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A on Asymptotic Sufficiency of Statistics 
Non-Regular Cases* 

Masafumi AKAHIRA * * 

Abstract 

Suppose that Xl, X 2 , "', X n , ..• is a sequence of independent identically 

distributed random variables with the density f(x: fJ) with a compact support, 

where fJ is a real valued parameter. We suppose that a strongly {Cn} -consistent 

estimator of fJ exists. Then we show that a statistic (min Xi, max Xi) is 
l:S;;i::::;n l::::;i::::;n 

asymptotically sufficient in non-regular cases. 

1. In trod uction 

A consistent estimator with order {en} (or a {c n} -consistent estimator) is defined and 

discussed in Akahira [lJ, where the necessary conditions for the existence of such an estimator 

are established and the bounds of the orders of convergence of consistent estimators are obtained 

for non-regular cases. Further the asymptotic accuracies of {en} -consistent estimators are dis

cussed in Akahira [2]. 

Asymptotic sufficiency has been discussed under regularity conditions by LeCam [4]. In 

this paper we extend a similar approach te non-regular cases. 

Let Xl, X 2, "', X n, ". be a sequence of independent identically distributed random van

abIes with the density f(x: fJ) with a compact support, where fJ IS a real valued parameter. 

We suppose that a strongly {en} -consistent estimator of fJ exists. Then we shall obtain that 

a statistic ( min Xi, max Xi) is asymptotically sufficient in non-regular cases. 
l:S;;i:S;;n l'::::;i:S;;n 

2. Notations and definitions 

Let X be an abstract sample space whose generic point is denoted by x, 93 a a-field of 

subsets of X and {Po: fJ E 8} a set of probability measures on 93, where 8 is called a para

meter space. We suppose that 8 is an open set in a Euclidean I-space RI. Consider n-fold 

direct products (X(n\ 93Cn » of (X, 93) and the corresponding product measure p/n) of Po. 

For each n=1,2, ... , the points of X(n) will be denoted by Xn=(Xl, ···,Xn) and the corre

sponding random variable by X n • An estimator of fJ is defined to be a sequence {en} of 93(n)_ 

measurable function en on X(n) into 8. For a sequence of positive numbers {c n } (c n tending 

to infinity) an estimator {en} is called strongly consistent with order {c n } (or strongly {c n}

consistent for short) if for every s>O and for every compact subset K of 8, there exists a 

sufficiently large positive number L satisfying the following: 

lim supp/n)({enlen-fJl~L})<s. 
n->oo BEK 
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A weaker definition of a {en} -consistent estimator than that of the above form has been given 

m Akahira [1]. 

We suppose that every p()(.) (BEG) is absolutely continuous with respect to a (j-finite 

measure /L. Then we denote the density dPB/d/L by f(· : B). If the distribution of Xn is 

the product measure p()cn\ then the corresponding density with respect to the prodcuct measure 
n 

/Lcn) will be denoted by n f(Xi: B). A statistic Tn(Xn) is called asymptotically sufficient if 
i== 1 

there exist a nonnegative function pn(Xn: B), each the product of a function of Xn only by a 

function of Tn and B only such that 

lim sup r I n f(Xi: B) -- Pn(X n : B) I d/LCn) =0 
71-+00 (jEK JX'n, i==l 

for any compact subset K of G (LeCam [4J). 

3. Asymptotically sufficient statistics 

Before discussing the asymptotic sufficiency in detail we shall give a definition and a lemma. 

Definition. (Generalized from Gnedenko and Kolmogorov [3J) For each BEG the sums 

Y n(B) = X1(B) + X 2(B)+ .. · + X n(B) 

of postive independent random variables X 1(8), X z(8), "', Xn(8), .. , are said to be uniformly 

relatively stable for constants Bn(B) if there exist positive constants B 11(B) such that for any £>0 

as 71-"'>(::0 uniformly in any compact subset of G. 

In the subsequent lemma we use the notation that for each k and each BEG, FBk(X) IS 

the distribution function of Xk(8). 

Lemma. (Gnedenko and Kolmogorov [3J). 

For each BEG, let Xl (B), X 2(B), "', X n(B), ... be a sequence of positive independent random 

variables. The sums 

Y n(8) = X 1(8)+ Xz(8) + ... + X n(8) 

are uniformly relatively stable for constants B 71 (8), if there exists a sequence of positive con

stants B 1(8), B 2(B), "', Bn(8), ... such that for any £>0. 

-£ roo dFBk(X)--->O 
k=l JC:Bn 

as 71--->(X) uniformly m any compact subset of 8, 

1 n ~cBn(e) 

B (B) 
L: xdFBk(X)-d 

n k""'l 0 

as n~(X) uniformly in any compact subset of 8. 

Let X=Rl, Now we suppose that every p()(.) (BEB) is absolutely continuous with respect 

to a Lebesgue measure m. Then we denote the density dPB/dm by f(· : 8) and by A(8) eX 

the set of points in the space of X for which f(x: B»O and suppose f(x: B)= f(x-6). 

We make the following assumptions (A), (B) and (C). 

Assumption (A). f(x»O for a:;'x:;'b; 

f(x)=O for x<a, x>b, 

and f(a) and f(b) are finite. 
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Assumption (B). fex) is twice continuously differentiable in the interval (a, b). 

Define 

~(8)=~~wdF(w: 8), 

where F(w: 8) is the distribution function of 

W(X: 8)=x(a,b)nA(8)ex)IIOgf~:)8)1 
(X(a,b)nA(8)(') denotes the indicator of (a, b) n A(8)). 

Let Tn=(Y, Z), where Y= min Xi and Z= max Xi. We suppose that {en(Tn)} IS a {c n}-
l~i~n l~i~n 

consistent estimator. The existence of the estimator is guaranteed (See Theorem 4. 1 of [1J). 

Then for any 0>0 and any compact subset K of 8 there exists a sufficiently large positive 

number L satisfying the following: 

lim supp/n)( {/e n(Tn)-81 >Lcn- 1} )<0. 
n ....... oo 8EK 

Assumption (C). The following (3.2),,-,(3.4) hold: 

limn~(Lcn -1)=0 
n->oo 

lim sup n
foo 

dF(w: 8) =0 
n->oo 8EK JEncp(Lcn- ' ) 

for any s>O and any compact subset K of 8 ; 

1 ~Encp(LCn-') 
lim sup (L -1) wdF(w: 8)=1 
n->ooeEK~ C n 0 

for any s>O and any compact subset K of 8. 

(3. 1) 

(3. 2) 

(3.3) 

(3.4) 

Theorem. Under Assumptions (A), (B) and (C), the statistic Tn, i.e. (min Xi, max Xi), 
l~i~n l~i~n 

is asymptotically sufficient. 

Proof. Let s be an arbitrary positive number. We define h( Tn, 8) and 9(Xn, e n( Tn)) 

as follows: 

{
I if z-b<(}<y-a; 

h(Tn, 8)=Xe(Y, z)= 0', 
otherwise 

n 

g(£n, en(Tn))= n f(Xi-en(Tn)). 
£=1 

(3.5) 

(3.6) 

It follows from (3.3), (3.4) and Lemma that £, W(Xi : e n( Tn) - 8) IS uniformly relatively 
i == 1 

stable for n~(Lcn -1). Hence we have for any compact subset K of 8 

lim inf PeCn)(An(en( Tn) - 8: E)) = 1, 
n->oo 8EK 

It follows from (3. 1), (3. 2) and (3. 5)----(3. 7) that for any compact subset K of 8 

lim supf I fi f(Xi-8)-h(Tn, 8)0(£n, en(Tn))1 fi dXi 
n->oo 8EKJX<n) i=1 i=1 
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= lim sup r Ifi f(x; -0) -.fl f(Xi - 6n( Tn)) I fj dXi 
12-+= 0 E K J . t = 1 '. t = 1 i = 1 

{16n(Tn)-OI~Lcn-l} nAn(6n(Tn)-O: r::)n {z-b<O<V-a} 

~ 
n n 

+ Gill sup2 n f(x, -cO) n dx, 
n-+= OEK. i=l i= 1 

{16n(Tn)-Oj >Lcn- J} 

+ lim sup{1-PeCn)(An(6n)-0: f))} 
n-+= eEK 

~n~~ eS~f~ . li~l f(;l(:i~~~n) 1Ii~lf(x; -0)iD1dxi + 20 
{lenCTn)-Oi~LCn-l} nAnCen(Tn)-O: £)n {z-b<e<v-a} 

~}~~~x(n)1 {exp i~l W(x,: LCn -1) }-1Ii~lf(Xi\~ldx'+20 
~ lim I exp(l + £)n<p(LC n -1) -11 + 20 

n->= 

=20 

Letting 0--.0, we complete the proof of the theorem. 
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