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THE COMPARISON OF ESTIMATORS OF RATIO
FOR A REGRESSION MODEL

Shinichi Kawai* and Masafumi Akahira**

In some regression model, the mean square errors of a ratio estimator, a grouped
jackknife estimator, and an estimator based on the least square estimators (LSEs) are
obtained and compared up to the order O(n~8), where % is the size of the sample. The
bias-adjusted ratio estimator and the jackknife estimator are also compared up to the
order O(»=%). Then it is concluded that the estimator based on the LSEs is an asym-
ptotically better estimator of ratio up to the order O(n™3%). Some examples are given.
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1. Introduction

In a regression model Y =a+AX-+ U, we consider the estimation problem of a ratio
p=E(Y)/E(X). In regards to this problem, the jackknife method by Quenouille (1956),
based on splitting the sample at random into groups, has been studied by many authors,
and the optimum number of groups has been discussed. (See, e.g., Durbin (1959), Rao (1965)
and Rao and Webster (1966)). A comparison of ratio-type estimators has also been done
by Gray and Schucany (1972), Cochran (1977), Rao (1969, 1988) and others. Ina previous
paper by Akahira and Kawai (1990), it was shown that the grouped jackknife estimator
asymptotically had the minimum variance for a class of linear combinations of ratio
estimators.

In this paper we consider a ratio estimator, a grouped jackknife estimator, and an
estimator based on the least square estimators (LSEs), and obtain their mean square errors
(MSEs). We also compare the estimators using the MSE up to the order O(n~%), where
7 1s the sample size. Then it is revealed that the estimator based on the LSEs is an
asymptotically better estimator of ratio. Further, a bias reduction of the ratio estimator
is carried out, and the MSE of the bias-adjusted ratio estimator is obtained. This
is then compared with the MSE of the jackknife estimator up to the order O(n7%).
Following methods similar to those of Akahira and Kawai (1990), it is shown that the
jackknife estimator has the minimum variance in a class of estimators of ratio. Finally

some examples on the above are given.

2. Estimators of the Ratio in Some Regression Model

Suppose that (X1, Yi), --+, (X», Y4) are a random sample of size n. We consider
the problem of estimating the ratio p=E(Y:)/E(X:). Let Yi=a+fX:+U:, where
E(X:)=ko#0, E(U:| X1, -+, Xu)=0 and V(U:| X4, - -+, Xn)=0 and E(U:U;]| Xs, < -+, Xn) =
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0 (¢ ) with a constant ¢ of the order O(1). Here E{-|-) and V(-]+) denote the condition-
al mean and variance, respectively. Then it is noted that, under the regression model,
p=p+(alks). Let X=30,Xin, V=30,Yn and U=30%,Usfn. As estimators of
p, a ratio estimator and a grouped jackknife estimator are known. The ratio estimator
is given by

rz—jlgr: p+ aj—?U .

On the other hand, we split the sample (X1, Y3), --+, (X, Y») of size # into ¢ groups of
size m, i.e., n=mgq for g=>2. For each j=1, ---, g, X} and 17§ are the sample means after
omitting the j-th group. When we set

v,

7i= X (7=1,---,9),
the jackknife estimator 7sx,o is given by
-1
TIK,g=Q7— g >
J=1

Let drs and frs be the least square estimators (LSEs) of « and g, that is,

L S (X—=X) (YY) e s s
Brs= s (Xf——X)z and brs=Y —Brs X .

Then we also consider the following estimator p based on the LSEs

A

p=Ps+ o

where ko is known. Since E(dzs)=a and E(fs)=p, it follows that p is the unbiased
estimator of p. In the subsequent discussion we shall compare the above estimators
using their MSEs.

3. Comparison of the Estimators

Suppose that X1, -+, X» are independent and identically distributed (i.i.d.) random
variables with mean ko, variance o?, and, for each [=3, 4, ---, we denote the /-th order
moment by u=FE[(X:—ko)*]. In this section and section 4 we assume that ko is known.
In the regression model, without loss of generality we may assume ko=1. Then we com-
pare the mean square errors of 4, » and 7vx,p up to O(n™®). First, in order to get the mean

square error of 3, we need the following lemma.

Lemma 3.1, Assume that Xi, -+, Xu ave 1.4.d. vamdom variables with a continuous

denstty function with mean 1, variance o and fintte s, where 0<o*<oo. Then
T (Xa—1)E } 1 1 >
g U P —_
E[ZL(X}—-X)? +n+0<n2 ’
where X:ZLLXz/n.

Proor. Putting Wa=30, (Xi—1) 3k, (Xi—X)?, we have



THE COMPARISON OF ESTIMATORS OF RATIO FOR A REGRESSION MODEL 143

(X —1)?
S (X —X)?
Let Z=/n(X—1) and U=/ 7 (S*—0?) with S?=30, (X:—X)?/n. Then
ZO
nS*
1

:1 ' 72
o o‘*n«/

I/Vn:‘-l“"

(3.1) Was=14+-2

——=UZ+

1
= U222+op<;-2—> .

It 1s clear that E(Z%)=0® Then we have
1

52) E(U2)= o (—40) =309 =0( =) .
Since
EIS R —11= (2 et =) =)o,
we obtain
(3.3) | E(U2Zz)=02,u4+fr“+2,u§+0<~3;~> —0(1).

From (3.1), (3.2) and (3.3), we have
1 1
E(Wn):1+_+0<‘—2> .
7 n
This completes the proof.

From Lemma 3.1, the mean square error of g, MSE(g), is given by

MSE(p)

V(9)

E(V(p| X1, -+, X1+ VIE@| Xy, -+, Xa)]
EV (31 Xy, -+, Xn)]

E[V(Brs| Xy, <+, X)+V(bzs| X1, + -+, Xa)

I)

H

H

+2Cov (Brs, drs| X1, -+, X))
:.5_5[ mXE__ n___ 230 X }
n n=1 (X‘L X) l ](Xi_X)z 2{ X(Xl )
_QE[ zz;‘(Xi—l_)_}
_‘}7; Z?:x (X‘:,'-X)
3.9
P o e R G

Next we shall get the mean square error of the ratio estimator 7. Letting
Z=1/n(X—1), we have

54 E(%)=F ey
T D B o[ )

o 1 . 1
_1—{—7—{—‘7;2-(‘/63‘{*30' )+O< e > s

=1—
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hence
Za{1+%+%(—m+30‘)} +O<—i;> .

We also obtain

69 5(%)=E| )
A o)

2
:1+30‘
n

=1

+_7}2.(—4,u3+150“) +O<~i—s) ;
which yields
(3.7) E[(r—ﬂ)2]=ER a}ﬁ ” - (“2+%>E<3%7>

) 307 1 1
— (g = (—4pu, ¢ -
—<ac +n>{l+ +nz( 4/@-{—150’)} +O<n3>'

n
If follows from (3.5) and (3.7) that the mean square error of ¥, MSE(r), is given by
MSE()=E[{{r—§)—a)"]
el L o} +2 (14207 <1>
=q { ot %2( 2ﬂs+90)}+n (l—l-no- +0 pr B
Further, we obtain the mean square error of the jackknife estimator 7sx,,. Letting
Z}:«/n——m(?@—rl) (7=1, -+, n), we have

E(m,a—ﬁ)=a{gﬁ<‘51g‘)“g‘;—1”é‘€< }% )%
~a o [ T }“(Q‘M [ﬁ(Z;/i/W@ B
=a[g{1+~0§~+%(—#3+364)}
~wnfuig gtrrei(gy i man) o)

which yields

Elpowa=pP)=oE ] (F 250 SV e (-2 5 20

X g =X

2 _9
nt g—1

«Q
—

2
:ocz{l-{—i—l-
”

Hence the mean square error of 7ox,0, MSE(rsx,0), is given by

MSE (rsx,0)=E[{(rsx,0— ) —c}*]
2 \ / \
:o&<i+i -Lo")%——(z(l—%- - —g—~—02)+0{/~1—> A

7 nt g—1 7 " g—1
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From the above, we get the following theorem in the setup of section 2.

THEOREM 3.1. Assume that Xy, -+, Xu are 1.9.d. random variables wilth a continuous
density function with mean 1, variance o* and finite ps, where 0<o*<oco. Suppose that
E (X*‘) and E(X7?) asymptotically exist up to the order O(n™) in the sence of (3.4) and
(3.6), respectively, and also E(X;™), E(X X, (j=1,---,9) and E(X: X)) (%7,
v, j=1, -+, g) asymptotically exist up to the order O(n™®) in a similar sence to the above.
Then the MSEs of 4, v and vyx,q are given wp to the order O(n™) as follows.

MSE(p)=V(p) =%}‘<3+%> +0mn?),

MSE®) =~711~(8+a20'2) +%{a2( — 240 +90) 4+ 3802} + O (1Y) .

29

I—1 azo"—i—zg_—l(?az} +0n™%),

1 1
MSE(rsx,0) =;(5+OLZO'Z) +‘;;; i
and moreover, 1f g =mn, then
1 . 1 _
A{SE(')’JK,n) = 2(6 +CL“O’2) "i‘;’[(ZO(,ZO’4 +(5\0'2) + O(n 3) .
Further, the comparison of the estimators p, v and vix,» with respect to the MSE s given up
to the ordey O(n™*) as follows.

MSE(p)<MSE(rsx,n) <MSE(r)  for a0 and ps<(7/2)0" +80%/a? ,

MSE(p)<MSE(y)<MSE(rix,n) for a0 and us>(7/2)0* 4o/’
MSE (rsx,s) SMSE(r)<MSE(3)  for =0 and 0<0*<1/3,
MSE(rix,n) SMSE(B)<MSE(7) for @=0 and 1/3<0?*<1,
MSE(y<MSE(rsx,n)<MSE()  for a=0and o?>1.

The proof of the first half of Theorem 3.1 is given above. That of the latter half is
omitted since it is straightforward from the first one. It is easily seen that MSE(rsx,) 2
MSE(ryi,s)+0(n% for 2<g<n. Hence 7sx,» will often be used in the class of the

grouped jackknife estimators.

RemARK 3.1, In the problem of estimating p, it is seen from Theorem 3.1 that p
is asymptotically better than the other estimators up to the order O(»~*) for a0 or for
a=0 and ¢*>1. Since § is also unbiased for p and further seems to be simpler than
7rx,n in the construction, p is recommended as an asymptotically better estimator up to

the O(n™*), though « and ¢® are unknown.

4. Bias Adjustment of the Estimators

Although § is an unbiased estimator of p, the ratio estimator » and the jackknife

estimator 7sx,» have a bias up to the order O(n7?),

ac?® o« . —
E()=pt— ———(#s =304 +0(n™)
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E(rsz,n)= p+%(//,a—3a'«)+0(n—a) .

So it is desirable to compare » with 7sx,» after adjusting the bias of the order O(n™) of 7.
Let

1, .
=y ——argd?,
%

where 62={1/(n—1)} i, (X:—X)2. Since

1 5 & }
- Y — XY
n{n—1) EL% ;}"ﬂXij = J>_J=1X s
—E(XIY5)—E(X:XsY))
=ag?,

it follows that d@rsé® is an unbiased estimator of ao?, hence
a
E(r*)=p—72—(/¢s—30")+0(n‘3) ,

which means that #* is a bias-adjusted ratio estimator from » up to the order O(»™%). It
is also noted that the estimator 7= (r*4-7sx,s)/2 is asymptotically unbiased up to the
order O(n™?), ie. E(7)=p+0(n®). TFrom the above, in the setup of section 2, we have

the following.-

THEOREM 4.1. Assume that Xi1, ---, Xn ave 1.4.d. vandom variables with mean 1,
variance o and fintte s, where 0<ot<{oo. Suppose that E [X'"i(X 1—X)?] asymptoti-
cally exists wp to the order O(n™?) in a similay sense of (3.4). Then the mean square ervor,
MSE(r*), of the bras-adjusted vatio estimator v* 1s given by

1
(4.1) MSE(r*):MSE(y)—;?{ocz(/bs—}-a")+2602}+O(n'3) ,
Proor. We have
1
(4.2) MSE(r*):E[(r*—p)ﬂzE[(V—a—ﬁ—;&wéz)ﬂ

2 g, 2 N TS
=JIISE(7‘)—;;E(»mzsa'}+7z—(x(oc+ﬂ)<7'+—ﬂ?5;_a;,sa": .

We also obtain

(4.3) E[yo‘méﬂ]z—%—i—lE[(m “}_ ) {1723 (Xi—X)“X'é (Xi-X)(Yi—f’)H
:aﬁaﬂ+nilE[(wU)—g—é(Xi—X)z—(HU)é(Xi—X)(Yi—ﬁ]
:aﬁo’z-{-nilE[(a-i-U)(ﬁ—}- “}U );:‘JI(XL-—XV}
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Oi‘ [312‘;2:?(Xw??)zhﬁfsjl—)—g[%g(xi_;z)z}

nflz[;:j) (Xi~X){ﬁ(Xi—X)+(Ui—0)}}

1 L8N
——1<w+7z) [

Since

it follows from (4.3) that

T s X ' n 1 2 1 a \ / 1
(4.4) E:_raLsU“]:a(o;-rlB)o"+;§0’“1—;~a“(/hro") —!-OK—;;) .
Since
Efé% e = £ (Snxv -2 X gl
- n(%—~ \i=1 j=1 =1 j=1
:sc?rfﬁi—O(jz-\ .

it follows from (4.2) and (4.4) that
MSE(;**):MSE(r)———;T{o&(,us%-o“) 2505} +0(n") .

This completes the proof.
It is noted from (4.1) that, for x:>0,

MSE(@*)<MSE(@#)+0(n™°)
If we compare * with 7sx,», then
(4.5) MSE(@F*)<MSE(ryx,n)+0(n"%) for us=>20*
(4.6) MSE(*)=MSE{rsx,n)+0(n") for ps <20

If the distribution of X is normal, then »* is asymptotically better than 7sx,» in the sense
that (4.5) holds. The comparison of the other estimators with »* will be given in Ex-

ample 6.1.

5. Optimum Property of the Grouped Jackknife Estimator in Some Class

As stated in the previous section, the jackknife estimator is not always asymptotically
better than the others. However, if we restrict the estimators to some class of linear
combinations of ratio estimators, then the grouped jackknife estimator has asymptoti-
cally the minimum variance (see Akahira and Kawai (1990)). In this section, it is shown
that the grouped jackknife estimator has the minimum variance in some class.

We consider a class of linear combinations of the ratio estimators » and 7} (j=1, -+ -, 9)
defined by
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g

Ri= {f=gr+12 wyr}
=1

éﬂu:——(g—l)} .

Tt is easily seen that the grouped jackknife estimator 7sx,, belongs to R,. Then, in the
setup of section 2, we have the following.

THEOREM 5.1.  Assume that koE(1/X)=1+h, k{EQ1JX)—EQX)}=hl(g—1) (j=
1, -+, g), and there exist E(1/X?), E(X}) (j=1, -+, ¢), EQ(XX})] (j=1, -+, g) and
EXIX)] (G54, 5=1, ---, g), where ko is unknown and h is a constant of order O(n™).
Then any estimator 7 of the class R, is unbiased for p, and the jackknife estimator rrx,o has

the minimum variance 1n the class R ,.

The proof is omitted since it is similar to those of Lemmas 2.1 and 2.3 of Akahira and
Kawai (1990). An example for Theorem 5.1 will be given later.

6. Examples

In this section we give an example of the comparison of the estimators p, 7, #* and
vsx,» With respect to the MSE up to the order O(»™®) in the normal case according to
Theorems 4.1 and 4.2. An example is also given on the optimality of the jackknife es-
timator 7rz,0 in the class @, in the inverse Gaussian case according to Theorem 5.1. The
examples on the latter property are given in the normal and gamma cases in Akahira and
Kawai (1990).

ExampLE 6.1 (Normal Case). Assume that X, --+, X» are independently, identi-
cally and normally distributed random variables with mean 1 and variance o?. According
to Theorems 4.1 and 4.2, it is seen that the MSEs of p, 7, * and »sx,» are given up to the
order O(n™%) as follows.

L6 8 -
AISE(‘O):E-FF‘}-O(% a) y
1 o’ . -
]llSE(?/):;@—(é‘—%cczo'z)+;2—(9a20“+36)+O(n 9,

2
MSE (#¥) =;];~(é‘+oc30"2) +~f—;;—(8a2<rz+é‘) +0(n~¥)

MSE (rrie ) =8 +o0%) + 220t +8)+0(n~)

It is noted that the MSEs of » and 7sx,» coincide with those of Durbin (1959) and Rao
(1965) for p=1. Their comparisons are given up to the order O(»n™*) as follows.

MSE($)<MSE(rsx,) <MSE(#*)<MSE(y)  for a#0,

MSE(rsxc,n)=MSE ()< MSE(#)<MSE(3)  for =0 and 0<o*<1/3,

MSE (rsic,s)=MSE () <MSE(p) <MSE(r)  for «a=0and 1/3<¢*<1,
( )

MSE(p)<MSE(rsx,n)=MSE(@#*)<MSE(r for =0 and o*>1.

Note that the asymptotic values of E(X~1), E(X~?), etc. are given in Rao (1965) (see
also Remark 4.1 of Akahira and Kawai (1990)).
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ExampLE 6.2 (Inverse Gaussian case). Assume that X, ---, X» are iid. random
variables with thée inverse Gaussian distribution with parameter (u, A) (#>0, A>0),
which is denoted as IG(x, A), with the density function given by ~/A/(27%°%) exp { —A(x—
)% (2u2x)} for >0 and zero otherwise. Since X has the distribution IG(u, #A), the

following holds.
ko=

2

1 1 9 g .
E< 78 >—— 3— +3 - = =1, .- )
5 ﬂ2+ w ng—1A " nig—1)A® (7 9)

By Schwarz’s inequality, we see that E[1/(XX})] (j=1, ---, ¢) and E[1/(XiX9)] (1#];
i,7=1, -+, g) exist. We also have
1=t
> ==

( <WL>_ <~L>} A1

kolE X E X)) nA g—1-
From the above it is easily seen that the conditions of Theorem 5.1 hold. A straight-
forward calculation also leads to the fact that any estimator 7 of @R, is unbiased for p, i.e.,

kuz(

b

E(f):/f-'ri;-:p.

From Theorem 5.1 we see that the jackknife estimator 7sx,, is unbiased for p and has the

minimum variance in the class R,.
Though the bias-adjusted ratio estimator 7* does not belong to the class QR ,, when

comparing »* with 7sx,», we have from (4.5) and (4.6)

MSE(*)<MSE (rsx,n) +0(n~%)  for p=1.
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