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ABSTRACT

We consider a sequential interval estimation with fixed width of a location

parameter θ of a sequence of uniform random variables with unknown scale

ξ. A stopping rule is proposed and its asymptotic properties are investigated.

Numerical evaluations are also done. Further, the exact distribution of the

size of sample is given.
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1. INTRODUCTION

Suppose that we are to estimate a location parameter θ of a sequence of

random observations X1, X2, . . . , Xn, . . . with unknown scale ξ. We would like

to obtain sequentially a confidence interval of fixed width d with confidence

coefficient 1−α. Obviously we can not obtain a fixed sample size procedure

if ξ is unknown.

In regular cases, if the maximum likelihood estimator (MLE) θ̂ of θ is

at least asymptotically independent of the MLE ξ̂ of ξ, and asymptotically

normally distributed with variance (nIξ)
−1, we can obtain an asymptotically

valid procedure when d is small by continuing sampling as long as√
nIξ̂n

uα/2 > d,

where uα/2 is the upper 100(α/2) percentile, and stop sampling when√
nIξ̂n

uα/2 ≤ d, and construct the interval
[
θ̂n − d, θ̂n + d

]
, where Iξ is the

Fisher information on ξ. Here θ̂n and ξ̂n are the MLEs based on X1, . . . , Xn.

It may be necessary to prove the above statement rigorously with a set of

regularity conditions, but anyway it is possible to prove the validity of the

statement if we assume the appropriate set of regularity conditions, and we

would not go further into the details of the proof. There are many works

on the fixed-width interval estimation of normal mean (see, e.g. Ghosh et al.

(1997)).

But in the non-regular case, it may happen that even asymptotically ξ̂n

and θ̂n are independent, then the above procedure would fail to be valid. In

this paper, we consider the case of the uniform distribution on the interval

[θ − (ξ/2), θ + (ξ/2)], where θ and ξ are unknown, and obtain sequentially a

confidence interval of θ with fixed width d and confidence coefficient 1−α. In

the case of the uniform distribution on the interval (0, θ), a similar problem
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was studied by Graybill and Connell (1964), Cooke (1971), Akahira (1993),

Bose (2001), Mukhopadhyay and Cicconetti (2002) and others. A sequential

point estimation of θ of the uniform distribution U(θ − (1/2), θ + (1/2)) was

also discussed by Wald (1950). A uniform distribution may be used as a

model in some practical problems (see, e.g. Perruzzi and Hilliard (1984) and

Zimmels (1983)).

2. CONFIDENCE INTERVAL OF θ

Suppose that X1, X2, . . . , Xn, . . . is a sequence of independent and identi-

cally distributed (i.i.d.) random variables according to the uniform distri-

bution on the interval [θ − (ξ/2), θ + (ξ/2)], where θ(∈ R1) and ξ (> 0) are

unknown.

Let X(1) := min1≤i≤n Xi, X(n) := max1≤i≤n Xi. Then the midrange and the

range are

Mn :=
1

2

(
X(1) + X(n)

)
, Rn := X(n) − X(1),

respectively. When a confidence coefficient 1 − α and a width d (> 0) are

given, we want to determine n such that

Pθ,ξ {|Mn − θ| ≤ d} ≥ 1 − α. (2.1)

Now we consider the conditional probability given Rn

Pθ,ξ

{
Mn − θ

Rn

≤ t

∣∣∣∣ Rn

}
=Pθ,ξ{Mn − θ ≤ tRn | Rn}

=Pθ,ξ

{
Mn − θ

ξ
≤ t

Rn

ξ

∣∣∣∣ Rn

ξ

}
(2.2)

for t ∈ R1. Letting Yi := (Xi − θ)/ξ (i = 1, 2, . . . , n, . . .), we see that

Y1, Y2, . . . , Yn, . . . is a sequence of i.i.d. random variables according to the
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uniform distribution on [−1/2, 1/2]. Then Y(1) := min1≤i≤n Yi = (X(1) − θ)/ξ

and Y(n) := max1≤i≤n Yi = (X(n) − θ)/ξ. We also have

Mn − θ

ξ
=

1

2
(Y(1) + Y(n)) =: M ′

n,
Rn

ξ
= Y(n) − Y(1) =: R′

n.

From (2.2) we obtain

Pθ,ξ{Mn − θ ≤ tRn | Rn} = Pθ,ξ{M ′
n ≤ tR′

n | R′
n}. (2.3)

Lemma 2.1. The conditional probability of M ′
n given R′

n = r is given by

Pθ,ξ{M ′
n ≤ tr | R′

n = r} =


0 for t ≤ −1

2

(
1
r
− 1

)
,

1
2

+ tr
1−r

for − 1
2

(
1
r
− 1

)
< t ≤ 1

2

(
1
r
− 1

)
,

1 for t ≥ 1
2

(
1
r
− 1

)
.

(2.4)

Proof. Since the joint density of M ′
n and R′

n is given by

fM ′
n,R′

n
(m, r) =

{
n(n − 1)rn−2 for 0 < r < 1, |r| ≤ 1 − 2|m|,
0 otherwise,

(2.5)

it follows that the marginal density of R′
n is

fR′
n
(r) =

{
n(n − 1)rn−2(1 − r) for 0 < r < 1,

0 otherwise.
(2.6)

Hence the conditional density of M ′
n given R′

n is

fM ′
n|R′

n
(m | r) =

{
1

1−r
for |m| ≤ 1

2
− r

2
,

0 otherwise,
(2.7)

where 0 < r < 1. Note that this is the uniform density on the interval

[−(1/2) + (R′
n/2), (1/2) − (R′

n/2)]. From (2.7) we have for |t|r ≤ (1 − r)/2

Pθ,ξ{M ′
n ≤ tr | R′

n = r} =

∫ tr

− 1
2
+ r

2

1

1 − r
dm =

1

2
+

tr

1 − r
,
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and (2.4) for other cases. This completes the proof. �

From (2.3) and Lemma 2.1 we have the following.

Theorem 2.1. For t > 0, the conditional probability given Rn is given by

Pθ,ξ{|Mn − θ| ≤ tRn | Rn} =


t

1
2(

ξ
Rn

−1)
for 0 < t ≤ 1

2

(
ξ

Rn
− 1

)
,

1 for t > 1
2

(
ξ

Rn
− 1

)
.

Proof. From (2.2) and Lemma 2.1 we have for t > 0

Pθ,ξ{|Mn − θ| ≤ tRn | Rn} = Pθ,ξ{|M ′
n| ≤ tR′

n | R′
n}

=


t

1
2

“

1
R′

n
−1

” for 0 < t ≤ 1
2

(
1

R′
n
− 1

)
,

1 for t > 1
2

(
1

R′
n
− 1

)
=


t

1
2(

ξ
Rn

−1)
for 0 < t ≤ 1

2

(
ξ

Rn
− 1

)
,

1 for t > 1
2

(
ξ

Rn
− 1

)
.

This completes the proof. �

Letting d = tRn and
d/Rn

1
2

(
ξ

Rn
− 1

) ≥ 1 − α, (2.8)

we have from (2.2) and Theorem 2.1

Pθ,ξ{|Mn − θ| ≤ d | Rn} ≥ 1 − α

hence

Eθ,ξ [Pθ,ξ{|Mn − θ| ≤ d | Rn}] ≥ 1 − α. (2.9)

From (2.1), (2.8) and (2.9) we stop when

ξ − Rn ≤ 2d

1 − α
, (2.10)
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but it is not useful because ξ is unknown. Since

Eθ,ξ[ξ − Rn] =
2ξ

n + 1
,

it follows that

Eθ,ξ[ξ − Rn] = E

[
2

n − 1
Rn

]
.

So, instead of ξ − Rn in (2.10), we use 2Rn/(n − 1). Hence, we stop when

Rn ≤ (n − 1)d

1 − α
, (2.11)

and construct the confidence interval of θ

[Mn − d,Mn + d],

that is, we consider the sequential estimation procedure (τ0, [Mτ0 − d, Mτ0 +

d]), where τ is given by

τ0 = τ

(
d

1 − α

)
:= inf

{
n > 1

∣∣∣∣ Rn

n − 1
≤ d

1 − α

}
.

Note that this stopping rule is bounded with probability 1 since 0 ≤ Rn ≤ ξ

with probability 1 and (2.11), that is, Pθ,ξ

(
τ0 ≤

⌈
ξ(1−α)

d

⌉
+ 1

)
= 1 where

dxe means the least integer greater than or equal to x.

However, this sequential interval estimation procedure is not asymptoti-

cally consistent. So, instead of τ0, we consider another stopping rule:

τ1 = τ

(
− 2d

log α

)
:= inf

{
n ≥ 2

∣∣∣∣ Rn

n − 1
≤ − 2d

log α

}
. (2.12)

Consider the interval estimation of θ when ξ is known. Since the density

function of M ′
n is

fM ′
n
(m) =

{
n(1 − 2|m|) for |m| ≤ 1/2,

0 otherwise
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from (2.5). Then the coverage probability is

P {|Mn − θ| ≤ d} =P{|Mn − θ|/ξ ≤ d/ξ}

=P{|M ′
n| ≤ d/ξ}

=

∫ d/ξ

−d/ξ

n(1 − 2|m|)n−1dm

=1 −
(

1 − 2d

ξ

)n

(2.13)

for 0 ≤ d ≤ ξ/2. In order to satisfy (2.13) ≥ 1 − α, we have to take

n ≥ log α

log (1 − (2d/ξ))
=: n∗ (say).

Here, we substitute the modified stopping rule (2.12) for the optimal fixed

sample size n∗ since n∗ ' −ξ log α/(2d) for small d. Then we have the

following theorem.

Theorem 2.2. For the sequential estimation procedure (τ1, [Mτ1 − d,Mτ1 +

d]), we have the following.

(i) lim
d→0+

P{|Mτ1 − θ| ≤ d) = 1 − α (i.e. asymptotic consistency).

(ii) τ1/n
∗ a.s.→ 1 (d → 0+).

(iii) E(τ1)/n
∗ → 1 (d → 0+).

Proof. (i) From Lemma 1 of Chow and Robbins (1965), the stopping rule τ1

given by (2.12) satisfies

lim
d→0+

− 2dτ1

ξ log α
= 1 a.s. (2.14)

Since n(Mn − θ) converges in distribution to a two-sided exponential dis-

tribution with density exp(−2|x|) as n → ∞, it follows from Theorem 1
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of Anscombe (1952) that τ1(Mτ1 − θ) converges in distribution to the same

distribution as d → 0+. Hence, since

dτ1

ξ

a.s.→− log α

2
as d → 0+

from (2.14), it follows that

lim
d→0+

P{|Mτ1 − θ| ≤ d} = lim
d→0+

P{τ1|Mτ1 − θ|/ξ ≤ dτ1/ξ}

=

∫ −(log α)/2

(log α)/2

exp(−2|x|)dx

=1 − α.

(ii) From (2.14) and L’Hopital’s theorem, we have

τ1

n∗ =
τ1 log{1 − (2d/ξ)}

log α

a.s.→ 1 as d → 0 + .

(iii) Since, from Lemma 2 of Chow and Robbins (1965),

lim
d→0+

2dE(τ1 − 1)

−ξ log α
= lim

d→0+

2dE(τ1)

−ξ log α
= 1

and

dn∗ =
d log α

log{1 − (2d/ξ)}
→ log α

−2/ξ
as d → 0+,

we have

lim
d→0+

E(τ1)

n∗ = lim
d→0+

dE(τ1)

dn∗ =
−(ξ log α)/2

(log α)/(−2/ξ)
= 1.

Thus we complete the proof. �

3. NUMERICAL EVALUATION

In this section we examine the coverage probability of the procedure [Mτ1−
d, Mτ1 + d] by simulation based on 100000 repetitions. Since Mτ1 is location
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equivariant, we may assume θ = 0 without loss of generality. When α =

0.10, d = 0.01(0.01)0.05, ξ = 1(1)5, Tables 1, 2 and 3 show the values of

coverage probabilities, the average sample numbers (ASNs) and the standard

deviations (SDs) of the sequential estimation procedure (τ1, [Mτ1−d,Mτ1+d])

for α = 0.10, respectively. The result shows that we might need to improve

the stopping rule, but provides us with a tentative information on θ. Consider

another stopping rule with the initial sample size as 10 instead of (2.12), that

is,

τ ′
1 = inf

{
n ≥ 10

∣∣∣∣ Rn

n − 1
≤ − 2d

log α

}
.

Tables 4, 5 and 6 show the values of coverage probabilities, the ASNs and

the SDs of the sequential estimation procedure (τ ′
1, [Mτ ′

1
− d,Mτ ′

1
+ d]) for

α = 0.10, respectively. The result suggests that the estimation procedure is

consistent for this case.

Table 1. Coverage probabilities of
[Mτ1 − d,Mτ1 + d] for α = 0.10

ξ \ d 0.01 0.02 0.03 0.04 0.05
1 0.7607 0.77045 0.77837 0.78468 0.79554
2 0.75503 0.76211 0.76583 0.76831 0.77439
3 0.75466 0.75862 0.76084 0.76462 0.76704
4 0.75086 0.75763 0.76043 0.76246 0.76471
5 0.75343 0.75475 0.75519 0.75825 0.75884

Table 2. ASNs of τ1 for α = 0.10
ξ \ d 0.01 0.02 0.03 0.04 0.05

1 75.3458 37.9159 26.3105 19.5954 15.5133
2 150.742 75.5505 51.2336 37.9784 30.5142
3 225.222 112.968 75.4855 56.9635 45.3646
4 300.76 150.42 101.419 75.4829 60.4096
5 375.119 187.819 126.251 94.736 75.7516
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Table 3. SDs of τ ′
1 for α = 0.10

ξ \ d 0.01 0.02 0.03 0.04 0.05
1 43.4924 21.8577 14.7446 11.0086 9.17156
2 86.1962 43.4728 28.9139 21.8323 17.7156
3 129.429 64.72 43.4497 32.6691 26.3042
4 171.983 86.2782 57.6551 43.4353 34.8847
5 214.641 107.455 71.7378 53.9417 43.4604

Table 4. Coverage probabilities of
[Mτ ′

1
− d, Mτ ′

1
+ d] for α = 0.10

ξ \ d 0.01 0.02 0.03 0.04 0.05
1 0.9093 0.9128 0.9217 0.9237 0.9265
2 0.9051 0.9142 0.9108 0.9186 0.9235
3 0.904 0.9022 0.907 0.9124 0.9066
4 0.9006 0.9011 0.9133 0.9042 0.9119
5 0.9059 0.9025 0.9002 0.9083 0.9084

Table 5. ASNs of τ ′
1 for α = 0.10

ξ \ d 0.01 0.02 0.03 0.04 0.05
1 116.997 58.995 39.990 29.975 24.940
2 231.997 116.997 77.997 58.995 47.993
3 346.998 173.998 116.998 87.997 70.997
4 461.997 231.997 154.998 116.997 93.997
5 576.997 288.997 192.998 144.999 116.997

Table 6. SDs of τ ′
1 for α = 0.10

ξ \ d 0.01 0.02 0.03 0.04 0.05
1 0.566183 0.518538 0.559546 0.689228 0.943005
2 0.859796 0.586055 0.41362 0.482571 0.567398
3 1.21506 0.655995 0.545588 0.461446 0.49555
4 1.0107 0.702022 0.480908 0.513148 0.496942
5 1.70099 1.18369 0.708751 0.539996 0.534994
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4. SOME PROPERTIES OF THE ESTIMATION PROCEDURE

Suppose that X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables

according to the uniform distribution [θ−(ξ/2), θ+(ξ/2)] (θ ∈ R1, ξ > 0). Let

X(1|n) ≤ X(2|n) ≤ · · · ≤ X(n|n) be the order statistics of X1, X2, . . . , Xn (n ≥
1). Consider a stopping rule such that τ(A) := min{n ≥ 2 | Rn/(n−1) ≤ A}
for a positive constant A, and a sequential interval estimation procedure

[Mτ(A) − d,Mτ(A) + d] of θ for a constant d (> 0). In this section we consider

some properties of (τ(A),Mτ(A)). Hereafter we represent Pθ,ξ{·} as P{·} for

simplicity.

Theorem 4.1. The probability P{τ(A) = n} is given by

P{τ(A) = n} = pn−1 − pn (n ≥ 2)

recursively, where

p1 :=P{τ(A) > 1} = 1,

p2 :=P{τ(A) > 2} =


(

ξ−A
ξ

)2

for 0 ≤ A ≤ ξ,

0 otherwise,

pn :=P{τ(A) > n}

=



(n−1)(n−2)
ξn−1

[{
1 − 2

ξ
(n − 1)A

}
(In−1,n−3 − In,n−3)

+1
ξ
(In−1,n−2 − In,n−2) + In,n−3

]
·
{

1 −
(

(n−2)A
ξ

)n−2 (
n − 1 − (n−2)2A

ξ

)}−1

pn−1

for 0 ≤ (n − 1)A ≤ ξ,

0 otherwise,

for n ≥ 3, with

Il,m :=
1

(m + 1)(m + 2)
{ξm+2+(m+1)((l−1)A)m+2−ξ(m+2)((l−1)A)m+1}
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for l ≥ 1 and m ≥ 0.

Proof. First we have

P{τ(A) = n} =P {Rn ≤ (n − 1)A, Ri > (i − 1)A (i = 2, . . . , n − 1)}

=P{Ri > (i − 1)A (i = 2, . . . , n − 1)}

− P{Ri > (i − 1)A (i = 2, . . . , n)}

=pn−1 − pn,

where pn = P{Ri > (i − 1)A (i = 2, . . . , n)} (n ≥ 1). Since p2 = P{R2 >

A} = P{R′
2 > A/ξ} and (2.6), it follows that p2 = {(ξ − A)/ξ}2 for 0 < A <

ξ and p2 = 0 for A ≥ ξ. We also have

pn =P{Rn > (n − 1)A | Ri > (i − 1)A (i = 2, . . . , n − 1)}pn−1

=P{Rn > (n − 1)A | Rn−1 > (n − 2)A}pn−1

=
P{Rn > (n − 1)A,Rn−1 > (n − 2)A}

P{Rn−1 > (n − 2)A}
pn−1. (4.1)

The denominator of (4.1) is

P{Rn−1 > (n − 2)A} = 1 −
(

n − 2

ξ
A

)n−2 (
n − 1 − (n − 2)2

ξ
A

)
for 0 < (n − 2)A/ξ < 1, since P{Rn−1 > (n − 2)A} = P {R′

n > (n − 2)A/ξ}
and (2.6), and P{Rn−1 > (n − 2)A} = 0 for (n − 2)A/ξ ≥ 1. Denoting by

fX(1|n−1),X(n−1|n−1)
(u, v) the joint density of X(1|n−1) and X(n−1|n−1), we have

P{Rn > (n − 1)A, Rn−1 > (n − 2)A}

=

∫∫
Bn−1

P{Rn > (n − 1)A | X(1|n−1) = u,X(n−1|n−1) = v}

· fX(1,|n−1),X(n−1|n−1)
(u, v)dudv

=

(∫∫
Bn−1−Bn

+

∫∫
Bn

)
P{Rn > (n − 1)A | X(1|n−1) = u,X(n−1|n−1) = v}

· fX(1|n−1),X(n−1|n−1)
(u, v)dudv, (4.2)
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where Bi := {(u, v) | v−u > (i−1)A, θ−(ξ/2) ≤ u ≤ v ≤ θ+(ξ/2)} (i ≥ 1).

If
(
X(1|n−1), X(n−1|n−1)

)
= (u, v) is given for θ − (ξ/2) ≤ u ≤ v ≤ θ + (ξ/2),

then

(
X(1|n), X(n|n)

)
=


(Xn, v) with probability F (u),

(u, v) with probability F (v) − F (u),

(u,Xn) with probability 1 − F (v),

where F (·) is the distribution function of Xi given by

F (x) =


0 if x < θ − (ξ/2),

{x − θ + (ξ/2)}/ξ if θ − (ξ/2) ≤ x ≤ θ + (ξ/2),

1 if x > θ + (ξ/2).

(4.3)

So, X(n|n) > X(1|n) + (n− 1)A holds with probability 1 given (u, v) satisfying

v > u+(n−1)A, and with probability {1+F (v−(n−1)A)−F (u+(n−1)A)}
given (u, v) satisfying u+(n− 2)A < v < u+(n− 1)A. Then the right-hand

side of (4.2) is equal to∫∫
Bn−1−Bn

{1 + F (v − (n − 1)A) − F (u + (n − 1)A)}

· fX(1|n−1),X(n−1,|n−1)
(u, v)dudv

+

∫∫
Bn

fX(1|n−1),X(n−1|n−1)
(u, v)dudv. (4.4)

Since

fX(1|n−1),X(n−1|n−1)
(u, v) =


(n − 1)(n − 2){F (v) − F (u)}n−3/ξ2

for θ − (ξ/2) ≤ u ≤ v ≤ θ + (ξ/2),

0 otherwise,

it follows from (4.3) that (4.4) equals, by letting Il,m :=
∫∫

Bl
(v−u)mdudv for

l ≥ 1 and m ≥ 0,

(n − 1)(n − 2)

ξn−1

[{
1 − 2

ξ
(n − 1)A

}
(In−1,n−3 − In,n−3)

+
1

ξ
(In−1,n−2 − In,n−2) + In,n−3

]
(n ≥ 3)
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with Il,m = 1
(m+1)(m+2)

{ξm+2 +(m+1)((l−1)A)m+2−ξ(m+2)((l−1)A)m+1},
which is the desired equality. �

Remark. The values of ASN E(τ(A)) can be calculated by using {pn}.
Indeed, since pn = P{τ(A) > n} (n ≥ 2),

∞∑
i=2

pi =
∞∑
i=2

P{τ(A) > i} =
∞∑
i=2

∞∑
j=i+1

P{τ(A) = j} =
∞∑

j=3

j−1∑
i=2

P{τ(A) = j}

=
∞∑

j=3

jP{τ(A) = j} − 2
∞∑

j=3

P{τ(A) = j}

=E(τ(A)) − 2P{τ(A) = 2} − 2{1 − P{τ(A) = 2}}

=E(τ(A)) − 2,

we have

E(τ(A)) =
∞∑
i=2

pi + 2.
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