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Abstract For valuation of CDO (Collateralized Debt Obligation), in practice, a standard approach is
to employ the Gaussian copula model of Li [7]. However, this model is limited in that its framework is
completely static, failing to capture the dynamic evolution of CDO. In general, the portfolio credit derivatives
are subject to two kinds of risks. One is a default event risk where any underlying firm involved in CDO fails
to fulfill its obligation. The other is a credit spread risk due to the change of the default intensity over time.
In dealing with either type of risks, it is absolutely necessary to develop a dynamic model incorporating
the stochastic behavior of the macro economic condition and its influences on default intensity. In this
paper, a dynamic stochastic model is developed where the macro economic condition is assumed to follow
a birth-death process, which would affect loss distributions characterized by a Markov Modulated Poisson
Process (MMPP). By exploiting the stochastic structure of the MMPP, efficient computational procedures
are established for evaluating time dependent loss distributions and prices of CDO. Some numerical results
are presented, demonstrating the potential usefulness of the model by estimating the underlying parameters
based on real market data.

Keywords: Loss Dynamics, CDO Tranches, Markov Modulated Default Intensity, Keil-
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1. Introduction

A financial product called “Collateralized Debt Obligation (CDO)” is a structured product

that securitizes a reference portfolio of default risky instruments such as loans or bonds. In

case of a synthetic CDO, the reference portfolio consists of “Credit Default Swaps (single-

name CDS’s)”. A credit default swap offers protection against default of a certain underlying

entity over a specified time horizon. Recently, portfolio credit derivatives such as Tranched

Index are traded with growing liquidity.

For valuation of (synthetic) CDO and Tranched Index, in practice, a standard approach

is to employ the Gaussian copula model of Li [7]. However, this model is limited in that its

framework is completely static, failing to capture the dynamic evolution of CDO tranches.

In general, the portfolio credit derivatives are subject to two kinds of risks. One is a default

event risk where any underlying firm involved in CDO fails to fulfill its obligation. The other

is a credit spread risk due to the change of the default intensity over time. In dealing with

either type of risks, it is absolutely necessary to develop a dynamic model incorporating

the stochastic behavior of the macro economic condition and its influences on the default

intensity.

In order to capture the dynamics of portfolio loss distributions, it is typically necessary to

introduce a two layer process. The first layer describes the macro economic condition, which

would affect portfolio loss distributions through the second layer. Recent papers along this
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line of research include Arndorf and Halperin [1], Bielecki, Vidozzi and Vidozzi [2], Frey and

Backhaus [3], De Kock, Kraft and Steffensen [5], Schoenbucher [8] and Sidenius, Piterbarg

and Andersen [9], where the default intensity function is assumed to satisfy a stochastic

differential equation (or assumed to be driven by a certain Markov chain) characterized by

the state of the external economic condition as well as the history of defaults up to the cur-

rent time. While these pioneering models possess some structural elegance, they would not

necessarily facilitate the computation of CDO tranches in continuous time, often resorting

to Monte Carlo simulation for this purpose. An alternative approach suggested by Lando [6]

employs a Markov Modulated Poisson Process (MMPP) for describing the stochastic behav-

ior of portfolio losses, thereby enabling one to use the computational procedure for general

Markov Chains for evaluating loss distributions. The purpose of this paper is to recapture

the MMPP model of Lando [6] within the context of CDO. In particular, by exploiting the

stochastic structure of the MMPP, computational procedures are developed for evaluating

loss distributions and pricing CDO tranches, which are much more efficient than those based

on the general Markov chain approach.

The structure of this paper is as follows. A general framework for understanding CDO

tranches is introduced in Section 2, for which a mathematical model is developed in Section

3 based on an MMPP. Section 4 is devoted to analysis of the MMPP model deriving the

Laplace transforms of the probabilities of just n defaults by time t explicitly. In Section

5, computational algorithms are developed for evaluating CDO tranches based on the the-

oretical results of Section 4. Finally, in Section 6, some numerical results are presented,

demonstrating the potential usefulness of the model by estimating the underlying parame-

ters based on real market data. Some concluding remarks are given in Section 7.

Throughout the paper, vectors are denoted by the underbar, e.g. v, w, and matrices by

the double-underbar, e.g. a, b. A vector having all components equal to one is denoted by

1.

2. CDO Tranches

In the CDO scheme, given a reference portfolio, the associated credit risk is divided into

tranches of increasing seniority, where a tranche is defined by a pair of an attachment point

and a detachment point of the cumulative aggregate loss of the reference portfolio. Here, the

attachment point Ka means that the protection buyer (the CDO issuer) is fully responsible

for the portfolio loss up to Ka. In principle, the protection seller (the tranche investor)

compensates the portfolio loss beyond Ka up to Kd for the protection buyer, where Kd is

the detachment point. Predetermined premiums are paid to the protection seller by the

protection buyer according to a predetermined schedule up to the maturity year in such a

way that no-arbitrage condition of the credit derivatives market is satisfied. The relationship

between the protection seller and the protection buyer is depicted in Figure 2.1. Further

procedural details of the CDO scheme will be discussed subsequently.

Multiple classes of securities are created by tranching the aggregate loss differently. In

Japanese market, for example, the iTraxx Japan index is defined to be the average price

of the most liquid 80 single name CDS’s, and the standard tranches are available based on

this index, consisting of [0%, 3%]-Tranche, [3%, 6%]-Tranche, [6%, 9%]-Tranche, [9%, 12%]-

Tranche, and [12%, 22%]-Tranche, where the first figure denotes Ka and the second figure
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Figure 2.1: Cash flow of CDO Tranche

Kd. These tranches are traded mainly with 5year maturity. It is worth noting that the

market convention of Tranched iTraxx Japan for [0%,3%]-Tranche is different from other

standard tranches in that the former has a fixed premium rate of 300bp (basis points where

one basis point corresponds to 0.01%) throughout the contract period and the necessary

adjustment for the no-arbitrage condition is paid at the time of the contract agreement,

while the latters do not require any initial payment and the premium rate itself is chosen

so as to satisfy the no-arbitrage condition.

We now turn our attention to the procedural details of Tranched Index contracts. The

principal entity of interest is a reference portfolio consisting of M single-name CDS’s. Since

the focus of this paper is to investigate Tranched Index, it is assumed that all single-name

CDS’s are equally weighted. As time progresses, some of them would default. Let M(t)

be the number of active corporations at time t. As we will see, the stochastic process

M(t) is modeled as a generalized pure death process with default intensities governed by a

continuous time Markov chain representing the macro economic condition. Let l(t) be the

cumulative aggregate loss up to time t. Because of the equal weight assumption above, one

can assume, without loss of generality, that l(t) is proportional to M −M(t). Using M as a

scaling factor, l(t) can then be scaled so that 0 ≤ l(t) ≤ 1. More specifically, with R being

the recovery rate of each of individual default losses, one can write

l(t) =
M −M(t)

M
· (1−R) =

(
1− M(t)

M

)
(1−R).(2.1)

The protection seller taking the credit exposure to the tranche with an attachment point

Ka and a detachment point Kd will bear full losses occurring in the portfolio in excess of

Ka but up to Kd. Such a tranche is denoted by [Ka, Kd]-Tranche. Let L[Ka,Kd](t) be the

cumulative loss at time t of [Ka, Kd]-Tranche defined by

L[Ka,Kd](t) =
(
l(t)−Ka

)+

−
(
l(t)−Kd

)+

(2.2)

where (x)+ = max(0, x). Since l(t) is scaled so as to satisfy 0 ≤ l(t) ≤ 1, we postulate

0 ≤ Ka ≤ Kd ≤ 1. It should be noted that

L[Ka,Kd](t) =





0 if l(t) ≤ Ka

l(t)−Ka if Ka ≤ l(t) ≤ Kd .
Kd −Ka if Kd ≤ l(t)

(2.3)

The procedural details of a Tranched Index contract can now be described as follows.

At predetermined time epochs τk, k = 0, 1, · · · , K, with τ0 = 0, the protection seller pays
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to the protection buyer by the amount of PAYsell→buy(τk) specified by the tranched loss

increment, i.e.

PAY sell→buy(τk) = L[Ka,Kd](τk)− L[Ka,Kd](τk−1) , k = 1, 2, · · · , K .(2.4)

It should be noted that once the cumulative payment from the protection seller to the

protection buyer reaches Kd −Ka, PAY sell→buy remains 0 from that point on.

In exchange, a payment would be made from the protection buyer to the protection seller

at each time epoch τk (k = 1, 2, · · · , K). This payment amount, denoted by PAYbuy→sell,

is based on the unit premium c[Ka,Kd] agreed upon at time τ0 = 0, which is applied to the

hedge interval, i.e. (Kd −Ka) minus the cumulative payment made by the protection seller

to the protection buyer up to time τk. More formally, one sees from (2.4) that

PAY buy→sell(c[Ka,Kd], τk) = c[Ka,Kd]

(
(Kd −Ka)−

k∑
j=1

PAY sell→buy(τj)
)

(2.5)

= c[Ka,Kd]

(
(Kd −Ka)− L[Ka,Kd](τk)

)
.

The financial interactions between the protection seller and the protection buyer are illus-

trated in Figure 2.2.

-

6
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l(t)

s s s s s s

s s s s s s

Protection Seller

Protection Buyer

? ?
PAYsell→buy

6 6 6 6 6 6
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Figure 2.2: Protectionleg and Premiumleg

In formulating Tranched Index contracts, the key question is how to determine the unit

premium c∗[Ka,Kd] at equilibrium which assures no-arbitrage in the credit derivatives market.

We assume that there exists a risk-neutral martingale measure P under which all price

processes discounted with the interest rate r are martingales. Furthermore, it is assumed

that r is deterministic. In this paper, all expectations are taken with respect to this measure.

Then the unit premium c∗[Ka,Kd] should satisfy

K∑

k=1

e−rτkEP
[
PAY sell→buy(τk)

]
=

K∑

k=1

e−rτkEP
[
PAY buy→sell(c

∗
[Ka,Kd], τk)

]
.(2.6)
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Figure 3.1: Transition Structure of [J(t),M(t)]

The left hand side of Equation (2.6) is called the protectionleg while the right hand side is

called the premiumleg. From (2.4) and (2.5), Equation (2.6) can be solved for c∗[Ka,Kd] as

c∗[Ka,Kd] =

∑K
k=1 e−rτkEP

[
L[Ka,Kd](τk)− L[Ka,Kd](τk−1)

]

∑K
k=1 e−rτkEP

[
(Kd −Ka)− L[Ka,Kd](τk)

] .(2.7)

The purpose of this paper is to develop efficient computational algorithms for evaluating

c∗[Ka,Kd] based on (2.7). The validity of the model and the efficiency of the numerical proce-

dures proposed in this paper are then tested by calibrating to real market data.

3. MMPP Formulation of CDO Scheme

We consider a finite Markov chain J(t) in continuous time defined on J = {0, 1, · · · , J}
governed by V = [νij], describing the state of the macro-economic condition at time t.

It is assumed that J(t) is irreducible and therefore ergodic. There are M corporations

under consideration constituting M single-name CDS’s. All M corporations are active

(non-default) at time t = 0. Given J(t) = i, each active corporation has a constant default

intensity of λi. Once a corporation falls into default, it remains inactive from that point on.

Apart from the fact that the default intensity governed by the macro-economic condition are

common among all of the active corporations, individual corporations behave independently.

Let M(t) be the number of active corporations at time t with M(0) = M . The domain of

M(t) is denoted by M = {0, 1, 2, · · · ,M}. It should be noted that the bivariate process

[J(t),M(t)] on J×M is an MMPP expressed as a row-continuous Markov chain governed by

[V , Λ
D
], where Λ

D
= [δijλi] with δij = 1 if i = j and δij = 0 otherwise. Clearly, [J(t),M(t)]

is non-increasing with respect to M(t), and {[i,m] : i ∈ J , 1 ≤ m ≤ M} is the transient set

while {[i, 0] : i ∈ J } is the recurrent set as depicted in Figure 3.1.

In the next section, we analyze the bivariate Markov process [J(t),M(t)], deriving the

marginal distribution of M(t) explicitly in a closed form. This result enables one to evaluate
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the time dependent distribution of the cumulative aggregate loss l(t) based on (2.1) and

that of the cumulative loss L[Ka,Kd](t) of [Ka, Kd]-Tranche from (2.2). This in turn provides

a computational vehicle for assessing PAYsell→buy from (2.4) and PAYbuy→sell from (2.5).

Finally, the premium c∗[Ka,Kd] of interest can be computed based on (2.7).

4. Analysis of [J(t),M(t)]

As can be seen in Figure 3.1, the bivariate Markov process [J(t),M(t)] is non-increasing in

M(t) and is lattice continuous. By exploiting this stochastic structure, given M(t) = m,

we consider the absorbing bivariate Markov process [J(t + τ),M∗
m(t + τ)] on Gm ∪ Bm,

where Gm = {[0,m] · · · [J,m]} is the transient set and Bm = {[0,m − 1] · · · [J,m − 1]} is

the absorbing set, governed by transition rates as depicted in Figure 4.1. (We note that the

rows and the columns are interchanged in Figure 4.1 so as to save the space.) Because of the

underlying Markov property, we only consider the case of t = 0 without loss of generality. Of

particular interest to our analysis is the first passage time of [J(τ),M∗
m(τ)] from [i,m] ∈ Gm

to [j, m− 1] ∈ Bm.

s s p p p p p s s s p p p p p s s
mλ0

s s p p p p p s s s p p p p p s s

? ? ? ?

¾ -

?mλi

[i,m][0,m] [J,m]

[i,m− 1][0,m− 1] [J,m− 1]

? ?mλJ

Figure 4.1: Transition rate from Gm to Bm

Formally, let V∗(m) be the transition rate matrix governing [J(τ),M∗
m(τ)] where

(4.1) V∗(m)
def
=

Gm Bm

Gm

Bm

[ V mΛ
D

0 0

]
.

We also introduce

V∗
D
(m)

def
=

[V
D

+ mΛ
D

0

0 0

]
; V

D
= [δijνi] ; νi =

∑
j∈J

νij ,(4.2)

so that the infinitesimal generator Q(m) of [J(τ),M∗
m(τ)] is given by

Q(m) = −V∗
D
(m) + V∗(m) .(4.3)

Let P ∗(m, τ) be the transition probability matrix of [J(τ),M∗
m(τ)]. From the Kol-

mogorov forward equation, one has d
dτ

P ∗(m, τ) = P ∗(m, τ)Q(m). In the Laplase transform

domain, i.e. π∗(m, s)
def
=

∫∞
0

e−sτP ∗(m, τ)dτ , this leads to sπ∗(m, s)− I = π∗(m, s)Q(m) so

that

π∗(m, s) =
[
sI −Q(m)

]−1

.(4.4)
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One then sees that

P ∗(m, τ) = e Q(m)τ =
∞∑

k=0

1

k!
Q(m)kτ k .(4.5)

In order to facilitate our analysis further, we introduce the uniformization procedure of

Keilson [4]. Let

ν ≥ max{νi + mλi} ,(4.6)

and define

a∗
ν
(m)

def
= I − 1

ν
V∗

D
(m) +

1

ν
V∗(m) .(4.7)

From (4.3) and (4.7), one sees that Q(m) = −ν[I−a∗
ν
(m)]. Substituting this into (4.5) then

yields

P ∗(m, τ) = e−ντ [I−a∗
ν
(m)] =

∞∑

k=0

e−ντ (ντ)k

k!
a∗

ν
(m)k .(4.8)

The uniformization procedure makes the dwell time of [J(τ),M∗
m(τ)] at any state uniform in

that all of such dwell times share the same exponential distribution with mean ν−1, and the

next state to be visited is governed by the stochastic matrix a∗
ν
(m). This fact can be stated

more formally in the following manner. Let [Ĵ(k), M̂∗
m(k)] be the discrete time Markov chain

governed by a∗
ν
(m), and define Kν(τ) to be a Poisson process with parameter ν. One then

has [J(τ),M∗
m(τ)] = [Ĵ(Kν(τ)), M̂∗

m(Kν(τ))]. The probabilistic meaning of Equation (4.8)

is now clear.

From (4.4) and (4.7), one has π∗(m, s) =
[
(s + ν)I − νa∗

ν
(m)

]−1

and hence

π∗(m, s) =
1

s + ν

[
I − ν

s + ν
a∗

ν
(m)

]−1

.(4.9)

For the later use, we note that

π∗
GG

(m, s) =
1

ν

∞∑

k=0

( ν

s + ν

)k+1

a∗
ν:GG

(m)k ,(4.10)

and

π∗
GB

(m, s) =
1

ν

∞∑

k=0

( ν

s + ν

)k+1

b∗
ν:GB

(m, k) ,(4.11)

where

b∗
ν:GB

(m, 0) = 0 ,(4.12)

and

b∗
ν:GB

(m, k) =
k−1∑
j=0

a∗
ν:GG

(m)ja∗
ν:GB

(m) .(4.13)
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In the real domain, these equations correspond to

P ∗
GG

(m, τ) =
∞∑

k=0

e−ντ (ντ)k

k!
a∗

ν:GG
(m)k ,(4.14)

P ∗
GB

(m, τ) =
∞∑

k=0

e−ντ (ντ)k

k!
b∗
ν:GB

(m, k) .(4.15)

The probabilistic entity of importance, which would play a key role as the computational

vehicle for analysis of CDO Tranche contracts, is the joint probability of the first passage

time of [J(τ),M∗
m(τ)] from Gm to Bm starting from [J(0),M∗

m(0)] = [i,m] and the absorbing

state reached upon absorption. More specifically, let T[i,m]Bm be the first passage time of

[J(τ),M∗
m(τ)] from [i,m] ∈ Gm to Bm and define

S(m, τ) = [Sij(m, τ)] ;(4.16)

Sij(m, τ)
def
= P

[
T[i,m]Bm ≤ τ, J(τ) = j|M∗

m(0) = m, J(0) = i
]

.

The corresponding Laplace transform matrix is defined by

σ(m, s)
def
= [σij(m, s)] ; σij(m, s) =

∫ ∞

0

e−sτdSij(m, τ) .(4.17)

The next theorem then holds true.

Theorem 4.1 Let S(m, τ) and σ(m, s) be as given in (4.16) and (4.17) respectively and

define s(m, τ) = d
dτ

S(m, τ). One then has:

a) σ(m, s) =
∞∑

k=0

( ν

s + ν

)k+1

a∗
ν:GG

(m)ka∗
ν:GB

(m) ,

b) s(m, τ) =
∞∑

k=0

e−ντ (ντ)k

k!
νa∗

ν:GG
(m)ka∗

ν:GB
(m) .

Proof

From the probabilistic interpretation of the uniformization procedure, one sees that

σij(m, s) =
ν

s + ν

[
δija

∗
ν:[i,m][i,m−1](m) +

∑
r∈J

a∗ν:[i,m][r,m](m)σrj(m, s)
]

,(4.18)

which can be explained in the following manner. Starting from [i,m] = [J(0),M∗
m(0)], the

dwell time at the state can be considered to have the common exponential distribution with

the Laplace transform ν/(s+ν) due to uniformization. The absorbing set Bm can be reached

directly from [i,m] only through [i,m − 1]. When i = j, this direct transition occurs with

probability a∗ν:[i,m][i,m−1](m). Otherwise, the next state to be visited would be [r,m] with

probability a∗ν:[i,m][r,m](m). In this case, the state [j, m − 1] should be reached anew from

[r,m], and the Laplace transform σrj(m, s) should be multiplied.

In matrix notation, Equation (4.18) can be rewritten as

σ(m, s) =
ν

s + ν

[
a∗

ν:GB
(m) + a∗

ν:GG
(m)σ(m, s)

]
,(4.19)
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which can be solved for σ(m, s) as

σ(m, s) =
ν

s + ν

[
I − ν

s + ν
a∗

ν:GG
(m)

]−1

a∗
ν:GB

(m) .(4.20)

Part a) of Theorem 4.1 then follows by expanding (4.20) into a geometric series. The explicit

inversion of part a) into the real domain yields part b), completing the proof.

2

We note that s(m, τ) can be expressed as a mixture of a∗
ν:GG

(m)ka∗
ν:GB

(m) with weights

given as gamma functions. In principle, these gamma functions can be readily computed

recursively given a vector of different values of τ . Since the mode of the gamma function of

order k shifts to the right as k →∞, a little precaution is required for achieving numerical

accuracy, which we will discuss later.

We are now in a position to derive the Laplace transform of the joint distribution of

[J(t),M(t)] explicitly. This expression facilitates the necessary computations substantially,

thereby improving the brute force approach to apply the uniformization procedure to the

entire state space J ×M. Formally, for i, j ∈ J and m ∈M, let aij(m, t|M) be defined by

aij(m, t|M) = P{J(t) = j, M(t) = m|J(0) = i,M(0) = M} .(4.21)

The Laplace transform with respect to t is denoted by

αij(m, s|M) =

∫ ∞

0

e−staij(m, t|M)dt .(4.22)

The corresponding matrix function and matrix transform are written as

a(m, t|M) =
[
aij(m, t|M)

]
; α(m, s|M) =

[
αi,j(m, s|M)

]
.(4.23)

One then has the following theorem.

Theorem 4.2 Let α(m, s), σ(m, s), π∗
GG

(m, s) and π∗
GB

(m, s) be as given in (4.23), (4.17),

(4.10) and (4.11) respectively. Then the following statements hold.

a) α(M, s|M) = π∗
GG

(M, s),

b) α(m, s|M) = σ(M, s)σ(M − 1, s) · · ·σ(m + 1, s)π∗
GG

(m, s),

(m = M − 1,M − 2, · · · , 2, 1)

c) α(0, s|M) = σ(M, s)σ(M − 1, s) · · ·σ(2, s)π∗
GB

(1, s).

Proof

Given M(0) = M , one has M(t) = M if and only if no corporation has defaulted by time

t. This means that the bivariate process [J(t),M∗
M(t)] remains in GM at time t starting

from a state in GM at time 0, proving part a). If M(t) = m for m = M − 1,M − 2, · · · , 1,

the process M(·) has to reach m for the first time at some time τ with 0 ≤ τ ≤ t. In the

remaining period [τ, t], the bivariate process [J(t),M∗
m(t)] has to remain in Gm. Statement

b) then holds accordingly. For part c), when the process M(·) reaches 1 at some time τ

with 0 ≤ τ ≤ t, the bivariate process [J(t),M∗
1 (t)] has to reach B0 in the remaining period

[τ, t], completing the proof. 2
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Remark 4.3 It should be noted that the sum of a(m, t|V ) over m ∈ M yields a stochastic

matrix because of (4.21) and (4.23). More specifically, one has for any V ∈M
V∑

m=0

a(m, t|V )1 = 1 .(4.24)

In the subsequent sections, we develop the computational algorithms for evaluating the

prices of CDO Tranches. Some numerical results will also be reported, demonstrating the

consistency of the proposed model with real data.

5. Computational Algorithms

In order to evaluate the prices of CDO Tranches c∗[Ka,Kd], it is sufficient from (2.7) to develop

computational procedures for assessing EP
[
L[Ka,Kd](t)|J(0) = i

]
. From (2.2), the basic entity

to constitute L[Ka,Kd](t) is (l(t)−K)+. It can be seen from (2.1) that this entity is positive

if and only if

M(t) ≤
(1−R−K

1−R

)
M .(5.1)

Accordingly, let M be decomposed into MI,MII and MIII defined by

MI
def
=

{
m : 0 ≤ m ≤ 1−R−Kd

1−R
M

}
,(5.2)

MII
def
=

{
m :

1−R−Kd

1−R
M < m ≤ 1−R−Ka

1−R
M

}
,(5.3)

and

MIII
def
=

{
m :

1−R−Ka

1−R
M < m ≤ M

}
.(5.4)

We note that

L[Ka,Kd](t) =





Kd −Ka if M(t) ∈MI(
1− M(t)

M

)
(1−R)−Ka if M(t) ∈MII .

0 if M(t) ∈MIII

(5.5)

It then follows that

EP
[
L[Ka,Kd](t)

∣∣∣ J(0) = i
]

= (Kd −Ka)
∑

m∈MI

∑
j∈J

aij(m, t|M)(5.6)

+
∑

m∈MII

∑
j∈J

((
1− m

M

)
(1−R)−Ka

)
aij(m, t|M) .

Hence, the evaluation of the prices of CDO Tranches c∗[Ka,Kd] is nailed down to computation

of a(m, t|M).

From Theorem 4.2, the matrix Laplace transforms α(m, s|M) of a(m, t|M) can be ex-

pressed in terms of σ(m, s) in (4.20), π∗
GG

(m, s) in (4.10), and π∗
GB

(m, s) in (4.11). It should

10



be noted that these three types of Laplace transform matrices can be expressed as a linear

combination of constant matrices with functional coefficients of the form

γk(s) =

∫ ∞

0

e−stgk(t)dt =
νk

(s + ν)k+1
; gk(t) = e−νt (νt)k

k!
.(5.7)

The fact that the matrices in the series expression are independent of s and the functional

parts are concentrated in the coefficients γk(s) facilitates the matrix convolutions among the

three types of the matrix functions greatly, with help from a nice property of γk(s) given by

γm(s)γn(s) =
1

ν
γm+n+1(s) .(5.8)

In other words, the class of matrix Laplace transforms of a linear combination of constant

matrices with functional coefficients γk(s) is closed under matrix multiplications. Accord-

ingly, the class of the corresponding matrix functions in real domain is closed under matrix

convolutions.

Based on the observations discussed above, we define

ALAPL
def
=

{
ξ

(n,X(n))∞n=0

(s) : ξ
(n,X(n))∞n=0

(s) =
∞∑

n=0

γn(s)X(n)

}
,(5.9)

and

AREAL
def
=

{
X

(n,X(n))∞n=0

(t) : X
(n,X(n))∞n=0

(t) =
∞∑

n=0

gn(t)X(n),

}
.(5.10)

We now introduce the following two mappings involving ALAPL and AREAL.

INV : ALAPL −→ AREAL(5.11)

with

X
(n,X(n))∞n=0

(t) = INV
[
ξ

(n,X(n))∞n=0

(s)
]

(5.12)

and

MULT : ALAPL ×ALAPL −→ ALAPL(5.13)

with

ξ
(`,Z(`))∞`=0

(s) = MULT
[
ξ

(m,X(m))∞m=0

, ξ
(n,Y (n))∞n=0

]
.(5.14)

Here INV is the matrix inversion operator specifying the matrix function in real domain

given a matrix Laplace transform. MULT is the matrix multiplication operator implying

ξ
(`,Z(`))∞`=0

(s) = ξ
(m,X(m))∞m=0

(s)× ξ
(n,Y (n))∞n=0

(s) .(5.15)
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From (5.8) and (5.15), it follows that

ξ
(m,X(m))∞m=0

(s)× ξ
(n,Y (n))∞n=0

(s) =
∞∑

m=0

γm(s)X(m)
∞∑

n=0

γn(s)Y (n)

=
1

ν

∞∑
m=0

∞∑
n=0

γm+n+1(s)X(m)Y (n)

=
1

ν

∞∑

`=1

γ`(s)
∑

m+n+1=`:m,n≥0

X(m)Y (n) .

Consequently, one sees that

Z(`) =
1

ν

∑

m+n+1=`:m,n≥0

X(m)Y (n) , ` = 1, 2, · · · .(5.16)

We are now in a position to summarize computational procedures for evaluating a(m, t|M).

Algorithm 5.1

Input:

. M = {0, 1, · · · ,M}

. J = {0, 1, · · · , J}

. V =
[
νij

]
i,j∈J

. λ =
[
λ0, λ1, · · · , λJ

]>

Output:

/ a(m, t|M) , m ∈M

Procedure:

1] Set σ(m, s) = ξ
(k,νa∗

ν:GG
(m)ka∗

ν:GB
(m))∞k=0

(s), for m = M,M − 1, · · · , 2.

2] Set π∗
GG

(m, s) = ξ
(k,a∗

ν:GG
(m)k)∞k=0

(s), for m = M,M − 1, · · · , 2, 1.

3] Set π∗
GB

(m, s) = ξ
(k,b∗

ν:GB
(m,k))∞k=0

(s), for m = 1.

4] Set α(M, s|M) = π∗
GG

(M, s) and β(M, s|M) = I.

5] m ← M − 1

6] LOOP : β(m, s|M) = MULT
[
β(m + 1, s|M), σ(m + 1, s)

]
.

7] Compute α(m, s|M) = MULT
[
β(m, s), π∗

GG
(m, s)

]
.

8] Compute a(m, t|M) = INV
[
α(m, s|M)

]
.

9] → (1 ≥ m ← m− 1)/LOOP

10] Compute α(0, s|M) = MULT
[
β(1, s|M), π∗

GB
(1, s)

]
.

11] Compute a(0, t|M) = INV
[
α(0, s|M)

]
.

12] END.

12



Algorithm 5.1 can be interpreted in the following manner. From (4.1), (4.2), (4.7) and

(4.9), the matrices π∗(m, s) can be readily obtained. Based on Theorem 4.1 a) together

with (4.10) and (4.11), the matrices σ(m, s), π∗
GG

(m, s) and π∗
GB

(m, s) can be expressed

as linear combinations of constant matrices with functional coefficients of γk(s) in (5.7),

corresponding to 1] through 3] in Algorithm 5.1. Using MULT and INV given in (5.14)

and (5.12) respectively, the matrices a(m, t|M) can then be evaluated based on Theorem 4.2,

explaining 4] through 11]. A few remarks are worth noting.

Remark 5.2 a) Given t > 0, the sequence (gk(t))
∞
k=0 is unimodal with the peak shifting

to the right as t becomes larger. In order to secure a truncation accuracy, say ε > 0, it is

necessary to pick up terms which are greater than ε centered at the peak.

b) Keeping the point in a) above in mind, the vector values [gk+1(t1), gk+1(t2), · · · , gk+1(tN)]

can be generated recursively from [gk(t1), gk(t2), · · · , gk(tN)].

6. Numerical Results

In this section, we demonstrate the speed and accuracy of Algorithm 5.1 through numerical

experiments. In addition, the model proposed in this paper for evaluating the prices of CDO

Tranches is calibrated to real market data by fitting the underlying parameter values in a

certain manner. As we will see, the calibration result proves to be excellent.

In order to design numerical experiments, we assume that J(t) describing the macro

economic condition is defined on J = {0, 1, · · · , 2V } and can be expressed as an Ehrenfest

process characterized by

νij =





v · i
2

if j = i− 1

v · (V − i
2

)
if j = i + 1

0 else

.(6.1)

It is known, see e.g. Sumita, Gotoh and Jin [10], that this Ehrenfest process converges in law

to an Ornstein-Uhlenbeck process with appropriate scaling and shifting. The OU process

has a tendency to return to the mean, should it depart from it in either direction. This

property is desirable for describing the macro economic condition. It should be noted that

the scaling parameter v enables one to adjust the speed of state transitions of the macro

economic condition.

For the default intensity λj when J(t) = j, the following functional structure is assumed:

λj = αe−β(j−V ) + γe−δ(j−V ) ,(6.2)

where α, β, γ, δ > 0. We note that J(·) = V corresponds to a normal economic condition

which improves as J(·) increases and deteriorates as J(·) decreases. Accordingly, λj is

defined as a decreasing function of j with α + γ being the default intensity in the normal

economic condition.

In actually conducting numerical experiments, we set v = 0.1, V = 3 and (α, β, γ, δ) =

(0.0002, 2, 0.0015, 0.08). The corresponding default intensity function in λj takes values as

given in Table 6.1, demonstrating the desired monotonicity property. Figures 6.1 through

6.6 show the term structure of the probabilities(z-axis) of just n defaults conditional to J(·),
where the probabilities are expressed in %. As can be seen in Figure 6.1, the probability of
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Table 6.1: Values of Default Intensity Vector λ
λ0 λ1 λ2 λ3 λ4 λ5 λ6

0.08259 0.01268 0.00310 0.00170 0.00141 0.00128 0.00118

no default as a function of J(·) rises rather sharply around the normal economic condition

at the beginning, and decreases monotonically as the term becomes longer. The peak point

remains around the normal economic condition for a while but moves along the direction of

the term length as if a child crawls into a blanket and continues to crawl with shift to the

right under the blanket.
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Figure 6.1: aV,j(M, t|M) for j ∈ J with M =
80
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Figure 6.2: aV,j(M − 1, t|M) for j ∈ J with
M = 80
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Figure 6.3: aV,j(M − 2, t|M) for j ∈ J with
M = 80
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Figure 6.4: aV,j(M − 3, t|M) for j ∈ J with
M = 80

1

2

3

4

5

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

Term
J(t)

P
r
o
b
a
b
i
l
i
t
y
(
%
)

Figure 6.5: aV,j(M − 4, t|M) for j ∈ J with
M = 80
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Figure 6.6: aV,j(M − 5, t|M) for j ∈ J with
M = 80
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We next turn our attention to validate the proposed model by calibrating to the Tranched

iTraxx Japan Series7(5Y), employing the market mid-quotes on 2007/5/25 obtained from

Bloomberg. The state space size for the macro economic condition is set to be 7 with V = 3

in (6.1). For estimating the underlying parameter values (α, β, γ, δ, v) so as to reflect the

real market data, the objective is to minimize the squared sum of the differences of the

theoretical Tranche premium values obtained from the model and the market quotes. More

formally, let ci(α, β, γ, δ, v) be the theoretical premium value derived from the proposed

model and let cMarket
i be the corresponding real market value, with i running over the four

market quote sets as given in the first column of Table 6.3. The objective function can then

be written as

f(α, β, γ, δ, v) =
4∑

i=1

{
ci(α, β, γ, δ, v)− cMarket

i

}2
,(6.3)

which should be minimized. The optimal parameter values are estimated as

α̂ = 0.00024922254304, β̂ = 1.98146548757474, γ̂ = 0.00157242963008,

δ̂ = 0.07923944636996, v̂ = 0.09683163376248 .

The corresponding values of λj can be obtained from (6.2) as given in Table 6.2. We

note that λj is decreasing in j as it should be. The calibration results are summarized in

Table 6.3, demonstrating the excellent consistency between the theoretical proposed model

and the real data.

Table 6.2: Values of Default Intensity Vector λ for the optimal parameters
λ0 λ1 λ2 λ3 λ4 λ5 λ6

0.09800 0.01495 0.00351 0.00182 0.00149 0.00135 0.00124

Table 6.3: Proposed Model v.s. Real Market Data
iTraxx Japan S7 Model Market Mid-Quote
0-3Tranche 300+9.449% 300+9.450%
3-6Tranche 17.749bp 17.750bp
6-9Tranche 4.999bp 5.000bp
9-12Tranche 2.628bp 2.625bp

A computer with CPU Core 2 Duo processor 2.40 GHz and 1.99 GB RAM is employed for

all the computations presented in this paper, using MATLAB as a programming language.

The required CPU times were around 72 seconds to compute CDO Tranches with V = 3.

7. Concluding Remarks

In this paper, computational procedures for evaluating loss distributions and pricing CDO

tranches are developed by recapturing the MMPP model of Lando [6] within the context of

CDO. In particular, by exploiting the stochastic structure of the MMPP, computational pro-

cedures are developed for evaluating loss distributions and pricing CDO tranches, which are

much more efficient than those based on the general Markov chain approach. Some numeri-

cal results are presented, demonstrating the potential usefulness of the model by estimating
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the underlying parameters based on real market data. In view of possible structural changes

in the credit market in the midst of the on going turmoil, the validity of the model needs

to be reexamined against more recent real market data. This study is in progress and will

be reported elsewhere.
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