

as n → ∞. Since, by Mills’ ratio,

φ
(√

6nβ
)

1 − Φ
(√

6nβ
) =

√
6nβ + O

(
1√
n

)
,

it follows from (6.9) that for a fixed small a

Pθ,n

{
θ̂ML − θ > a

}
1 − Φ

(√
6na/θ

) = 1 +
a

θ

(
1 +

25a

18θ

)
+ o(1) (6.10)

as n → ∞. From (5.11) or (5.15), and (6.10), we see that the MLE θ̂ML does not attain the

lower bound in the first order, hence the MLE is not first order large-deviation efficient.

7 Remarks

In Sections 5 and 6, we treat the normal distribution N(2θ, θ2) with θ > 0 as a curved

exponential model, and similar results to the above hold for N(kθ, θ2) with k 6= 0, and θ 6= 0.

Further, they may be extended to a more general curved exponential model. But, the problem

whether the lower bound (3.3) is sharp or not in this case is still open. This seems to be

interesting.
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