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From the Bayesian viewpoint, the information inequality applicable to the non-regular case is

discussed. It is shown to construct an estimator which minimizes locally the variance of any

estimator satisfying weaker conditions than the unbiasedness condition, from which an informa-

tion inequality is derived. The Hammersley-Chapman-Robbins inequality is also obtained as a

special case of the inequality. An example is also given.
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1 Introduction

There are various information inequalities in statistical estimation. For example, the Cramér-

Rao inequality, the Bhattacharyya bound, etc. are well known as the fact that the variance

of all unbiased estimators can not be smaller than the lower bound under suitable regularity

conditions. On the other hand, in non-regular cases when the regularity conditions do not

necessarily hold, the Hammersley-Chapman-Robbins inequality is known and plays a role in

estimation [1–3]. Akahira and Takeuchi [4] also consider a one-directinal family of distributions

with a parameter for which the support moves in the one direction (see also [5, 6]). And they

show that the infimum of the bound for the variance of unbiased estimators is equal to zero at

any specific point of the parameter (see also [7]). Further, in the monograph of Akahira and

Takeuchi [7], the meanings and implications of regularity conditions are given as systematically as

possible. A lower bound for the convex combination of the variances of all unbiased estimators

at arbitrary two points of a parameter space is obtained by Vincze [8], using the Cramér-

Rao inequality. Recently, the bound is also derived directly by Akahira and Ohyauchi [9] and
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Ohyauchi [10], using the Lagrange method.

In this paper, we consider the information inequality from the Bayesian viewpoint. It is

shown that an estimator minimizing locally the variance of any estimator with weaker conditions

than the unbiasedness is constructed. And also the lower bound for the variance of estimators

can be expressed by an information inequality. It is noted that the bound is global. If some

special prior measure is chosen, the Hammersley-Chapman-Robbins inequality is shown to be

represented as a special case of the inequality.

2 An information inequality

Let X be a real random vector with a joint probability density function (j.p.d.f.) fX(x, θ) with

respect to (w.r.t.) a σ-finite measure µ, where θ ∈ Θ and Θ is an open interval of R1. Let

g(θ) be a real-valued function on Θ and X a sample space of X. Suppose that an estimator

ĝ = ĝ(X) of g(θ) satisfies the condition

(A1) Eθ0(ĝ) =
∫
X

ĝ(x)fX(x, θ0)dµ(x) = g(θ0) =: g0.

Let Π be a prior probability measure on Θ. Define

hΠ(x) :=
∫

Θ
fX(x, θ)dΠ(θ), η :=

∫
Θ

g(θ)dΠ(θ).

We also have the following conditions:

(A2)
∫ ∞

−∞
ĝ(x)hΠ(x)dµ(x) = η.

(A3) 0 < JΠ(θ0) := Eθ0

[{
hΠ(X)

fX(X, θ0)

}2
]
− 1 < ∞.

Remark 1 If ĝ(X) is unbiased for g(θ), then (A2) holds, since∫
X

ĝ(x)hΠ(x)dµ(x) =
∫

Θ

{∫
X

ĝ(x)fX(x, θ)dµ(x)
}

dΠ(θ) =
∫

Θ
g(θ)dΠ(θ) = η.

THEOREM 2 Under the conditions (A1)–(A3), there exists an estimator which minimizes the

variance, i.e.

min
ĝ:(A1),(A2)

Vθ0(ĝ) = Vθ0(ĝ
∗
Π),
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where

ĝ∗Π(x) := g0 +
g0 − η

JΠ(θ0)

{
1 − hΠ(x)

fX(x, θ0)

}
(1)

if fX(x, θ0) > 0, and ĝ∗Π(x) = 0, otherwise.

Proof Since

Vθ0(ĝ) =
∫
X
{ĝ(x)}2fX(x, θ0)dµ(x) − g2

0, (2)

it is enough to obtain the estimator ĝ minimizing the first term of the right-hand side of (2). As

in the Lagrange method, we start with the expression

Fĝ(λ1, λ2) :=
∫
X
{ĝ(x)}2fX(x, θ0)dµ(x) − λ1

{∫
X

ĝ(x)fX(x, θ0)dµ(x) − g0

}

− λ2

{∫
X

ĝ(x)hΠ(x)dµ(x) − η

}
. (3)

Then, we get the estimator ĝ which minimizes Fĝ(λ1, λ2), since ĝ satisfies the conditions (A1)

and (A2). Since

Fĝ(λ1, λ2) =
∫
X

[
{ĝ(x)}2 − λ1ĝ(x) − λ2

ĝ(x)hΠ(x)
fX(x, θ0)

]
fX(x, θ0)dµ(x) + λ1g0 + λ2η

=
∫
X

{
ĝ(x) − 1

2

(
λ1 + λ2

hΠ(x)
fX(x, θ0)

)}2

fX(x, θ0)dµ(x)

− 1
4

∫
X

{
λ1 + λ2

hΠ(x)
fX(x, θ0)

}2

fX(x, θ0)dµ(x) + λ1g0 + λ2η,

it follows that the estimator minimizing Fĝ(λ1, λ2) is of the form

ĝΠ(x) :=


1
2

{
λ1 + λ2

hΠ(x)
fX(x, θ0)

}
if fX(x, θ0) > 0,

0 otherwise.
(4)

From (A1) we have

g0 =
∫
X

ĝΠ(x)fX(x, θ0)dµ(x) =
λ1

2
+

λ2

2

∫
X

hΠ(x)dµ(x) =
1
2
(λ1 + λ2), (5)

and from (A2)

η =
∫
X

ĝΠ(x)hΠ(x)dµ(x) =
λ1

2

∫
X

hΠ(x)dµ(x) +
λ2

2

∫
X

{hΠ(x)}2

fX(x, θ0)
dµ(x). (6)
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Subtracting both sides of (6) from (5), we have

g0 − η = −λ2

2

[∫
X

{
(hΠ(x))2

(fX(x, θ0))2
− 1

}
fX(x, θ0)dµ(x)

]

= −λ2

2
Eθ0

[{
hΠ(X)

fX(X, θ0)

}2

− 1

]

=: −λ2

2
JΠ(θ0) (say),

which implies

λ2 = −2(g0 − η)
JΠ(θ0)

=: λ∗
2 (say). (7)

From equations (5) and (6), we obtain

λ1 = 2g0 − λ2 = 2
{

g0 +
g0 − η

JΠ(θ0)

}
=: λ∗

1 (say). (8)

Letting λ∗
1 in (8) and λ∗

2 in (7) as λ1 and λ2 in (4), respectively, we have

ĝ∗Π(x) =
1
2

{
λ∗

1 + λ∗
2

hΠ(x)
fX(x, θ0)

}
= g0 +

g0 − η

JΠ(θ0)

{
1 − hΠ(x)

fX(x, θ0)

}
,

if fX(x, θ0) > 0. This completes the proof. 2

From (1), it follows that the variance of ĝ∗Π is given by

Vθ0(ĝ
∗
Π) =

(g0 − η)2

{JΠ(θ0)}2
Eθ0

[{
1 − hΠ(X)

fX(X, θ0)

}2
]

=
(g0 − η)2

JΠ(θ0)
. (9)

Then, we have the following.

COROLLARY 3 For any estimator ĝ satisfying the conditions (A1) and (A2), it holds that

Vθ0(ĝ) ≥ (g0 − η)2

JΠ(θ0)
. (10)

Also,

min
ĝ:unbiased

Vθ0(ĝ) ≥ (g0 − η)2

JΠ(θ0)
. (11)

The proof of inequality (10) is straightforward from theorem 2 and equation (9) and that of

(11) follows from the fact that an unbiased estimator of θ satisfies (A1) and (A2).
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Remark 4 As is seen in theorem 2, the lower bound due to inequality (10) is sharp. But, the

lower bound due to (11) is not generally sharp. Indeed, the totality of all the unbiased estimators

of g(θ) is included in that of all the estimators satisfying (A1) and (A2). Since the difference

between both sides of inequality (11) is larger than that of (10), the above arises.

3 The Hammersley–Chapman–Robbins type inequality

Let θ1 ∈ Θ with θ1 6= θ0, and take Π1 such that Π1({θ1}) = 1 as the prior measure Π. Then,

hΠ1(x) =
∫

Θ
fX(x, θ)dΠ1(θ) = fX(x, θ1),

and

η =
∫

Θ
g(θ)dΠ1(θ) = g(θ1) =: g1,

which implies

JΠ1(θ0) = Eθ0

[{
fX(X, θ1)
fX(X, θ0)

− 1
}2

]
. (12)

From inequalities (10) and (11), we have for any estimator ĝ satisfying (A1) and (A2)

Vθ0(ĝ) ≥ (g0 − g1)2

JΠ1(θ0)
=

(g1 − g0)2

Eθ0

[
{(fX(X, θ1)/fX(X, θ0)) − 1}2

] , (13)

which is the Hammersley-Chapman-Robbins (H-C-R)-type inequality. In relation to the above,

an extension of inequality (13) from the non-Bayesian approach is also considered by Koike and

Komatsu [11]. Now we represent JΠ1(θ0) as

Jn(θ0, θ1) := JΠ1(θ0) = Eθ0

[{
fX(X, θ1)
fX(X, θ0)

− 1
}2

]
= Eθ0

[{
fX(X, θ1)
fX(X, θ0)

}2
]
− 1. (14)

We also define

In(θ0, θ1) = Eθ0

[{
fX(X, θ1)
fX(X, θ0)

}2
]

=
∫
X

{fX(x, θ1)}2

fX(x, θ0)
dµ(x). (15)

Suppose that X1, · · · , Xn are independent and identically distributed (i.i.d.) real ran-

dom variables with a p.d.f. p(x, θ) w.r.t. the Lebesgue measure. Then, the j.p.d.f. of

X := (X1, · · · , Xn) is given by

fX(x, θ) :=
n∏

i=1

p(xi, θ).
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Since, by equations (14) and (15), J1(θ0, θ1) = I1(θ0, θ1) − 1, it follows that∫ ∞

−∞
· · ·

∫ ∞

−∞

{fX(x, θ1)}2

fX(x, θ0)
dx1 · · · dxn =

[∫ ∞

−∞

{p(x1, θ1)}2

p(x1, θ0)
dx1

]n

= {I1(θ0, θ1)}n = {1 + J1(θ0, θ1)}n.

From inequalities (11) and (13), it follows that for any unbiased estimator θ̂ = θ̂(X) of θ

Vθ0(θ̂) ≥
(θ1 − θ0)2∫ ∞

−∞ · · ·
∫ ∞
−∞

∏n
i=1({p(xi, θ1)}2/p(xi, θ0))dx1 · · · dxn − 1

=
(θ1 − θ0)2

{1 + J1(θ0, θ1)}n − 1
. (16)

Here, note that the bigger the lower bound, the more the desire. Putting ∆ := θ1 − θ0, we have

from inequality (16)

Vθ0(θ̂) ≥ sup
∆:|∆|>0

∆2

{1 + J1(θ0, θ0 + ∆)}n − 1
=: sup

∆:|∆|>0
B(∆) (17)

For a fixed ∆, we obtain for large n

{1 + J1(θ0, θ0 + ∆)}n =
{

1 +
1
n
· nJ1(θ0, θ0 + ∆)

}n

≈ enJ(θ0,θ0+∆),

which implies

sup
∆:|∆|>0

B(∆) = sup
∆:|∆|>0

∆2

{1 + J1(θ0, θ0 + ∆)}n − 1

≈ sup
∆:|∆|>0

∆2

enJ1(θ0,θ0+∆) − 1
. (18)

Example 5 Suppose that X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random variables with a

p.d.f.

p(x, θ) =


1
θ

for 0 < x < θ,

0 otherwise,

where θ > 0. Let θ0 be fixed in R+ := (0,∞) and 0 < θ1 < θ0. Since

J1(θ0, θ1) = Eθ0

[{
p(X1, θ1)
p(X1, θ0)

− 1
}2

]

=
∫ θ1

0
θ0

(
1
θ1

− 1
θ0

)2

dx +
∫ θ0

θ1

θ0 ·
1
θ2
0

dx
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=
θ0 − θ1

θ1
, (19)

it follows from inequality (16) that for any unbiased estimator θ̂ of θ

Vθ0(θ̂) ≥
[

inf
0<θ1<θ0

{1 + J1(θ0, θ1)}n − 1
(θ1 − θ0)2

]−1

. (20)

Then,

inf
0<θ1<θ0

{1 + J1(θ0, θ1)}n − 1
(θ1 − θ0)2

= inf
0<θ1<θ0

(θ0/θ1)
n − 1

(θ1 − θ0)2
=

1
θ2
0

inf
0<θ1<θ0

(θ0/θ1)
n − 1

(1 − (θ1/θ0))
2

=
1
θ2
0

inf
ξ>1

ξ2(ξn − 1)
(ξ − 1)2

=
n2

θ2
0

inf
ξ>1

ξ2(ξn − 1)
n2(ξ − 1)2

. (21)

Letting h(ξ) = ξ2(ξn−1)/{n(ξ−1)}2 for ξ > 1, from inequality (20) and equation (21), we have

for any unbiased estimator θ̂ of θ

Vθ0(θ̂) ≥
θ2
0

n2

{
inf
ξ>1

h(ξ)
}−1

. (22)

Since

h′(ξ) =
ξ

n2(ξ − 1)3
{nξn+1 − (n + 2)ξn + 2}

for ξ > 1, the value of {infξ>1 h(ξ)}−1 for given n is obtained in table 1.

Table 1. The values of {infξ>1 h(ξ)}−1.
n 1 5 10 25 50 100 500 1000 ∞

{infξ>1 h(ξ)}−1 0.25 0.4912 0.5586 0.6088 0.6276 0.6375 0.6456 0.6466 0.6476

Letting ∆ = θ1 − θ0, we have from equation (19)

J1(θ0, θ0 + ∆) = − ∆
θ0 + ∆

.

Putting t := n∆, we obtain for large n

∆2

enJ1(θ0,θ0+∆) − 1
=

∆2

e−n∆/(θ0+∆) − 1
≈ t2

n2(e−t/θ0 − 1)
=

θ2
0(t/θ0)2

n2(e−t/θ0 − 1)
.

Let

h(x) :=
x2

ex − 1
for x > 0.

Then h(x) has the maximum value 0.6476 at x ; 1.5936, hence it follows from equation (18)

that for large n

sup
∆:∆<0

B(∆) = sup
∆:∆<0

∆2

enJ1(θ0,θ0+∆) − 1
≈ 0.6476θ2

0

n2
,
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which coincides with the value obtained by Kiefer [3]. Now let X(n) := max1≤i≤n Xi. Since X(n)

is a complete sufficient statistic, the estimator

θ̂∗ =
n + 1

n
X(n)

is uniformly minimum variance unbiased (UMVU) for θ. Then the variance of θ̂∗ is

Vθ0(θ̂
∗) =

1
n(n + 2)

θ2
0 =

θ2
0

n2
+ o

(
1
n2

)
. (23)

From inequality (22) and equation (23), we have for large n

Vθ0(θ̂
∗) =

θ2
0

n2
+ o

(
1
n2

)
> 0.6476

θ2
0

n2
+ o

(
1
n2

)
,

hence the H-C-R lower bound can not be asymptotically attained by θ̂∗ up to the order o(1/n2).

4 Conclusion

The lower bound due to the H-C-R inequality is not generally attainable. But, as is seen in

Section 2 the lower bound for the variance of estimators in some class, derived from the Bayesian

viewpoint, is obtained and it is attained. As a special case of the information inequality giving

the lower bound, we get the H-C-R inequality. In the example of the uniform distribution on

an interval (0, θ), the H-C-R lower bound for the variance of all unbiased estimators is obtained

for given n, and it is shown to be asymptotically unattainable from the comparison with the

variance of the UMVU estimator. Finally, under suitable regularity conditions, the Cramér-Rao

inequality can be derived from inequality (17).
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