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Abstract

The unified multivariate counting process (UMCP), previously studied by the same authors, en-
ables one to describe most of the existing counting processes in terms of its components, thereby
providing a comprehensive view for such processes often defined separately and differently. The
purpose of this paper is to study a multivariate reward process defined on the UMCP. By examin-
ing the probabilistic flow in its state space, various transform results are obtained. The asymptotic
behavior, as t — oo, of the expected univariate reward process in a form of a product of compo-
nents of the multivariate reward process is studied. As an application, a manufacturing system
is considered, where the cumulative profit given a preventive maintenance policy is described as
a univariate reward process defined on the UMCP. The optimal preventive maintenance policy is
derived numerically by maximizing the cumulative profit over the time interval [0, T].

Keywords unified multivariate counting process; multivariate reward process; transform re-
sults; asymptotic analysis; preventive maintenance policy

1 Introduction

The history of counting processes can be traced back to 1950’s stemmed from introduction of Poisson
processes, see e.g. Feller [4] . Since then, many different counting processes have been introduced
in response to many different application needs, including non-homogeneous Poisson processes, re-
newal processes (see, e.g2. Ross [23]), Markov-modulated Poisson processes (Heffes and Lucantoni
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[6]), Markov renewal processes (Pyke [20, 21], Keilson [8, 9], Keilson and Wishart [10, 11]), Marko-
vian arrival processes (Lucantoni, Meier-Hellstern and Neuts [13], Lucantoni [12]) and other age-
dependent counting processes (Masuda and Sumita [16], Sumita and Shanthikumar [28]), to name a
few. Such counting processes have been introduced separately with different motivations. Accord-
ingly, they seem to be quite different on the surface.

In order to provide a comprehensive view over such different counting processes, a unified multi-
variate counting process (UMCP) is introduced in Sumita and Huang [26], where the UMCP enables
one to describe most of the existing counting processes in terms of its components. More specifically,
a stochastic system is considered, where a semi-Markov process J(t) defined on ¢ = {0,1,---,J}
constitutes the core process with the counting process N;;(¢) denoting the number of entries of J(t)
fromstate i € _# tostate j € _#. Also incorporated is the counting process M;(t) recording the number
of arrivals in state i € ¢, where such arrivals are generated by the non-homogeneous Poisson process
governed by the intensity function A;(x) depending on the current dwell time x of the semi-Markov
process in state J(t) =i € _# attime .

As an application of the UMCP, a manufacturing system with certain optimal preventive mainte-
nance policy is considered in [26], where the system degrades through multiple stages described by
the state of the semi-Markov process J(¢) on ¢ = {0,---,J}. Here, state O is the perfect state, and
the system degrades gradually from O to J — 1 with default rate increasing along this direction. State J
corresponds to the overhaul for the preventive maintenance, where the system is completely stopped
but would be brought back to the perfect state upon completion. The overhaul time would become
stochastically longer as J increases, that is, as the preventive maintenance is deferred. The total cost
associated with the preventive maintenance policy J is then given by the counting process Ny_i j(f)
with y,, x Ny_ ;(t) representing the overhaul cost and M;(r) with y,; x M;(t) generating the scrap
cost. However, the model cannot cope with a more sophisticated revenue and cost structure, where
revenues and costs may be generated in continuous time depending on the state of J(¢), as well as at
the times of jumps of N;;(t) and M;(t) with random increments.

In order to overcome this difficulty and expand the applicability of the UMCEP, this paper intro-
duces a multivariate reward process Z(¢) defined on the UMCP. By examining the probabilistic flow
in the state space of Z(¢), various transform results are obtained. The asymptotic behavior, as t — oo,
of the expected univariate reward process in a form of a product of components of the multivariate
reward process is studied. As an application, the manufacturing system considered above is revisited,
where the cumulative profit given a preventive maintenance policy is described as a univariate reward
process defined on the UMCP with random jumps. The optimal preventive maintenance policy is
derived numerically by maximizing the cumulative profit over the time interval [0, T'].

The study of reward processes can be traced back to the 1950’s represented by the original paper
by Smith [24]. Subsequently, many papers have been published, including Jewell [7], McLean and
Neuts [18], and Pyke and Schaufele [22], to name only a few. The reader is referred to two excellent
survey papers by Cinlar [2, 3]. Of particular interest to this paper are the reward processes defined
on a semi-Markov process and the associated counting processes studied by Sumita and Masuda [27],
Masuda and Sumita [17] and Masuda [15]. More recently, Stefanov [25] provides some interesting
transform results, linking reward functions accumulated in a deterministic time interval with those
accumulated within first passage times of the underlying Markov chain or the semi-Markov process.

The optimal preventive maintenance problem has been an important branch of research in both
stochastic modeling and reliability theory. An early approach, represented by Barlow and Hunte [1],
Flehinger [5] and Malik [14] among others, was based on renewal theory where the optimal policy
would be determined so as to minimize the cost or the downtime due to repair. Since then, the problem
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has been analyzed from various angles. For capturing the overview of such developments, the reader
is referred to three excellent survey papers by Pierskalla and Voelker [19], Valdez-Flores and Feldman
[29] and Wang [30]. The unique feature of the optimal preventive maintenance problem discussed in
this paper can be found in that the optimal maintenance policy is to maximize the expected profit over a
planning period, where the expected profit consists of three parts: continuous earnings during uptimes,
continuous costs during downtimes and a random fixed cost incurred whenever a maintenance activity
takes place. In addition, two performance measures are considered and compared so as to demonstrate
that the optimal policy for maximizing the mean time between failures could be different from that for
maximizing the system availability.

In what follows, we succinctly summarize Sumita and Masuda [27], Masuda and Sumita [17]
and Masuda [15]. Let Z(r) be a reward process associated with a semi-Markov process J(f) on
7 ={0,---,J}, where Z(t) is characterized by a state dependent reward rate function p : ¢ — R.
Formally, Z(¢) can be written as

Z(t) = /Otp(J(r))dr. (1.1)

Let X (¢) be the age process of J(r) describing the elapsed time up to time # since the last transition into
the current state. By analyzing the trivariate process [J(¢),X(¢),Z(t)], various transform results have
been obtained in [27], yielding the asymptotic expansions of the first two moments of Z(t) as t — oo.
Also analyzed are the reward accumulated during a first passage time of J(z) and the first passage
time of Z(r) itself. Masuda and Sumita [17] extend the model in [27] to a multivariate setting. More
specifically, a multivariate reward process Z(t) = [Z|(t),Zx(t),--- ,Zg(T)] " is considered, where

Z(t) = /tp(J(r))dr : (1.2)

possibly with Z;(¢), k = 1,2,--- K, depending on each other. In Masuda [15], this process is further
extended by incorporating random jumps at transition epochs of the underlying semi-Markov process
J(1).

The purpose of this paper is to introduce a multivariate reward process Z(¢) = [Z(¢),Z(2),-- -,
Zx(T)]" defined on the UMCP, possibly with random jumps at the times of the transitions of the
UMCP. Since the UMCP unifies various counting processes, this multivariate reward process enables
one to treat all of the above reward processes as special cases. Furthermore, some new reward pro-
cesses can also be introduced. As an application, the optimal preventive maintenance policy problem
discussed in Sumita and Huang [26] will be revisited, where the multivariate reward process allows
one to introduce revenues and costs generated in continuous time as well as random increments of the
cost at jump epochs of the UMCP. By applying the asymptotic expansion of E[ fz 1 Zk(t)] , numerical
examples are provided for demonstrating how the optimal maintenance policy could be obtained in
this new context.

Throughout the paper, vectors and matrices are underlined and double underlined respectively,
e.g. u and v. The vector of having all components equal to 1 is denoted by 1. Furthermore, 1; is
the vector having all components equal to 0 except that the i-th component is 1. Similarly, 1 ij is the
matrix having all components equal to 0 except that the (i, j) component is 1. The indicator function
Ofstatement} takes the value of 1 if Statement holds true and 0 otherwise. The limit to 0 from above is
denoted by 0+.

The structure of this paper is as follows. In Section 2, the UMCP is formally introduced and the
multivariate reward process Z(¢) defined on the UMCP is described in detail. Dynamic analysis of
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the multivariate stochastic system involving the UMCP and Z(¢) is provided in Section 3, and various
transform results are obtained. Based on these transform results, Section 4 analyzes the asymptotic
behavior of E [Hszl Zy (t)] as t — oo, The optimal preventive maintenance policy problem is discussed
in Section 5, and numerical examples are presented in Section 6.

2 Model Description

Let {J(t) : t > 0} be a semi-Markov process on ¢ = {0,---,J}, and define the age process X (t)
as the elapsed time until time ¢ since the last transition of J(¢) into the current state. Two types
of multivariate counting processes are considered, where a matrix counting process N(t) = [N;;(t)]
describes the number of transitions of J(t) from i € ¢ to j € ¢ in [0,7], and a vector counting
process M(t) = [Mo(t),--- ,M;(t)]" represents the number of arrivals of certain items in state i € _#
in [0,7]. Given that J(z) =i and X(¢) = x at time 7, it is assumed that the counting process M;(¢)
is a non-homogeneous Poisson process governed by the intensity function A;(x). The multivariate
stochastic process [M(t),N(z)] enables one to describe a variety of counting processes in a unified

manner, e.g. N;(1) &ef Y.rc # Nui(t) denotes the number of entries of J(¢) into state i by time #, and
Yico Mi(t) with &/ C _# may describe the number of defects generated in states 7. Indeed, it has
been shown in Sumita and Huang [26] that many known counting processes can be expressed in
terms of [M(z),N(t)]. Because of this, [M(z),N(t)] is called the unified multivariate counting process
(UMCP) and is analyzed extensively in [26]. In this section, we formally introduce a multivariate
reward process associated with J(z) and [M(z),N(¢)], which would further strengthen the applicability
of the UMCP as we will see. a

In order to facilitate our analysis, we assume that the semi-Markov process J(¢) is governed by a
matrix cumulative distribution function (c.d.f.) A(x) = [A;;(x)] , which is assumed to be absolutely
continuous with the matrix probability density function (p.d.f.) a(x) = [a;;(x)] = d%é (x) . It should be
noted that, if we define A;(x) and A;(x) by

Ailx) = ) Ay(x) s Ail) =1-Ai(x)
jes

then A;(x) is the c.d.f. and A;(x) is the corresponding survival function of the dwell time of J(¢)
in state i. The hazard rate functions associated with the semi-Markov process are then defined as

nij(x) = 2; ((j:)) , i,j € Z . The hazard rate function 7;;(x) can be interpreted probabilistically as
follows. Suppose that the semi-Markov process has been in state i for the duration of x since the last
transition into state i at time ¢. Then, for sufficiently small A > 0, the probability that the semi-Markov
process makes a transition to state j in the interval (z,7 + A) can be written as 1;;(x)A+ o(A), which
is independent of 7. In other words, 7;j(x)A provides a linear approximation of this probability for
sufficiently small A > 0, which depends only on the current dwell time x in state i.

The Laplace transform of a(x) is denoted by a(w) = [;"e " a(x)dx .

For notational convenience, the transition epochs of the semi-Markov process are denoted by
T,,n > 0, with 79 = 0. The age process X (¢) associated with the semi-Markov process is then defined
as X (t) =t —max{t, : 0 < 1, <t}. For the cumulative arrival intensity function L;(x) in state i, one
has L;(x) = [5 Ai(y)dy . The probability of observing k arrivals within the current dwell time of x in
state 7 can then be obtained as

Lo Li(x)
k!

gilx,k)=e" k=0,1,2,---, i€ 7.
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Let Z(t) = [Z(t),Zx(t), - ,Zk(t)] T be a multivariate stochastic process defined on RX given by

t M;(t) Ni;(t)
Z(t) :/0 pU@)dT+ Y. Y Yyiat+ Y Y Y Yuiias (2.1

i€ 7 d=1 i€ 7 je g d=1

where p (i) denotes the multivariate reward rate function while the underlying semi-Markov process
J(¢) is in state i € 7 Yyiq and Yy, ;.4 represent the vector valued random jumps associated with
the d-th arrival of M;(¢) in state i and the d-th jump of N;;(¢) describing transitions of J(¢) from state
i to state j, respectively. Throughout this paper, we assume that Y ,.;., are i.i.d. with respect to d, and
so are Yy.;;.;. We note that Z;(t), k =1,2,--- K are not independent. A typical sample path of the
marginal reward process Z (1), k =1,2,--- K, is depicted in Figure 1.

.
- . / : item arrivals

states
Figure 1: Typical Sample Path of the Univariate Reward Process Z(t)

The multivariate reward model proposed in this paper may find a variety of applications in different
fields. In financial engineering, for example, the underlying semi-Markov process may describe a
macro-economic condition. Corporations under consideration may be classified into several classes
based on their financial strengths. It is then natural to assume that such classes have different default
rates characterized by inhomogenious Poisson processes governed by A;(x) for class i, where x is the
elapsed time since the last transition into the current macro-economic state. The reward process Z;(?)
then describes the cumulative debt of defaulted corporations in class i up to time z. Clearly, Z;(r) and
Zj(t) are correlated and it is of interest to analyze the joint vector reward process Z(t). The underlying
parameter structure in this example, however, is difficult to estimate. In this paper, we restrict ourselves
to one dimensional problem in manufacturing, where the optimal preventive maintenance policy is
explored for a system degrading gradually. This model is still new in that the expected profit to
be maximized consists of three parts: continuous earnings during uptimes, continuous costs during
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downtimes and a random fixed cost incurred whenever a maintenance activity takes place. In addition,
two performance measures are considered and compared so as to demonstrate that the optimal policy
for maximizing the mean time between failures could be different from that for maximizing the system
availability.

3 Dynamic Analysis

The purpose of this section is to derive the transform results of the multivariate reward process Z()
through dynamic analysis. The method of supplementary variables is employed together with the
Laplace transform — generating function approach. More specifically, since Z(¢) is not Markov, we
consider the multivariate stochastic process [J(r),X (¢),M(r),N(t),Z(r)] defined on the state space
S=_# xRy x Zfl X ZS{JFI)X(JH) x R, which is now Markov. Let F;;(x,m,n,z,t) be the conditional
joint distribution function defined by a

Fij(xamvgvéat) = P[J(f):jaX(f)SX,M(I):’”:QU):Q’Z(I)Sé)

7(0) =i, M(0) = 0.N(0) = 0] . 3.1)

The following notation would be employed concerning the distributions of ¥ .;.; and Y .;;., for all
d=1,2,---.

Yi.i(z) =P [XM:i:d < 4 ; Ty.j(z) =P [XN:ij:d < 4 (3.2)
oK oK
D:i(z) = a*;TM:i(;) ; Dy.ij(z) = ETN:U@) (3.3)
Opi(r) = /]RK et Dyri(2)dz ; On.ij(r) = /RK et Dy.ij(2)dz (3.4)
oK 2K 0 0 J
Here, 72 means that 72 = o 9m and RKf(;)dg: /R--~/Rf(;)dzl---d21<.

It is natural to assume that both the age and the rewards are zero at time 0, i.e. X(0) =0 and
Z(0) = 0 with probability 1. A random variable and a random vector of this type have a p.d.f and a
vector p.d.f. expressed as a Dirac delta function and a multivariate Dirac delta function, respectively.
In this case, the differentiability of F;;(x,m,n,z,t) with respect to x and z is not present. In order to
overcome this difficulty, as in Sumita and Masuda [27] and Sumita and Shanthikumar [28], we first
assume that X (0) and Z(0) have an absolutely continuous c.d.f. Hx(x) and an absolutely continuous
vector c.d.f. Hz(z) with corresponding p.d.f.s iy (x) and hz(z), respectively. As we will see, the results
for the case of X(0) =0 and Z(0) = 0 can then be obtained by considering a sequence of absolutely
continuous random variables X; and a sequence of absolutely continuous random vectors Z; with
X;j— 0and Z; — 0 in distribution as j — co. More formally, we define

Hy(6) = PIX(O) 3] () = ()
HA) =PIZO0) <25 b= b,
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The joint probability density function f;;(x,m,n,z,t) can then be defined by

fij('x?magag7t):7};}]'()67@7@7;71‘) . (35)

By examining the probabilistic flow of the multivariate process [J(¢),X (t),M(t),N(t), Z(r)] in its
state space, one can establish the following equations:

fij(x>mag7§70) = 6{1:]} 6{@:9} S{Q:Q}hX (x) hZ(;) ) (3.6)
Ai(x)
Jij(x,m,n,z,1) 6(ij} Om=m;1,} O(n—0} 1x (x—1)-A(r)- mgi(nml)
mj B
+ (1-8-0)) ¥ {Belv.) - A; (00,00} (3.7)
k=0
fl'j(o—’_vmaQ?gvt) = (1 _6{2:9}> Z Cf(xvt) ) (3-8)
te g
where
A(r) :/ / hz (E_B(i)t - Z EM;i;d) H Dr:i(Zprica) Dapricn Dapgeiom, (3.9)
JRE JRE d=1 d=1 '
. m;
mj
Bk(x)t):/ / fl/(o—'_)m_kl/vgag_g(])x_ Z gM;j;dvt_x>
RK RK d=mj—k+1
k
mj
< I @Mij(gM:j:d>d§M:j:mjfk+l A2y (3.10)
d:m_/-—k-i-l

k

Cf(x’t) = /]RK/O fl[ <X7M7g_iﬁj7§_§1\/:w:nﬁ;t> %3Ej(gN:éj:ngj)n£j(x)dXd;N:Zj:ngj : (311)

Eq. (3.6) describes the initial condition at time = 0 with M (0) =0, N(0) = 0 and i = j. The first
term on the right hand side of Eq. (3.7) represents the following scenario. During the time interval
(0,7], the underlying semi-Markov process J() has not left its initial state i, and there has been m;
arrivals of M;(-). Furthermore, the current age in state i at time ¢ is x with the cumulative reward
in the interval (0,] described by A(r). For the second term on the right hand side of Eq. (3.7),
we focus on the probabilistic flow of the multivariate process [J(t),X(r),M(t),N(t), Z(¢)]. For this
process to be in state [m,n,z,x,t| at time ¢ having at least one transition of the semi-Markov process
occurred in (0,7] with J (ty: J» the semi-Markov process must have entered state j € _# at time t —x
with [0+,m—k1;,n,z—p(j)x— Zzlim/__kﬂ Zp1. g0 —X], 0o transition of the semi-Markov process has
occurred in (7 — x,t] with this probability being A;(x), there have been k arrivals of M;(-) in (7 — x,1]
with probability g;(x,k) for k =0,1,---,m;, and the reward of p(j)x+ Z;imjka;M:j:d has been
accumulated with probability By (x,7), for k =0,1,--- ,m;.

Eq. (3.8) describes the boundary condition for X () at x = 04. Namely, the multivariate process
J(1),X(r),M(t),N(r), Z(t)] can enter the state [0+,m,n,z,] at time ¢ with J(¢) = j from [x,m,n —

&j,g Ny, jmj,t]iwith the state of the semi-Markov process being ¢ € ¥, only when the current
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age expires with the hazard rate 1¢;(x) and the reward associated with this jump of the semi-Markov

process from £ to j is z,,. 0jn,; Which happens with the p.d.f. noj(zy. Cing; ).
In order to solve the functlonal equations in (3.6) through (3.11), we introduce the following

Laplace transform generating functions.

Blwm) = [Byvm)] = Bylm) = [ e ey (0pgi(rm)dy

oo

(w,u) = [B\ij(wi,ui)} L Bywiu) = Y Brwimiul | (3.12)

m,-:0

=)

B (wm) = [8ic B (wm)] 5 B (wm) = /Ome—wai<x>gi<x,m>dx,

~% ~

B (w.u) = |8y B (wi)| s B (wis) Zﬁl wi (3.13)

m,—

oo = [pgom] g = [t [l s

IhS)

() = [Bisi)| : Bilsiw) = Y piylsimiu”

m;=0

IhS))
*

Halr) = [ e hale)dz.

Ou(r) = [Bar)] : Buralr) = [ 77w Bhralay )z

QN(Z) = [eNzij(Z)} ; On:ij(r) = /RK e Dn.ij(zy)dzy »

é(mgls)z [éij(ﬂ7§,[,s)} ; &ij(m,n,r,s) / _S’/ f—f,J 0+,m,n,z,t)dzdt
é(g,g,[,s) = [gl](u r S)} ; gu(ﬂ wr, 5) = Z Z élj m,n,r,s m:n )

nez{ "%\ (0} meZL"!

Q(w,m,n,r,s) = [(Pij(W m,n,r s)] ;
(ptj w,m,n,r, s) / / St/ ! Zfz; x,m,n,z,t)dzdtdx
RK -

P(w,u,v,r,5) = [(pl](w u,v,r s)} D @ijwu,v,r,s) = Z Z @;j(w,m,n,r,s)u™"

nez 0 mezi!

where ™ = H u;" and v: = H VZV . It should be noted that these functionals are intro-
i€t {i,jte 72\{(0,0)} .

duced in order to facilitate our analysis, given the exogenous inputs a;;(x), A;(x) and g;(x,m) in Eq.’s

(3.12) and (3.13).



A Multivariate Reward Process Defined on the UMCP 9

We are now in a position to establish the main theorem of this section. For notational convenience,
the operator ® is defined as the component-wise multiplication between two vectors or two matrices

of the same size, i.e. for a = [ay,- - ,a;,---a,| and b = [by,--- ,b;,---by|, we define a ® b = [a; X
by,---,a; X bj,--- ,a, X by]. Similarly, for two matrices A = [a;;] and B = [b;;], we write A® B =
[aij x bjj]. It is worth noting that, for y = [,---,%]" with % = r' p(i), the inverse matrix

{I—v®9N(r) ®[/3\(Z+sl,ﬂ®QM(K)) }_1

always exists for r on the unit sphere in the K dimensional complex space, vij] with |v;j| <1,

X =
u = [u;] with [u;| < 1 and Re(s) > 0. This can be seen by observing that, with ® =v® 6, (r) ®E<Z+
SL,4®QM(£)>,

®;j = vij X On:ij(r) X Bij (% +5,u; X GM:i(z)> ,

where, from (3.12),

oo

Efi (YH"S’”" X 9M¢l’®> =) (/Omei(%ﬂ)xaij(x)gi(xymi)dx) X (ui X 9M:i(£))

m,-:O

mi

For r, v, u and s in the range specified above, one sees that |@;;| < [y aij(x)dx. Consequently, @ is
strictly dominated by the stochastic matrix [ Jo aij (x)dx] , and therefore the spectral radius of @ is

. .. N -1 . .
strictly less than 1. This in turn implies that B - Q] exists. We now state the main theorem.

Theorem 3.1. Let X(0) = 0 and Z(0) = 0 with probability one. Then,

é(g,g,[,s) = {v®6N(r) ®E(y+s1,u®9M(r))} X {1—v®9N(r)®[§<y+s1,u®9M(r)> }“ ;

[1-S)
—
=
“:
\'<
\_‘:

9}
N—
Il
IS
|
1<

®9N(r)®/§(y+s1,u®9M(r))}_ X é;(er(erS)l,a@QM(z)) ;

where Yy = [, )T with :[Tg(i).
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Proof We first assume that X (0) and Z(0) have p.d.f.s hx(x) and hz(z) respectively. Substituting

Eq.’s (3.6) and (3.7) into (3.8), one sees that

fij(0+,m,n,z,1)
m;

= (1 - 5{4:Q}> {S{m—ml‘li}5{n—l,~,}/RK /RK'”/RK hz <§_B(i)t _dflgM"‘:d _ENZU*”U)
—_—— =

m;

m;
x H Dt:i(Zpgia) %iij(izv:ij:n,,) dzpriq A2y im, dZN;,-j;n,,
d=1 D ——— '

m;

= aij(x)
X g,-(t,m,-)/o hX(x_t)A,-(x—t)dx}

+ (1 —5{4:Q}> )y (1 _5{n—1,-,-})]i{/0w/w /RK"'/RK

te 7

mj

ﬁf(o+7m_rl€’g_ljj’g_e(€)x_ Z gM:j:d_gN:Kj:n/j’t_x)
d:mjfkle

mj
x H gMﬁj (gM:j:d) %3EJ(ZN:€j:ngj) dgM:j:m_,-—k+1 o 'dgM:i:mj dgN:éj:ngj
d:m/-karl
k

X agj(x)ge(x,k) dx} )

By taking the Laplace transform of both sides of the above equation with respect to z and ¢, it follows
that
gij (ma n,r, S)

= (1 - 5{2:9}) {S{mmili}5{n1’,_/}<%/z(r) Orr:i(r)™ On:ij (1) Pi (KTB(i) + S,mi>

my
Y (18w 1)) L [Gelm—r1,n—1,,7.5) 8 (1) Bn.05(v)

te g k=0

X By (rT(E)—Fs,k)]} :

Multiplying ™ and V= to both sides and summing over m >

(]
o
=
o
1S
v
II=)
—*
=
2.
w
@
R
=
o
—*
=
)
=
—*
=
@
=
—
@
&
o
w2
-
S

+ i(u,g,z, S){V®9N(r) ®£(Z+ Sl,M®QM(I)) } :
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which can be solved for g (u,v,r1,5), yielding

é(z,g,m) = %(r){V®9N(r) ®p (7+s1,u®9M(r))}
-1
X {1—V®9N(V)®I§(Y+s17u®9M(r))} : (3.14)
Let
g(w,s,m) = /Owefwx /0oo e hy (Xt)Atc(i)t) gi(t,m)dtdx , (3.15)

and define the diagonal matrix

oo

€, (w,s,u) = [5{i:j}?i(w,s,‘,ui)} o E(wysiur) =) &i(w,si,m)ul™ . (3.16)

m,-:0

Through similar Laplace transform operations applied to (3.7), one finds that

(pij(wam>gvl7s)

= i} Otm—m,1,} On—0} HZ(r) Opr:i(r)™ & (W» r'p(i)+s, mi)
+ (1=8m) ) Y. O (1) Eislm— 11,5 B (1 p(j) +w+ 5, )
k=0

Taking the generating functions with respect to m and n as before, the following matrix equation can
be obtained.

Q(wau,v,r,s) = Hz(r)E, <w,1’+ slaﬂ®QM(£V)))

+ & ,r)B (74 (0 +3)Luw 0y (1)) (3.17)

As in Sumita and Masuda [27] and Sumita and Shanthikumar [28], we now consider a sequence of
random variables X (0) converging to 0 in distribution, as well as a sequence of random vectors Z(0)
with convergence to 0 in distribution. In other words, we let Hy (x) — U (x) and Hz(z) — U(z), where
U (x) and U(z) denotes the univariate and the multivariate Heaviside step functions respectively, i.e.
U(x) =1 for x > 0 and U(x) = 0 otherwise. Similarly, U(z) =1 for z > 0 and U(z) = 0 otherwise.
It then follows that #7(r) — 1, p/(s,m) — Bij(s,m) and &(w,s,m) — B;"(w +s5,m) from their defini-
tions. Substituting these into Eq.’s (3.14) and (3.17), one sees that

é(z,y,m) = {V®9N(r) ®£<Y+SLE®QM(D> }

-1
X 1—V®9N(r)®B(7+s1,u®9M(r)>} ; (3.18)
-1

E(W,z,y,z,s) = {I—v®9N(r) ®E(Y+sl,u®9M(r))}
X

E;(ZJF(WH)LMQM(K)) , (3.19)
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completing the proof. |

Theorem 3.1 is very informative because it contains all the knowledge about the joint distribution
of the multivariate process [J(¢),X (¢),M(t),N(r),Z(r)]. One can use this theorem, for example, to
derive the asymptotic behaviors as r — o of the expectations of various processes expressed by Z(t),
e.g. E[TI., Z(1)], as we will see.

Remark 3.2. We note that, when Yy.;.q = 0 and Yy.;j.q = 0, one has

so that @(w,l,;,[,s) of Theorem 3.1 is reduced to Theorem 2.1 of Masuda and Sumita [17]. With
random increments of the reward at the times of jumps of N; (1), by setting Yar.;.a = 0, it can be seen
that

N (1)

2= [pU@)ar+ ¥ ¥ Y Yuisa

ic ¢ je f d=1

and @(OJr,l,X,[, s) is also reduced to Eq. (3.2) of Masuda [15], demonstrating that Theorem 3.1
gene?alizes the results of Masuda and Sumita [17] and Masuda [15].

4 Asymptotic Behavior of E[T]}_, Z(t)] ast — oo

In this section, we discuss the asymptotic behavior of E[TI5_, Z(¢)] as t — . For notational con-
venience, let A, = Jo x%a(x)dx, d =0,1,2,---, with |A,[| <eofor 0<d < K+2, where K is the
dimension of vector Z(z). We assume that the Markov chain in discrete time governed by the stochas-
tic matrix éo is irreducible, where e ' is the eigenvector of éo with eigenvalue 1 so that ng:lO =e¢! and
e'1=1.Wealsodefine AY = ["x?A (x)dx,d=0,1,2,--- with A} [| <eofor0<d <K+2.

It has been seen in Theorem 3.1 that

-1

fonsrs) = {1-v08,0eB(rrsluson) ) x B (r+oreoLusen).

where y = [y,---,y]" with % =r"p(i). Let p(0) be an initial probability vector of J(0). It then
follows that

X{E{e_fzm} } = p'(0)x @(OﬁL,lé,Ls) x 1

~k

~ O {1-0,02B(r+s10,0) b x B, (r+51.0,(0) x1.
4.1)

From Eq.’s (3.4), (3.12) and (3.13), one has

Op.i(r) = /]RK et yri(2)dz ; Onij(r) = /]RK et Dn.ij(z)dz
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Btj (r P( )+S QM,( )> - /wei{lTB(iHs}teiLi(t){lieM:i(l)}aij(t)dt )
0
and

B (rTp (i) +56ui(r)) = / T U0} £ ) ay
- 0

The first order partial derivatives of 6y.;(r) and Oy.;;(r) at r = 0 are then given by

Oy f@ (r) /ﬁ Yri(2)d

M = al M:i 1 2k Mz Z,
oK K

On:ij &« 5 On:ij(r) / HZk Dn.ij(z)dz .

Furthermore, the first order partial derivatives of [3, j (r p (i) +s, Oni(r )) and B\z* ([T p(i)+s, GM;,-([))
at r = 0 are given as follows.

K
Eiji(s) = grﬁij("Tp(i)‘f‘S,eM:i(r))
- r=0
K w w
= (—I)Kklz]lpk(l) /0 e S’tKaU( )dl + @M;,‘/O e*S’L,v(t)a,-j(t)dt 4.2)
K
g6 = 9B () 5. 0s(r)
- r=0
_ (—I)K]f[lpk(i) /0 T KA (1)dt + Oua /0 " e LA (1) dt 4.3)

Let k(i) = (—1)XTIX_, px (i) and define k,, =diag{x(i)}. Then Eq’s (4.2) and (4.3) can be rewrit-
ten in matrix form as

g(s) =Ky /:fsr t* a(t)dt + Sy /Oooefs’éD(t)g(t)dt )
§ =K, /0 KA (dr + ©,, /0°° L (A (1)

From Eq. (4.1), after a little algebra, one could see that
g{E[lfllzk@}} = ()L fp[er 0]

= 5T {1-a)} (0@l +E6) +E (0] 1. @9

r=0

By taking the Taylor expansion of the Laplace transform ¢(s) as s — 0+, one has

2

a(s) =A,—sA +2A2+0( 2. (4.5)
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Let @ = f:tdéD(t)g(t)dt and @7 = [ L o JA p(t)dt, d=0,1,2,---. By taking the Taylor ex-
pansion of §(s) and é; (s) , it can be seen that, as s — 0+,

2

é(s) - {K 4 +®MDCDO} { D K+1+® (I)} SE{ =D K+2+®MDCI)2} (2)7
(4.6)

£ = {kplht @} -5 {p 40,2 |
+s22{KDAZK+z+®MD¢Zz} o(s?) - 4.7)

Of interest is the theorem of Keilson [9] stated as follows.

Theorem 4.1 (Keilson [9]). As s — 0+, one has

{i—g(S)}fl =%gl+g0+g<l), (4.8)

1 !
H0:H1<_A1+2A2H1)+(Z HlAlﬂ))(A AH>+£’ £0:<£_éo+l'§) :

By applying this theorem to Eq. (4.4), and then substituting (4.5), (4.6) and (4.7) into the result,
the following theorem holds true.

Theorem 4.2. Let p(0) be an initial probability vector of the underlying semi-Markov process J(t).
As t — oo, one has

[ﬁ } {B xt+p'(0) % §0x1}+o(1),
where .
B, = eTjﬂl T(® ®A, +k A +®MDﬂ)17
B, = Qo((a ®A,+ KA +®MD—O> 1(QN®Q\1+§D(§KH Ay )+, (2 9230))-

Theorem 4.2 is easy to be extended to the product form of any marginal process of Z(z) for
k € A where . is the arbitrary subset of {1,---,K}. For notational convenience , the following
functions are defined. Let k) = diag{k(i)} with k(i) = (=) MTer pr(i). By considering

Frw = [8{ke,;f}rk]ke{l KD it is shown that

gef 0K ;
" Iy ) £ =0 ) R kngk i)z
Ov.:: def LKQ (r ) N Dii(2)dz
N:ij: A —— or . N:ij\ 7 | H 2k IN:ij\Z)az,
Yo £ =0 R ke r
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and®, = [Onij] e 7 Ovpw = diag{ Op.i- 0 }-

Corollary 4.3. Let 7 be an arbitrary subset of {1,--- ,K} and Z (t) be defined as

=T] z@)

ke

Let p(0) be an initial probability vector of the underlying semi-Markov process J(t). Ast — oo, one
has

E[ij(z)} — (- )'J’f”'{ fot+BT(0)><§O:%xl}+o(l),

where
[
B,y = €Téllg <®Njf®é0+ L +®M04fﬂ> 1,
Byw = (szf@éo T Ep B +®Mufﬁ)>
—H, (QN:,}?Q@é] TKp (éwm 4p. w\) +®MDJf(CD ?D o))

The proof of Corollary 4.3 is similar to that of Theorem 4.2 and is omitted here.

In the next section, Theorem 4.2 is applied to the optimal preventive maintenance policy problem
with state dependent continuous revenues and costs, as well as random cost increments at the times of
jumps of M;(t) and N;;(t).

5 Optimal Preventive Maintenance Policy Problem

We consider a manufacturing system with a certain maintenance policy, where the system starts with
the perfect state at time ¢ = 0, and tends to degrade, generating product defects more often, as time
goes by. When the system reaches a certain state, the manufacturing system would be overhauled
completely and the system returns to the perfect state. More specifically, let J(7) be a semi-Markov
process on ¢ ={0,1,2,---,J} governed by A(x), where x denotes the dwell time of the process in
the current state, that is, the elapsed time since the last transition into the current state. Here, the semi-
Markov process J(z) describes the system state at time ¢ where state O is the perfect state and state J
is the maintenance state. When the system is in state j, 1 < j <J — 1, product defects are generated
according to an NHPP with intensity A;(x). It is assumed that the system deteriorates monotonically
and accordingly A;(x) increases as a function of both x and j. When the system reaches state J, the
manufacturing operation is stopped and the system is overhauled completely. The maintenance time
increases stochastically as a function of J. In other words, the further the maintenance is delayed, the
longer the maintenance time would tend to be. Upon finishing the overhaul, the system is brought
back to the perfect state 0. The state transitions of this system are depicted in Figure 2. Of interest,
then, is to determine the optimal preventive maintenance policy concerning how to set J.

In order to determine the optimal preventive maintenance policy, it is necessary to define the
objective function precisely. In Sumita and Huang [26], a function capturing the total cost generated
by the system is employed. However, the cost structure is limited in that all the costs are assumed to
be constant and are incurred only at the times of jumps of M;(¢) and N;;(¢). Furthermore, the revenue
side is totally ignored. In what follows, these pitfalls are overcome by applying the multivariate
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Figure 2: State Transitions of the Manufacturing System

reward process discussed in Section 3 to the optimal preventive maintenance policy problem, where

the revenue-cost structure in continuous time is now incorporated. More formally, let p : ¢ — R be
the revenue-cost function defined by

. prev>0 fOI'iZO,"',J—l
p(i) = : :
—Peost <0 fori=J

Here, the manufacturing system generates the revenue p,., per unit time whenever the system is up,
and the cost of p.,s per unit time is incurred when the system is under the overhaul.

Let Z(¢) be the cumulative profit up to time 7, which is univariate. M;(r) and N;_; ;(¢) denote
the total number of defects generated by time ¢ while J(¢) = i and the number of the maintenance
operations occurred by time ¢ respectively. One then sees that

J—1M;(t Nj—1g
Z(t) = / (t))de+ Y ZYMld+ Z YNy-17d 5

i=0 d=

where Y);.;.; represents the cost for each defect and is naturally assumed to be constant, i.e. Yy =
—y; <0 for i=0,---,J—1.Y¥yy_1,.4 describes the cost associated with each occurrence of the
overhaul and may not be constant. For example, the overhaul may or may not require the presence of
engineer(s) from the vender of the production machines. Hence, we assume that Yy.;_; ;.4 constitute
a sequence of i.i.d. random variables with respect to d having the common expected value —y;, < 0.
It is worth noting that the subscripts in Y, and y, stand for “defect” and “maintenance”, respectively.

The problem now is to determine the optimal preventive maintenance policy J* so as to maximize
the expected profit, that is,

my(T) = I}lé:g](ﬂ\1(T) ; my(T)=E[Z(T)] . (5.1

When T is reasonably large, the asymptotic result of Theorem 4.2 can be employed so as to solve
the maximization problem of (5.1) approximately. Since the reward process in the above application
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is univariate, one has K = 1 in Theorem 4.2 and the matrices involved in the asymptotic expansion
can be rewritten accordingly, e.g. kK, = — diag{p (i)}, etc. In the next section, we provide numerical
examples, demonstrating efficiency of the proposed approach.

6 Numerical Results

In order to provide numerical examples for the optimal preventive maintenance policy problem intro-
duced in the previous section, we consider the semi-Markov matrix A(x) of the form

0 Ax O - 0

0 0 AKX 0

AW=| o
0 0 - 0 A
Asx) 0 0 |

We recall that the manufacturing system deteriorates gradually from state O to state J — 1 and the
overhaul activity takes place in state J. This point is reflected by setting the expected dwell time in
state i tobe y; =i+ 1,i=0,---,J. In order to specify A;(x) further, we employ gamma distributions
given by

ﬁi o;—1 —PBix
) = gy Bl

Two different cases are considered: the IFR (increasing failure rate) case and the DFR (decreasing

failure rate) case. For the former, we set & = ogpr =2,i=0,---,J — 1, and oy = 1, while for the
latter one has @; = appg = 0.2, i =0,---,J— 1, and oy = 1. fB;’s are given so as to have y; as the
expectation, i.e. f; = ;/W;, i =0,---,J. The arrival intensity function in state i is given by A;(x) = 2ix.

Other parameters are set to be p,., = 1500, p.osr = 1000, Yy = 10, y,,, = 2000+ 200+/J and T = 1000.
In addition to the expected profit 7;(T'), two availability measures of interest are also evaluated.
For this purpose, we define

U(t):/otpu(J(t))dt where pa(i) = {(1) ii{Jo"”"'_l} |

Two traditional measures can now be described as

E[U(t)]
E[N;-14(1)]

Here, MTBF stands for the mean time between failures where a failure means an overhaul in our
model. AVAIL describes the average availability per unit time.

Figures 3 through 5 illustrate the asymptotic behaviors of m;(7), MTBF,(T) and AVAIL,(T)
as a function of J respectively, where four different curves correspond to T = 25,50, 100 and 1000.
We first note that our model is reduced to an alternating renewal process with J = 1. In this case,
with P, = 1500 and p..sy = 1000, one may expect that the cost for overhauling the system would
overwhelm the revenue from the production. This phenomenon can be observed in Figure 3 where
m(T) < 0 for all T = 25,50,100 and 1000 for all of the IFR, CFR and DFR cases. Furthermore,

MTBF, (1) =
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when J = 1, T = 25 is long enough to reach the ergodicity and 7;(7)’s are almost all equal for
T =25,50,100 and 1000. As J increases, it takes more time to reach the ergodicity and the discrepancy
among the values of 7;(T) for different values of 7 becomes larger. For each fixed J, 7;(T) decreases
as T increases. When T = 25, m;(T') increases as J increases for all of the IFR, CFR and DFR cases,
having the optimal preventive maintenance policy J* = 10. As T increases, however, the concavity
sets in and the optimal preventive maintenance policy changes as depicted in Table 1. For the IFR case,
one sees that J* =7 with T = 1000, while the corresponding optimal preventive maintenance policy
is J* = 6 for the CFR case and J* = 4 for the DFR case. This demonstrates the potential danger of the
exclusive reliance on ergodicity. In Figures 4 and 5, we observe that both MTBF,(T) and AVAIL,(T)
increase as J increases, and decrease as T increases. One sees that it could be misleading to design
the optimal preventive maintenance strategy based on the availability measures alone, highlighting the
importance to incorporate the reward process.

Table 1: Optimal Preventive Maintenance Policy J*

T=25 T=50 T=100 T =1000

IFR 10 8 7 7

CFR 10 8 7 6

DFR 10 10 5 4
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