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Abstract (150-250 words) 

 

Avoiding human overtrust in machines is a vital issue to establish a socially 

acceptable Advanced Driver Assistance System (ADAS).  However, research 

has not clarified the effective way of designing an ADAS to prevent driver 

overtrust in the system.  It is necessary to develop a theoretical framework that is 

useful to understand how a human trust becomes excessive.  This paper proposes 

a trust model by which overtrust can be clearly defined.  It is shown that at least 

three types of overtrust are distinguished on the basis of the model.  As an 

example, this paper discusses human overtrust in an Adaptive Cruise Control 

(ACC) system.  By conducting an experiment on a medium-fidelity driving 

simulator, we observed two types of overtrust among the three.  The first one is 

that some drivers relied on the ACC system beyond its limit of decelerating 

capability.  The second one is that a driver relied on the ACC systems by 

expecting that it could decelerate against a stopped vehicle.  It is estimated 

through data analysis how those kinds of overtrust emerged.  Furthermore, 

possible ways for prevention of human overtrust in ADAS are discussed.  

 

Keywords (4-6) 

Overtrust, Advanced Driver Assistance Systems, Trust in automation, 

Adaptive Cruise Control, Reliance, Human Interface 
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1 Introduction 

 

Driver assistance systems are getting powerful and intelligent enough to 

control a vehicle.  For example, Adaptive Cruise Control (ACC) systems (ISO, 

2002) may perform longitudinal control to maintain the vehicle speed as directed 

by the driver if there is not a slow preceding vehicle, and to maintain the time gap 

to the preceding vehicle appropriately if there is one.  ACC systems are useful to 

reduce driver mental workload so that the risk of the rear-end collision could be 

reduced as a result (see, e.g., Ma and Kaber, 2005; Young and Stanton, 2004).  

Also, automatic brake systems for collision avoidance have been studied 

(Coelingh, Eidehall, and Bengtsson, 2010; Isermann, Mannale, and Schmitt, 2010; 

Kaempchen, Schiele, and Dietmayer, 2009; Wada, Doi, Tsuru, Isaji, and Kaneko, 

2010).  Recently, automatic brake systems that work in the low-speed range have 

been putting into market (see, e.g., Distner, Bengtsson, Broberg, and Jakobsson 

(2009)).   

However, the capability of a driver assistance system is essentially limited 

in some way.  For example, a conventional ACC system does not apply the brake 

against stationary objects, which include a stopped vehicle at the tail end of a 

traffic jam.  The main reason for ignoring stationary objects on the road is that a 

laser-radar in an ACC system for target vehicle detection can not distinguish 

reflectors on the guardrails from that on the tail of forward vehicles.  In order to 

avoid unnecessary braking against reflectors on the guardrails, ACC systems 

should ignore reflectors not moving or whose relative speed with the host vehicle 

is very big.  The speed threshold to ignore the preceding vehicle would depend 

on car models, and the exact threshold value is sometimes confidential.  

However, some carmakers disclose the threshold value via the owner’s manual.  
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For example, one commercialized ACC system in Japan ignores a slowly moving 

object whose speed is below 20km/h.  No systems can be free from this kind of 

capability limitation.  Nilsson (1995) found in a simulator experiment that some 

drivers failed to intervene when approaching a stopped queue of vehicles because 

they believed that the ACC could effectively respond to the situation.  Larsson 

(2011) found that users of an ACC system in the real world did not understand the 

limitation of the ACC system adequately.  Avoiding driver overtrust in 

automation is thus important for attaining safety in the automobile domain. 

Overtrust has been one of important issues in human factors (see, e.g., 

Parasuraman and Riley, 1997).  It seems that overtrust in automation is closely 

related issues of "risk compensation" (Wilde, 1994) or "behavioral adaptation" 

(OECD, 1990).  A driver may change his or her behavior into riskier one 

intentionally based on the recognition of risk reduction given by an automated 

system if the driver places his or her trust in the system very much (Itoh, Sakami, 

and Tanaka, 2007; Rudin-Brown and Parker, 2004).  However, the driver 

behavioral adaptation depends on driving style (Hoedeaeker and Brookhuis, 

1998).  The notion of overtrust is also related to issues of "complacency."  Even 

though discussions on defining complacency have not ended (see, e.g., 

Parasuraman, Sheridan, and Wickens, 2008), the term complacency refers to lack 

of vigilance (Moray and Inagaki, 2000) rather than intentional behavioral change 

towards compensation of the risk.  According to Singh, Molloy and Parasuraman 

(1993), the tendency to be complacent is also dependent on the human attitude.   

Even a vigilant human, on the other hand, may still trust an automation too 

much if he or she misunderstands what the automation can do (Itoh, 2010).  In 

fact, Ockerman and Pritchett (2000) discussed professional workers' over-reliance 

on task guidance systems.   



5 

Unfortunately, it has not been established the way of avoiding driver 

overtrust in automation.  It would be because that it has not been fully 

understood why human overtrust in automation occurs.  Even though huge 

number of studies have been done for modeling of human trust in automation (see, 

e.g., Dzindolet, Pierce, Beck, and Dawe, 2002; Lee and Moray, 1992; Lee and 

See, 2004; Muir 1994; Sheridan 1992), the focus of many tends to be acceptance 

and promoting trust.  The relationship between overtrust and trust has been 

hardly discussed.  Although Lee and See (2004) discussed trust calibration, but 

the multidimensional aspects of trust were not taken into account in the paper.  

As has been pointed out, there exist multiple dimensions of trust in automation 

(Lee and Moray, 1992; Muir, 1994).  The dimensions should be taken into 

account in the theory on overtrust in automation. 

This paper proposes a model of human trust in automation which can give 

a clear definition of overtrust in automation.  In order to develop design 

guidelines for prevention of overtrust, it is necessary to understand how human 

overtrust emerges.  This paper conducts an experiment by using a driving 

simulator and analyzes the change of driver behavior.   

 

 

2 Model of Trust and Overtrust 

 

2.1 Trust and trustworthiness 

 

[Definition 1: Trustworthiness of Automation] 

Let S be a random variable representing a current situation in which an 

automated system is going to work.  The random variable S can take on an 

element of 



Sd  s1,s2, ,sNd
  that is the set of all possible and mutually 

exclusive situations in which the automation is designed to work.  The 
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probability that the situation si occurs is represented as 



Pd (S  si), where the 

subscript d represents the probability comes from the design of the system 

(Apparently, 



Pd (S  si)
i1

Nd

 1.).  Event A represents that the automation 

carries out its required function, Fa, successfully.  The objective trustworthiness 

of the automation under condition S can be expressed as the probability of A under 

situation S, i.e., 



Pd (A | S) .  Thus, the overall trustworthiness of the automation, 



Td , is defined as follows: 

 



Td  Pd (A | S  si)Pd (S  si)
i1

Nd

                           (1) 

 

 If the automation is designed and manufactured appropriately, the value of 



Td  should be one.  However, 



Td  can be less than one due to unforeseen factors 

or events.  

 For example, let us think about the deceleration by an ACC system.  

Suppose the maximum deceleration rate of the ACC system is 0.25G, and every 

situation can be categorized into one of the following cases in terms of the 

necessary deceleration rate of the host vehicle:  

 s1: 0.05 G is enough,  

 s2: more than 0.05 G is necessary but 0.15 G is enough, and  

 s3: more than 0.15 G is necessary but 0.25 G is enough.  

Suppose the ACC system works perfectly in situations s1 and s2 (i.e., 



Pd (A | S  s1)  Pd (A | S  s2) 1), but sometimes fails to decelerate at 0.25G 

at an s3 situation.  If the failure occurs once in a 10 occurrences of s3 and the 

probabilities of occurrence of s1, s2, and s3 are 0.5, 0.3, and 0.2, respectively, the 

total trustworthiness of the ACC system 



Td  is obtained as follows: 

 



Td 10.510.3 0.90.2  0.98 

It is true that there exist situations where more than 0.25G is necessary as the 

deceleration rate to avoid a collision, but those situations are out of the scope of 

the system.  Therefore, the incapability of the ACC system beyond the brake 

limit does not affect the trustworthiness of the system.  

 

[Definition 2: Human Operator’s Trust in Automation] 
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Let S’ be a random variable representing a current situation in which the 

human operator expects that the automated system is going to work.  The 

random variable S’ can take on an element of 



Sh  s 1, s 2, , s Nh
  that is the 

set of all possible and mutually exclusive situations in which the human operator 

regards the automation may work well.  The probability that the situation s’i 

occurs is represented as 



Ph( S  s i), where the subscript h represents the 

probability is estimated by the human operator, and again, 



Ph (S  si ' )i1

Nh 1.).  

Suppose the human operator’s degree of belief on trustworthiness of the 

automation under situation S’ is expressed as a subjective probability denoted by 



Ph("A"| S ) , where “A” represents that the human operator expects the automation 

carries out its expected function, Fh, under situation S’ successfully.  The human 

operator’s overall trust in the automation, 



Th , is defined as follows: 

 



Th  Ph ("A"| S  s i)Ph ( S  s i)
i1

Nh

                           (2) 

 

Note here that 



Sd  Sh  in general.   

 

 The above definitions of the automation trustworthiness and the human 

trust in the automation imply that the 100% trust does not always mean overtrust.  

If the trustworthiness is perfect, it would be appropriate that a human operator 

trusts the automation completely.  Such trust is never excessive. 

 Again, let us think about the deceleration by the ACC system.  Suppose a 

driver regards that the maximum deceleration rate of the ACC system is 

approximately 0.2G, and categorizes situations as follows:  

 s'1: 0.1 G is enough, and 

 s’2: more than 0.1G is necessary but 0.2 G is enough. 

Suppose the driver has experienced up to 0.2G deceleration of the ACC system, 

and the system has worked perfectly so that the driver has been satisfied with the 

ACC system (i.e., 



Ph("A"| S  s 1)  Ph("A"| S  s 2) 1).  If the subjective 

probabilities of s’1 and s’2 are 0.6 and 0.4, respectively, the overall f trust 



Th  is 

obtained as follows: 

 



Th 10.610.4 1.0 
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Apparently, this should not be regarded as overtrust.  

 

2.2 Overtrust  

 

 How can human operator overtrust in automation be defined?  It could be 

regarded as overtrust if 



Th  Td  in some cases.  However, as shown in the 

examples in section 2.1, the fact 



Th  Td  itself does not always mean overtrust.  

Moreover, it is difficult to develop useful countermeasures even if we notice the 

occurrence of overtrust by knowing 



Th  Td .  Based on the definitions 1 and 2, 

this paper regards the human operator’s trust as excessive if at least one of the 

following conditions is satisfied.  

(i) 



Ph("A"| S  s)  Pd (A | S  s), where 



s Sd  

(ii) 



Sh  Sd  (null set)  

(iii) Fh is not equivalent to Fa.  

Note here that the case (i) should be impossible if 



s Sd , because the 

value of 



Pd (A | S  s) should be one in that situation in principle.  In reality, 

however, it would be possible that 



Pd (A | S  s) is less than one even if 



s Sd .  

The overtrust in this sense is related to the lack or reduced vigilance against 

system malfunctioning.  However, the principal task here is to improve the 

system reliability.  

Case (ii) means that the human operator expects the automation carries out 

its function beyond the situations specified in the system design.  A typical 

example is that a driver expects that an ACC system can prevent a rear-end crash 

when the necessary deceleration is higher than the maximum deceleration rate of 

the ACC system.  The overtrust here is related to the "performance" dimension 

of trust (Lee and Moray, 1992).  This type of overtrust has been observed in 

several studies (see, e.g., Itoh, 2007; Seppelt and Lee, 2007).  It is hypothesized 

that this type of overtrust is caused by driver's direct extrapolation of subjective 

expectation of system capability from the previous experience to the non-

experienced situations.  That is, the increase of Ph("A"|s’i) results in the increase 

of Ph("A"|’sj), where s’i is in Sh but s’j is not.  We call this expansion of driver 

expectation a ripple effect.  Such ripple effects were observed in a very simple 

experiment in a process control system (Itoh, Inahashi, and Tanaka, 2003).  
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However, it is not clear whether such ripple effects occur in a realistic situation of 

car driving.   

Case (iii) represents that the human misunderstands the function of the 

automation and he/she expects the work that the automation is not designed to 

provide.  This is related to "purpose" dimension of trust (Lee & Moray, 1992).  

A typical example of such overtrust is driver expectation to an ACC system to 

decelerate against a stopped vehicle at the tail end of a traffic jam.  Dickie and 

Boyle (2009) showed that many drivers were not familiar with this limitation.  

What happens if a driver comes to a stopped vehicle at the tail end of a traffic 

jam?  Does the driver overtrust appear?  If so, what are the contributing factors 

for the overtrust?  It is necessary to conduct an experiment to find answers to the 

questions. 

 

 

3 Experiment 

 

3.1 Purpose  

 The purpose of the experiment is to test whether driver overtrust in an 

ACC system can be observed in driving simulator experimental conditions.  If 

yes, it is also necessary to clarify reasons why such overtrust occurs, in order to 

establish methodologies for prevention of overtrust. 

 

3.2 Method 

3.2.1 Participants 

Twelve drivers (six females and six males) between the ages of 26-55 

years (mean = 37.0, s.d.=8.6) participated in this experiment.  Every participant 

had a valid driver’s license and drove daily.  The driving experience was more 

than 10 years for every participant except one who had been a licensed driver for 

less than one year.   

 

3.2.2 Apparatus 

 A fixed-base driving simulator was used in this study (Fig. 1).  It has a 

nearly straight, two-lane, and endless expressway.  Three 100-inch screens are 

set in front of the driver and the field of view is approximately 120 degrees.  An 
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ACC system is installed in this driving simulator.  The main characteristics of 

the ACC system are as follows: 

 The ACC system controls the vehicle speed at the target level set by the 

driver when there is no lead vehicle ahead.  The system maintains the safe 

headway distance when a lead vehicle exists.   

 The ACC system can be activated and work from 5km/h to 100km/h.  The 

driver has to apply the brake for the full stop.  

 The ACC system is activated only if the driver presses the activate button 

near the steering wheel, but can be deactivated by pushing the cancel button 

or by pressing the brake pedal.   

 A visual icon appears on the control panel including the speed meter while 

the system recognizes the lead vehicle.  The icon disappears if the lead 

vehicle is lost.  It is assumed that no error occurs in the system for the 

detection of a lead vehicle and the estimation of the headway distance and 

the relative speed.   

 The maximum system acceleration rate is 0.15 G, and the maximum system 

deceleration rate is 0.25 G.  Neither auditory nor visual information is given 

even when the ACC system is conducting the maximum brake (Note: This is 

not the standard configuration of ACC systems.  In the real world, ACC 

systems may provide some information to driver at the maximum 

deceleration.  The reason for not issuing an alert in this experiment was to 

avoid driver simple reaction to the alert.). 

 The ACC system can not detect stationary objects.  No assistance is given 

against the stationary objects on the road.  

   

************************************* 

Insert Figure 1 about here 

************************************* 

 

3.2.3 Task, experimental design, and procedure 

The participants were instructed to drive safely on the left-hand lane of 

the expressway by using the ACC system as much as possible.  At the end of a 
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drive, the host vehicle comes to the tail end of a heavy traffic jam.  All vehicles 

in front are stopped.  When the host vehicle fully stops, the trial ends.   

In terms of the situation before arriving at the tail end of the traffic jam, 

six scenarios (five 5-min drive scenarios from A1 to A5 and one 20-min drive 

scenario named B) were distinguished:   

A1: The host vehicle was running at a cruise speed and came close to the 

slow lead vehicle running at 50 km/h.  After following the lead vehicle at 

50km/h for a while, the host vehicle loses the lead vehicle because the lead 

vehicle changes lanes just before arriving at the tail end of the traffic jam.  The 

ACC system in the host vehicle is still active even after losing the lead vehicle, 

but the system does not provide any help against the stopped vehicles ahead.  

The driver in the host vehicle should apply the brake by him/herself for rear-end 

collision avoidance.   

A2: After free cruising, the host vehicle came close to a vehicle whose 

speed was 50km/h and made following for a while.  Then the lead vehicle 

decelerates at 0.1G and finally stops because of the traffic jam.  The ACC system 

in the host vehicle decreases the vehicle speed accordingly and successfully.  At 

least, the driver in the host vehicle has to apply the brake for stopping when the 

vehicle speed becomes below 5km/h. 

A3: The host vehicle was following the lead vehicle at 100km/h.  The 

lead vehicle decelerates at 0.1G upon detecting the traffic jam and finally stops.  

The ACC system in the host vehicle decreases the vehicle speed accordingly and 

successfully.  At least, the driver in the host vehicle has to apply the brake for the 

stopping. 

A4: The host vehicle was following the lead vehicle at 100km/h.  The 

lead vehicle decelerates at 0.2G upon detecting the traffic jam and finally stops.  
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The ACC system may apply almost its maximum brake against the lead vehicle 

deceleration, but anyway it is successful.  Again, the driver in the host vehicle 

has to apply the brake for stopping. 

A5: The host vehicle was following the lead vehicle at 100km/h.  The 

lead vehicle decelerates at 0.35G upon detecting the traffic jam and finally stops.  

Even though the ACC system applies its maximum brake, a rear-end crash can not 

be avoided only by the system brake.  The driver has to intervene into the control 

as soon as possible. 

B: The host vehicle was following the lead vehicle at 100km/h.  Before 

arriving at the tail end of the traffic jam, the lead vehicle changes lanes.  The 

ACC system in the host vehicle is still active even after losing the lead vehicle, 

but the system does not provide any help against the stopped vehicles ahead.  

The driver in the host vehicle should apply the brake by him/herself for rear-end 

collision avoidance.   

The ACC system works perfectly as it is designed, no malfunction 

occurs in the system.  However, the participants did not receive any information 

on the reliability of the ACC system at all.  The participants were informed that 

there is a limitation of the deceleration rate given by the ACC system but not 

informed the actual value of the limitation.  No information was given to the 

participants on the system behavior against stopped objects.   

Every participant received all six scenarios in the data collection.  A 

trial has one scenario.  The number of trials for each scenario and the order of 

scenarios are shown in Table 1.  The numbers of the scenarios are not balanced: 

ordinary decelerations of the lead vehicle, such as 0.1G, are many, but the rapid 

decelerations, such as 0.35G, are few. 
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************************************* 

Insert Table 1 about here 

************************************* 

 

The experiment lasted four days for each participant.  In each day, it took 

approximately one hour depending on the number of trials to be completed.  On 

the first day, participants were given opportunities for practice so that they could 

become familiar with the simulator and with the ACC system.  There were 

neither rapid decelerations of the lead vehicle nor stopped objects in the practice 

drives.  The practice drives were done until the driver felt that he or she had 

obtained enough skill for driving on the simulator.  In the data collection, a short 

break was given every 6 or 7 trials for every participant depending on the driver 

state.  Before conducting scenario B on the fourth day, every driver was given a 

short break.  The participants were informed of neither the number of trials in a 

day nor the content in each scenario so as to avoid the driver’s unnecessary 

prediction of events in the trials.  We were concerned that participants might 

“predict” something wrong may happen at the final trial on the last day. 

 

3.2.4 Dependent variables 

 In this paper, one of the most important dependent variables is the number 

of rear-end collisions.   

 In order to investigate how driver attitude toward the ACC system changed 

through his or her repetitive use of it, we analyze driver brake timing in type A 

scenarios from the first day to the last day.  An appropriate index for discussing 

the brake timing depends on scenarios.  For scenarios A1 and B, Time To 

Collision (TTC) against the stopped vehicle at the tail end of the traffic jam would 

be an appropriate one.  For scenarios A2, A3, A4, and A5, TTC against the lead 

vehicle to follow may not be appropriate, because the value of TTC becomes huge 

if a driver waits until the vehicle speed becomes below 5km/h (minimum working 

speed of the ACC system).  Instead, the host vehicle speed at the driver brake 

would be the appropriate one.  If the vehicle speed at the braking is large (small), 

the brake timing can be regarded as early (late).     
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3.3 Results and discussions 

No crashes occurred in the total 24 cases (2 trials/participant * 12 

participants) of scenario A1 trials.  Among 84 cases of A5 in which the lead 

vehicle decelerated rapidly, three crashes occurred.  Participants #1, #4, and #12 

caused a crash for each.  For scenario B, there was one crash caused by 

participant #11 among 12 cases.  According to surveillance of video images of 

the driver face at the crashes, the four crash-experienced participants were not 

drowsy, not distracted, but looked forward.  Fig. 2 shows the values of 1/THW 

and 1/TTC at the driver brake onset.  Goodrich and Boer (2003) suggest that 

driver risk perception on a rear-end collision can be described with the 

combination of THW and TTC.  On the basis of that, Kondoh, Yamamura,  

Kitazaki, Kuge, and Boer (2008) investigated real world driver braking behavior 

and showed that the value of RF=1/THW+4/TTC tends to be lower than two at the 

driver brake onset in ordinary situations (Note: RF represents “Risk Feeling.”).  

The data shown in Fig. 2 suggest that the driver brake in the crash cases was late.   

 

************************************* 

Insert Figure 2 about here 

************************************* 

 

Thus, it can be claimed that the reliance of the crash-experienced 

participants on the ACC system was too high at the crash.  For the crash cases in 

type A5, their reliance on the ACC system was excessive in the sense that they let 

the ACC system brake when the necessary deceleration rate was beyond the limit 

of the system capability.  On the other hand, the reliance on the system was 

excessive in the sense that the crashed participant misunderstood the purpose of 

the system.  According to the comments given at the interview after the 

experiment, the participant expected the ACC system to reduce the vehicle speed 

to some extent at that situation, but in fact, the system never applies the brake 

against the stopped vehicle.   

Why did the crashes occur?  How we can reduce the risk of such crashes?  

As has been shown in Fig. 2 (a), the lack of information on the boundary of the 

system capability does not always cause a crash.  Other contributing factor(s) 
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is/are necessary for occurrences of crashes.  This paper focuses on effects of 

successful use of the ACC system under peaceful situations, i.e., we investigate 

how driver behavior changed on the basis of driving experience with the ACC 

system.  Concretely speaking, how the timing of driver brake, which means 

driver takeover of control from the ACC system, is changed on the basis of 

repetitive use of the ACC system.  Fig. 3 shows the time series of driver brake 

timing for each scenario type.  Fig. 3 suggests the followings: 

(1) Scenario A3.  The crash-experienced participants, #1, #4, #12, and 

#11, were very reliant on the ACC system.  Among non-crash experienced 

participants, there were two participants, #5 and #7, who were not willing to use 

the ACC system.  It seems that the two participants developed their rule to 

intervene into control; they applied the brake immediately upon detecting 

deceleration of the preceding vehicle instead of letting the system brake.  For the 

remaining participants, the brake timing in trials of scenario A3 became late 

gradually.  The ACC system was worth relying for those participants except #5 

and #7 in that situation.    

(2) Scenario A5.  Experience of a crash or a near-miss at a trial made 

brake timing earlier at least for the next several trials, where a near-miss refers to 

a case in which RF > 2 at the driver braking.  The experience of a crash or a 

near-miss makes a driver attentive.   

(3) Scenario A4.  The experience of a crash or a near-miss in a type A5 

trial makes the driver brake timing earlier in the type A4 trial just after the crash 

or the near miss.   

 

************************************* 

Insert Figure 3 about here 

************************************* 

 

There was a tendency that the brake timing at scenario B was early for the 

participants who were not willing to use the ACC system (#5 and #7) and who 

experienced a crash in a trial of A5 scenario (#1, #4, and #12), compared to the 

other participants (Fig. 4).  The reason why the brake timing of participants #1, 
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#4, and #12 was early would be that their attention was aroused by the experience 

of the crash in a type A5 trial. 

 

************************************* 

Insert Figure 4 about here 

************************************* 

 

In summary, it would be possible to categorize the participants as shown in 

Fig. 5.  The questions here are: (1) What are the differences between the three 

crash-experienced participants in a trial of scenario A5 (#1, #4, and #12) and the 

other 10 participants who were willing to use the ACC system, and (2) What are 

the differences between participant #11 and the remaining six?  

 

************************************* 

Insert Figure 5 about here 

************************************* 

 

In order to answer to the first question, the following analyses were done.  

A t-test was conducted to compare the brake timing in A3 trials between the three 

crash-experienced participants and the remaining 7 participants.  The result 

showed that there was a statistically significant difference between them (t(442)=-

4.6, p<0.01).  A t-test on the brake timing in A4 trials between the three crash-

experienced and the seven non-experienced showed a significant difference 

between them (t(212)=-3.3, p<0.01).  The crashes in A5 trials occurred due to 

the delay in driver braking.   

Thus, the reliance on the ACC system can be illustrated as shown in Fig. 

6(a).  Fig. 6(b) depicts a quantitative estimation of the reliance.  In Fig. 6(b), a 

point represents the mean value of the estimated willingness levels to rely on the 

ACC system in the corresponding participant group (crash-experienced: #1, #4, 

#11, and 12, not crash-experienced: others), and the error bar represents the 

standard deviation.  The estimated willingness level (WL) is derived as WL = 1 - 

(the vehicle speed at braking) /100, where the unit of the vehicle speed at braking 
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is km/h, and the value is obtained from the final trial of the corresponding 

scenario (A3: Day #4, Trial #13, A4: Day #4, Trial #7, and A5: Day #4, Trial 

#11).   

Moreover, the correlation between a brake timing at an A5 trial and the 

brake timing at the preceding A4 trial of the A5 trial was 0.54 (p<0.05) (Fig. 7).  

On the basis of the above results, it could be claimed that an experience at a 

condition may affect the willingness to rely on the ACC system at another 

condition as shown in Fig. 8.  Concretely speaking, the experience of the success 

of ACC increases not only the reliance on the system at A4 but also the reliance 

on the system at A5.  This effect was stronger for the crash-experienced 

participants than for the other participants.  Note here that the ripple effect model 

shown in Fig. 8 has not been verified in a quantitative manner.  Further research 

is necessary to develop a model which is able to describe the dynamics of the 

trust.  

 

************************************* 

Insert Figure 6 about here 

************************************* 

************************************* 

Insert Figure 7 about here 

************************************* 

************************************* 

Insert Figure 8 about here 

************************************* 

 

As for the second question, participant #11 had relied on the ACC system 

until it became deactivated in almost all A3 trials (Fig. 3(a)), but the remaining six 

had not (Fig. 3(b)).  The brake timing of participant #11 in A5 became late 

gradually (Fig. 3(e)), but that of the other six did not.  This increase of 

participant#11’s reliance on the ACC system in scenario A5 may have a strong 

relationship with the reliance on the system in scenario B.   
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Participant #11 was closer to #1, #4, and #12 than to the other six drivers.  

It was common for the four participants in the sense that they became reliant on 

the ACC system too much in A5 trials.  The difference between participant #11 

and participants #1, #4, and #12 was that the former experienced neither a crash 

nor a near-miss in A5 trials due to the gradual increase of the reliance.  It is thus 

possible that the participants #1, #4, and #12 caused a crash in scenario B if they 

had faced scenario B before they experienced the crash in an A5 trial.   

 

4 Conclusions 

 

 This paper proposed a model of human trust in automation for discussing 

overtrust.  It is necessary to distinguish at least overtrust in terms of performance 

from overtrust in terms of purpose.   

The results of the experiment suggest that increase of trust in a system at 

some working condition may cause a ripple effect to trust in it in more difficult 

working conditions.  The ripple effect seems very natural but has hardly been 

observed in previous experimental studies on human-machine cooperation.  

Overtrust due to misunderstanding of the system purpose was also observed in 

this experiment.  According to the investigation of driver behavior, the false 

expectation towards the ACC system to decelerate against a "stopped" lead 

vehicle may be strongly related to the repetitive driver observations of successful 

system behavior against a "stopping" lead vehicle.   

How can we apply the observations to system design for prevention of 

human overtrust in automation?  Essentially, the ripple effect would be 

inevitable in the process of development of human trust in automation, because 

trust in another person often emerges like that.  For example, a human supervisor 

asks a human subordinate to do an easy task.  After observing that the 

subordinate completes the task successfully, the supervisor may expect that the 

subordinate will be able to do a more difficult task.  The ripple effect is adequate 

in a human-human relationship because the skill of a subordinate may be 

developed gradually.  It may not be appropriate, on the other hand, for a human 

to expand the subjective limit of automation capability on the basis of the 

experience, because an automated system does not grow as a human does.  An 
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automated system should provide information on the purpose of the system and 

the limit of its capability in a clear manner.   

Stanton and Young (2005) suggested the necessity of visual information 

for driver prediction of system behavior.  Seppelt and Lee (2007) proposed an 

ecological interface display which makes the limits of an ACC system visible to 

the driver.  Itoh (2008) proposed a method of displaying the limit of deceleration 

capability of an ACC system on the instrumental panel for preventing overtrust in 

terms of performance.  However, the methodologies for prevention of overtrust 

due to misunderstanding of the purpose have not been established.  Further 

studies are necessary to clarify whether overtrust in terms of purpose can be 

prevented by an appropriate design of human interface or human-machine 

interaction, or whether only education or training is the practical solution.   

Note that it is still unclear whether or not overtrust observed in this paper 

really occurs in the real world.  This is because a part of the configuration of the 

ACC system in this study is different from the real one.  For example, the ACC 

system used in this study does not give any alert at the maximum braking.  

Further studies are necessary to observe driver behavior in the real world.   

In this paper, the theoretical model of trust in automation proposed in 

section 2 was used only for discussing what kinds of overtrust are possible.  

However, the model itself has a potential to describe how the trust emerges.  

Further studies are necessary to investigate whether or not the overall trust in 

automation is really derived by formula (2).  Another problem rises here.  It 

might be possible that a human operator is not able to provide a subjective 

probability which satisfies the probability axioms.  One possibility to overcome 

this problem is to apply the Dempster-Shafer theory of evidence (Shafer, 1976) 

which is suitable for describing human subjective feeling to which the probability 

theory is difficult to apply (Itoh, 2001).   

Quantitative formalization of the ripple effect is also necessary.  One way 

for this is to apply the model of dynamic change of trust proposed by Gao, Lee, 

and Zhang (2006).  However, the application of the model of Gao et al. is not 

straightforward.  The formalized quantitative modeling of dynamics of trust will 

be discussed in a different paper.  
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Table 1 Experiencing order of scenarios 

Trial # Day #1 Day #2 Day #3 Day #4 

1 A3 A3 A3 A3 

2 A4 A3 A4 A4 

3 A3 A4 A3 A3 

4 A3 A3 A2 A4 

5 A4 A2 A3 A3 

6 A3 A4 A4 A2 

7 A4 A3 A3 A4 

8 A3 A3 A5 A1 

9 A5 A4 A3 A3 

10 A3 A2 A4 A3 

11 A4 A5 A3 A5 

12 A3 A3 A1 A3 

13 A4 A4 A3 A3 

14 A3 A3 A3 B 

15 A5 A4 A2 

 

16 A3 A3 A4 

17 A3 A3 A3 

18 

 

A3 A5 

19 A5 A3 

20  A4 
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Fig. 1 The driving simulator used in the experiment 
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(b) Scenario A5 
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(c) Scenario B 

Figure 2 Driver brake timing in risky situations 
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(a) scenario A3 (crash-experienced) 
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(b) scenario A3 (not crash-experienced) 
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(c) scenario A4 (crash-experienced) 
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(d) scenario A4 (not crash-experienced) 
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(e) scenario A5 (crash-experienced) 
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(f) scenario A5 (not crash-experienced) 

Figure 3 Driver brake timing for each scenario 
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Fig. 4 TTC at driver braking in scenario B 
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Fig. 5 Categorization of participants 
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(b) estimated model 

 

Fig. 6 Difference in the reliance on the ACC system between #1, #4, and 

#12 (experienced a crash in a A5 trial) and the others 
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Fig. 7 Relationship between brake timings in an A5 trial and in its 

preceding A4 trial 
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Fig. 8  The ripple effect 

 


