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We show the formulation and the result of test calculation of the over-
lap of excites states in the quasiparticle random-phase approximation for
calculating the nuclear matrix elements of the neutrino-less double beta
decay. Our method uses the ground states of the QRPA explicitly. The
feasibility of that calculation is demonstrated, and the effectiveness of the
truncation used in our method is shown.
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1. Introduction

One of few methods to determine the neutrino mass is to measure the
half life (transition rate) of the neutrino-less double beta (0νββ) decay and
to calculate the transition matrix element of that decay (nuclear matrix
element), see e.g. Ref. [1]. The half life of the initial state is inversely pro-
portional to the squared nuclear matrix element, and the squared effecitve
neutrino mass is included in the inversely-proportional coefficient. The the-
oretical methods used so far for calculating the nuclear matrix elements are
shell model calculation, proton–neutron quasiparticle random-phase approx-
imation (pn-QRPA), projected Hartree–Fock–Bogoliubov (HFB) approxi-
mation, interacting boson model, and generator coordinate method (see ref-
erences in [2]). It is known that the results of these calculations do not
converge; in particular, the shell model calculations and the pn-QRPA have
a tendency of the difference of a factor of 2 [3].

This study is the first step of a new method to calculate the nuclear
matrix element. First, we use like-particle QRPA (hereafter we call this
approximation simply QRPA) for getting the intermediate nuclear states.
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This approach is based on the fact that the closure approximation [1] is good
in the 0νββ decay. With this approximation and the closure property, it is
possible to write the nuclear matrix element in the form of a matrix element
of a two-body operator without the intermediate states. Subsequently, we
can rearrange the order of the neutron annihilation and the proton creation
operators and insert another closure relation with the intermediate states
having (Z + 2, N) or (Z,N − 2). [The initial (parent) nuclear state has
(Z,N).] In the application of the QRPA, this closure relation is replaced
by the product of the two closure relations obtained based on the initial
and the final states, and the overlap of the QRPA states arises. One of
advantages of the QRPA is that the anharmonicity is small in many nuclei
except for the transition regions between spherical and deformed nuclei.
Another advantage is that odd–odd nuclei are not involved, so that it is not
necessary to consider whether or not the last odd particle is coupled to the
rest of the nucleus weakly.

Another new point of our method is to calculate the overlap of the inter-
mediate QRPA states as rigorously as possible, as explained in this paper;
this calculation is more advanced than other calculations performed so far
(see Ref. [4] and references therein).

In Sec. 2, we show the formulation of the overlap of the QRPA states
and the result of the test calculation briefly. A few results of the calculation
are published in Ref. [5], and the detail of the calculation is found in Ref. [2]

2. Formulation and calculation

We introduce creation operator of the QRPA state

OI†m =
∑
µ<ν

(
XIm
µν a

I†
µ a

I†
ν − Y Im

−µ−νa
I
−νa

I
−µ

)
,

where aI†µ and aIµ are the creation and the annihilation operators of the
quasiparticle, respectively, associated with the initial ground state (indi-
cated by I) of the 0νββ decay, and XIm

µν and Y Im
−µ−ν stand for the forward

and the backward amplitudes of the QRPA solution m, respectively. The
quasiparticle states are ordered, and −µ expresses that its z-component of
the angular momentum K−µ is equal to −Kµ. The axial and the parity
symmetries of the nuclear and the quasiparticle states are assumed. We
have similar equations for the final state of the decay (suffix F instead of I).
The initial QRPA ground state |I〉 is defined by OIm|I〉 = 0 and this ground
state has a relation [6] to the HFB ground state |i〉 as
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K and π denote the z-component of the angular momentum and the parity
of the QRPA solutions, respectively; in principle, all (Kπ) are used. NI is
the normalization factor. The quasi boson approximation is used in deriving
the last equation, and in relation to this approximation, we have Kµ+Kν =
−Kµ′ −Kν′ = K. The parity of two quasiparticle states µν as well as µ′ν ′
is equal to π. A matrix expression of the forward and backward amplitudes
is used in Eq. (1). Using an expansion-truncation of |I〉 and |F 〉 up to the
first order with respect to v(Kπ)I and v

(Kπ)
F , respectively, we can write the

overlap of the QRPA states as
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, (2)

where |f〉 is the final HFB ground state, and N 2
I (N 2

F ) is calculated up to
the fouth order with respect to v(Kπ)I (v(Kπ)F ).

The numerical result is shown in Fig. 1. This calculation was performed
for 26Mg and 26Si (virtual initial and final states) with the Skyrme energy
density functional SkM∗ [7] and the volume pairing energy density func-
tional [8]. (For detail, see Ref. [2].) The QRPA states of (Kπ) = (0+)
are used. It is seen that the convergence is obtained at the first order with
respect to v

(Kπ)
I or v(Kπ)F [that is up to the third term of Eq. (2)]. We

found two more important results; (Kπ) used in the summation of Eq. (2)
different from that of the QRPA state (Kmπm) have little contribution to
the overlap except for the spurious states (m = 1 and 2 in Fig. 1). [Those
(Kπ) different from (Kmπm) are not included in the un-normalized matrix
elements of the calculation of Fig. 1.] Second, the truncation is effective of
the two quasiparticle states used in the calculation of Eq. (2).

In summary, the formulation and the calculation of the overlap of the
QRPA states have been shown. This is currently the most advanced cal-
culation of the overlap, and it is important to investigate how this method
affects the nuclear matrix elements in the QRPA; the preparation of the
calculation is in progress.
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Fig. 1. Twenty largest absolute values of diagonal overlap matrix elements of 26Mg
(|I〉) and 26Si (|F 〉). The zeroth (first) indicated in the panel refer to the first
(second and third) term(s) of the right side of Eq. (2). ‘All’ in the panel indicates
the result of the full calculation of Eq. (2). (Kπ) of the QRPA states m is (0+).
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