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Abstract
　Regardless of the method used to model land-use/cover 
(LUC) change, there is a need to assess the accuracy of the 
modeling. However, the LUC change modeling profession 
is still confronted with some important issues, including 
the problems on the focus of accuracy assessment, param-
eters to indicate overall accuracy, parameters for compar-
ing different modeling results and the minimum accuracy 
standard. The purpose of this paper is to introduce new 
measures of accuracy, namely the HOC (hits to observed 
change), MOC (misses to observed change) and FOC 
(false alarms to observed change) ratio indices, and discuss 
their potential relevance to the broad field of LUC change 
modeling. Firstly, the paper reviews existing validation pa-
rameters and presents a conceptual analysis of these pa-
rameters, including the three proposed new indices. And 
secondly, the paper discusses the potentials of these indi-
ces relative to the current important issues of LUC change 
modeling accuracy assessment.
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1. Introduction
　Accuracy assessment, also known as validation, is a vi-
tal component of any LUC modeling exercise. Regardless 
of the method used to model LUC change, there is a need 
to assess the accuracy of the results. Validation is a process 
by which the quality of model parameters is evaluated by 
comparing the model’s simulation results to a valid refer-
ence map or to an independent data set for the end time of 
the simulation interval (Pontius and Malanson, 2005; Vliet 
et al., 2011).
　The concepts of error due to quantity and error due to 
location (now called error due to allocation) were first pro-
posed by Pontius (2000), and have been among the most 
important topics in the LUC change modeling profession 
in recent years. To account for both types error in model 
validation and solve some conceptual problems observed 
on the standard Kappa index, different Kappa variants 
have been formulated (Pontius, 2000), but none have 
proved highly satisfactory (Pontius and Millones, 2011).

　Klug et al. (1992) and Perica and Foufoula-Georgiou 
(1996) proposed figure of merit (FoM) to  assess the agree-
ment of LUC changes rather than just the LUC categories 
by taking the ratio of the intersection of the observed 
change and simulated change to the union of the observed 
change and simulated change. FoM has been applied to 
compare different modeling results (Pontius et al., 2008).
　Chen and Pontius (2010) introduced four components of 
correctness and error, viz. null successes (correct due to 
observed persistence simulated as persistence), hits (cor-
rect due to observed change simulated as change), misses 
(error due to observed change simulated as persistence) 
and false alarms (error due to observed persistence simu-
lated as change). The concepts of these components have 
been adopted and implemented in recent studies (e.g. 
Ahmed and Ahmed, 2012; Sloan and Pelletier, 2012; Tha-
pa and Murayama, 2011).
　Indeed, literature shows that the concepts of errors due 
to quantity and allocation, null successes, hits, misses and 
false alarms have been applied in previous studies. How-
ever, these are usually expressed relative to the whole 
landscape under investigation. The ensuing problem is that 
it is often difficult to make comparisons of accuracy as-
sessment results among different LUC change modeling 
studies. It is because landscape size varies across study 
sites or areas. In this regard, there is a need to focus only 
on the observed and simulated changes when assessing ac-
curacy. Needless to say, the central core of LUC change 
modeling is on the simulation or projection of LUC change 
(observed change) and not on the lands that did not change. 
Accuracy assessment based on the observed and simulated 
changes can potentially provide the basis for effective 
comparison of different LUC change modeling results. 
However, validation parameters tailored for this type of 
accuracy assessment and those that can directly provide 
answers to the following basic but very important ques-
tions are still lacking. “How much of the observed change 
was simulated correctly and missed?” How much false 
alarms were simulated relative to the observed change?” 
These questions, although basic, are valid because they are 
applicable to all LUC change modeling studies that pro-
duce hard predictions or simulations, regardless of the 
model used. In this type of modeling, each pixel in the 
simulation and reference maps belongs to exactly one LUC 
category.
　This paper introduces three new measures of accuracy 
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that take into account the observed and simulated changes 
only, namely the HOC (hits to observed change), MOC 
(misses to observed change) and FOC (false alarms to ob-
served change) ratio indices. Their differences from the 
other established validation parameters, like FoM and the 
components of correctness and error, are discussed. Their 
potentials as comparison parameters and in setting a mini-
mum accuracy standard are explored. Similar to the con-
cepts of hits, misses and false alarms, these indices focus 
on LUC change modeling that produces hard predictions 
or simulations.

2. Conceptual analysis
　Consider Figures 1a and 1b as the LUC maps at Time 1 
(t1) and Time 2 (t2), respectively, both containing two cate-
gories, green and yellow. The hypothetical goal was to 
simulate the LUC change from green to yellow from t1 to t2 
(Fig. 1c) using Model 1 and Model 2. Their results (Figs. 
1d, 1e) were compared using the following validation 
methods and parameters: (1) simple comparison of the ac-
tual and simulated quantities of LUC categories; (2) com-
ponents of correctness and error: null successes, hits, miss-
es and false alarms; (3) FoM; and (4) ratio indices: HOC, 
MOC and FOC (Eqs. 1–3).

　
HOC = ─

H + M
H

 (1)

　
MOC = ─

H + M
M

 (2)

　
FOC = ─

H + M
F

 (3)

where HOC, MOC and FOC are, respectively, the individ-
ual ratio of hits (H), misses (M) and false alarms (F) 
against the observed change (summation of H and M).
　By comparing the quantity of the yellow category on the 
reference map at t2 (Fig. 1b) with the quantities in the sim-
ulated maps (Figs. 1d, 1e), it can be seen that Model 1 had 
a quantity that was much closer to the reference value than 
Model 2 (Table 1a). However, this validation method could 
give a completely misleading assessment because in the 
example, Model 2 had two more pixels simulated correctly 
than Model 1 (Figs. 1d, 1e). Thus, it is very important to 
look at the four components of correctness and error, which 
show a completely different assessment results. Relative to 
the whole landscape, Model 2 had higher null successes 
and hits, and lower misses and false alarms than Model 1 
(Table 1b). The comparison between Model 1 and Model 2 
in this instance, using these four components as compari-
son parameters, is clearly possible because both models 
used the same information, such as landscape size. The is-
sue on the applicability of the four components of correct-
ness and error as comparison parameters arises when Mod-
els 1 and 2 are compared with Model 3, which was applied 
in a different case study area with a different landscape 
size (Fig. 1f). Figures 1e (Model 2) and 1f (Model 3) had 

Fig. 1  LUC change modeling examples used to examine the 
validation methods and parameters presented in this pa-
per. The hypothetical goal was to simulate the LUC 
change from green to yellow from t1 to t2 using Model 1 
and Model 2.

a. Comparison of the quantities of category yellow (% landscape)
t2

(Model 1)
t2

(Model 2)
t2

(Reference)
Category yellow 41.67 38.89 44.44

b. Components of correctness and error (% landscape)
t2

(Model 1)
t2

(Model 2) Model 3
Null success 58.33 66.67 75.51
Hits 11.11 16.67 12.24
Misses 16.67 11.11 8.16
False alarms 13.89 5.56 4.08

c. Figure of merit (FoM)a

t2

(Model 1)
t2

(Model 2) Model 3
FoM 26.67 50.00 50.00

d. Ratio indices (relative to the observed change)
t2

(Model 1)
t2

(Model 2) Model 3
HOC 0.40 0.60 0.60
MOC 0.60 0.40 0.40
FOC 0.50 0.20 0.20
a FoM = [H/(H+M+F)] × 100

Table 1.  Validation results of the modeling examples.
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the same quantities (no. of pixels) of observed change, 
hits, misses and false alarms. However, Table 1b shows 
that Models 2 and 3 had different accuracy assessment re-
sults. Hence, Figure 1e cannot be compared with Figure 1f 
using the four components as comparison parameters be-
cause the values are based on two different landscape siz-
es.
　Nonetheless, the FoM, which was calculated by taking 
the ratio percentage of hits from the summation of the hits, 
misses and false alarms, offers the solution. The hypotheti-
cal example shows that, regardless of the size of the two 
landscapes, Figures 1e and 1f had the same FoM (Table 
1c) because they had the same LUC change characteristics 
(i.e. quantities of observed change, hits, misses and false 
alarms). This shows that FoM can be used to effectively 
compare simulation results. FoM only takes into account 
the observed and simulated changes.
　The three ratio indices, viz. HOC, MOC and FOC also 
produced the same result as FoM, that is, Figures 1e and 1f 
had the same HOC, MOC and FOC ratio indices. These 
indices (Table 1d) are also not influenced by the size of the 
landscape. However, if our goal was to answer the very 
important basic questions posed in the introductory part, 
FoM, as a summary statistic, cannot directly provide the 
answers. Only the three ratio indices, HOC, MOC and 
FOC, can provide direct answers to these questions.
　Although false alarms are not part of the observed 
change, they contribute to the error due to allocation. The 
comparison of HOC against FOC can help in the assess-
ment of a modeling result, for example, by comparing the 
rate of hits vs. rate of false alarms per unit area of observed 
change. Furthermore, although MOC can be derived from 
the value of HOC, and vice versa (i.e. MOC=1–HOC; 
HOC=1–MOC), all these three indices are explicitly used 
for the purposes of clarity. The potentials of the three ratio 
indices and their distinctions from FoM and the compo-
nents of correctness and error are further discussed in de-
tail in the next section.

3. Discussion
3.1. Focus of accuracy assessment
　The comparison of the actual and simulated quantities 
of LUC categories (Huang and Cai, 2007; Kamusoko et 
al., 2011) or in combination with landscape indicators 
(Guan et al., 2011) can provide useful information to the 
specified end-users. However, a relatively high agreement 
in quantity could be due to the null successes and/or due to 
the false alarms filling in for the misses, as illustrated in 
Figure 1 and Table 1a. Consequently, it is difficult to deter-
mine the real quantity of the observed change that was 
simulated correctly. Thus, the errors due to quantity and 
allocation are both important for accuracy assessment.

　We believe that the validation of LUC change modeling 
should not deviate from the central core of the subject mat-
ter: LUC change. After all, after the model has been cali-
brated and validated, we want to simulate or project the 
changes that would potentially occur in the future, given 
the past and present conditions. The accurate projection of 
these changes would enable development planners, envi-
ronmental managers and policy-makers to examine wheth-
er such changes might potentially cause socio-economic 
and environmental chaos, and if so, determine the appro-
priate measures to be undertaken.

3.2. Parameters to indicate overall accuracy
　Some of the recent attempts to apply the concepts of er-
rors due to quantity and allocation include those by Khoi 
and Murayama (2010), that compared the agreement and 
disagreement due to quantity and allocation of the simu-
lated model expressed as a percentage of the landscape 
with the null model. However, the overall accuracy of the 
modeling was based on the overall agreement, regardless 
of the ratios of observed change and the lands that did not 
change relative to the whole landscape. Ahmed and Ahmed 
(2012) used the components of quantity and allocation dis-
agreements to compare the results of three LUC change 
models. As mentioned earlier, these components can be 
used as comparison parameters as long as the different 
models are applied in only one or in a common case study 
area. However, the overall accuracy was also measured 
based on the overall agreements and disagreements, which 
included the null successes of the lands that did not change. 
Sloan and Pelletier (2012) presented the accuracy of their 
forest-cover change modeling based on the agreement be-
tween the reference and the simulated maps, which, in ef-
fect, also included the null successes of the lands that did 
not change.
　These attempts contribute to the growing application of 
these validation methods. However, it is still extremely 
difficult to capture and comprehend “how much of the ob-
served change in each of these studies was simulated cor-
rectly and missed”, and “how much false alarms were 
simulated relative to the observed change”, whether per 
transition (Ahmed and Ahmed, 2012; Khoi and Murayama, 
2010) or per stratum or as a whole (Sloan and Pelletier, 
2012).
　In the hypothetical example presented (Fig. 1e and Table 
1b), Model 2 had a hits rate of 16.67% and a total error of 
16.67%. However, since these values were relative to the 
whole landscape, we argue that it is not appropriate to re-
port that the overall accuracy of the simulation of Model 2 
was 16.67% (hits) because the denominator from which 
this value was computed included the lands that did not 
change. As illustrated in the example, at the same success 
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rate, the larger the area that did not change is, the lower 
this value would become (Fig. 1f, Table 1b). Moreover, it 
is also misleading to report that the overall accuracy of the 
simulation of Model 2 was 83.33% (i.e. 100 minus the to-
tal error or null successes plus hits, also referred to as the 
overall agreement in the studies mentioned) because it also 
included the null successes. A model for a landscape that 
has a percentage change of 4% between two time periods 
can have null successes and overall agreement close to 
96%, even if the model will not be able to simulate cor-
rectly a part of the observed change. It is in this context 
that the combination of null successes and hits is not an 
appropriate measure of overall accuracy for any given 
LUC change modeling output.
　The FoM of Model 2 was 50.00%, relatively higher 
when compared with that of Model 1 (Table 1c). Since 
FoM takes into account only the observed and simulated 
changes, we believe it provides the measure of overall ac-
curacy. However, as mentioned earlier, if our goal was to 
answer the very important basic questions posed in the in-
troductory part, FoM, as a summary statistic, cannot di-
rectly provide the answers. Only the three ratio indices: 
HOC, MOC and FOC can provide direct answers to these 
questions. They can also provide additional information 
not directly available from the other four components. 
Thus, these indices are also vital in the overall accuracy 
assessment report of LUC change modeling studies. Fur-
thermore, if these indices were to be applied to evaluate 
LUC change modeling that dealt with multiple transitions, 
it would be possible to determine which transition was bet-
ter modeled and which transition contributed the largest 
error. Thus, these indices can potentially help in the refine-
ment of the model calibration process.

3.3. Parameters for comparing different modeling results
　Pontius et al. (2008) applied FoM to compare different 
modeling outputs, while Thapa and Murayama (2011) and 
Sloan and Pelletier (2012) used it to measure the accuracy 
of their modeling outputs. However, Vliet et al. (2011) ar-
gued that because FoM does not include a reference level, 
it is not possible to interpret the absolute FoM value, and 
results of different models cannot be compared. However, 
we contend that FoM can be used as a comparison param-
eter when comparing outputs of different models because 
it considers only the observed and simulated changes, 
which are the more ideal reference level as opposed to the 
whole landscape. As illustrated in Figure 1 and Table 1c, 
the three components used to calculate FoM can be used as 
direct input in the calculation without first having them ex-
pressed relative to the whole landscape. This confirms the 
independency of FoM from the size of landscape. Howev-
er, a positive correlation of FoM with the percentage net 

change (Pontius et al., 2008) poses a limitation. It means 
that modeling results for a landscape with extremely low 
percentage net change cannot be effectively and accurately 
compared with modeling results for a landscape with an 
extremely high percentage net change.
　The three ratio indices, namely HOC, MOC and FOC, 
have the potential to be used as comparison parameters be-
cause they, too, are not influenced by the size of the land-
scape; only the observed and simulated changes of the 
phenomenon being modeled are considered. In fact, the 
very important basic questions which only these indices 
can directly answer can be used as common basic criteria 
for the comparison of LUC change modeling outputs. 
However, it must be pointed out that the components of 
correctness and error (hits, misses and false alarms), from 
which the three indices are derived, can only be determined 
through a proper validation technique, that is, a 3-map 
comparison technique. It is done by cross-tabulating the t2 
simulated LUC map with the t1 and t2 reference LUC maps. 
It is also worth mentioning that a validation process does 
not evaluate the model itself, rather the quality of the cali-
bration undertaken on the model. Thus, the intention of the 
three ratio indices is not to literally evaluate models, but to 
examine and screen modeling outputs based on the quality 
of the calibration undertaken.

3.4. Minimum accuracy standard
　Another issue that the LUC change modeling profession 
faces is the generalization of the modeling accuracy stan-
dard. It has been argued that a universal definition of good 
or acceptable can be misleading (Pontius et al., 2007). 
Hence, the accepted level of accuracy for any LUC change 
modeling output may vary according to the underlying 
purpose (Vliet et al., 2011). However, this should not be a 
hindrance to researchers and scientists to explore and chal-
lenge the issue. While we also agree that a criterion (accu-
racy level) for validating any LUC change modeling out-
put should be defined in relation to the purpose of the 
research, this argument also causes tremendous problems, 
if not worse than those in having a minimum accuracy 
standard. It is because the acceptability of the accuracy of 
any modeling output will always be subjective. The prob-
lem is that there is no common appreciation among us as 
to the level of accuracy that a particular purpose should 
have, or the type of purpose that would require a certain 
level of accuracy. If one individual wants to model LUC 
change, then we believe this person is interested on the 
“change”, which should be the case. In this context, we do 
not see any other “major purpose” other than to model the 
“change”.
　Since the three indices are applicable to any LUC change 
modeling that produces hard predictions or simulations, 



7

Introducing new measures of accuracy for land-use/cover change modeling

we argue that they have the potential to be used in setting a 
minimum accuracy standard for this type of modeling. For 
example, the HOC ratio can be compared with the MOC 
and FOC ratios through the concept of “preponderance of 
evidence”. For a particular LUC change modeling result to 
meet the minimum accuracy standard, its HOC ratio should 
always be higher than the individual ratio of the MOC and 
FOC. A practical reason for this is that it is unlikely that 
planners or policy-makers will be convinced to use a mod-
el that has a calibration level not capable of producing a 
HOC that is higher than its MOC and FOC. If this had 
been the case, only Models 2 and 3 of the three hypotheti-
cal models used to illustrate the validation concepts ap-
plied and examined in this paper (Fig. 1, Table 1) would 
have met the minimum accuracy standard. This implies 
that, hypothetically, Model 1 needs to be re-calibrated.

4. Concluding remarks
　There is an urgent need for LUC change modelers and 
scientists around the world to address the issues presented, 
viz. focus of accuracy assessment, parameters to indicate 
overall accuracy, parameters for comparing different mod-
eling results, and the minimum accuracy standard. In this 
paper, we introduced new measures of accuracy, being the 
HOC, MOC and FOC ratio indices, and discussed their po-
tentials in contributing to the resolutions of the issues men-
tioned. The immediate future plan for this study is to fur-
ther examine the potentials and possible limitations of the 
proposed new measures of accuracy.
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