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THE COMPARISON OF ESTIMATORS OF RATIO 

FOR A REGRESSION MODEL 

Shinichi Kawai* and Masafumi Akahira** 

In some regression model, the mean square' errors of a ratio estimator, a grouped 
jackknife estimator, and an estimator based on the least square estimators (LSEs) are 
obtained and compared up to the order O(n-3 ), where n is the size of the sample. The 
bias-adjusted ratio estimator and the jackknife estimator are also compared up to the 
order O(n-3). Then it is concluded that the estimator based on the LSEs is an asym
ptotically better estimator of ratio up to the order o (n-S) • Some examples are given. 

Key words and phrases: Regression model, mean square error, ratio estimator, least 
square estimator, grouped jackknife estimator 

1. Introduction 

In a regression model Y = a+ (JX + U, we consider the estimation problem of a ratio 

p=E(Y)/E(X). In regards to this problem, the jackknife method by Quenouille (1956), 

based on splitting the sample at random into groups, has been studied by many authors, 

and the optimum number of groups has been discussed. (See, e.g., Durbin (1959), Rao (1965) 

and Rao and Webster (1966)). A comparison of ratio-type estimators has also been done 

by Gray and Schucany (1972), Cochran (1977), Rao (1969, 1988) and others. Ina previous 

paper by Akahira and Kawai (1990), it was shown that the grouped jackknife estimator 

asymptotically had the minimum variance for a class of linear combinations of ratio 

estimators. 

In this paper we consider a ratio estimator, a grouped jackknife estimator, and an 

estimator based on the least square estimators (LSEs), and obtain their mean square errors 

(lVISEs). We also compare the estimators using the lVISE up to the order O(n-S
), where 

n is the sample size. Then it is revealed that the estimator based on the LSEs is an 

asymptotically better estimator of ratio. Further, a bias reduction of the ratio estimator 

is carried out, and the MSE of the bias-adjusted ratio estimator is obtained. This 

is then compared with the lVISE of the jackknife estimator up to the order O(n-S). 

Following methods similar to those of Akahira and Kawai (1990), it is shown that the 

jackknife estimator has the minimum variance in a class of estimators of ratio. Finally 

some examples on the above are given. 

2. Estimators of the Ratio in Some Regression Model 

Suppose that (Xl, YI), "', (Xn, Yn) are a random sample of size n. We consider 

the problem of estimating the ratio p=E(Yi)/E(Xi). Let Yi=a+pXi+Ui, where 

E(Xi)=ko=l=O, E(UiIXl, "',Xn)=O and V(UiIXl, "',Xn)=oandE(UiUJIXl, "',Xn)= 
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o (i=l= j) with a constant 0 of the order 0(1). Here E( -,.) and V( -,.) denote the condition

al mean and variance, respectively. Then it is noted that, under the regression model, 

p=p+(a/ko). Let X =2:.~=lXi/n, Y =2:7=1 Yi/n and [; =2:~=1 Ui/n. As estimators of 

P, a ratio estimator and a grouped jackknife estimator are known. The ratio estimator 

is given by 

Y a+U 
r= X =P+-y-. 

On the other hand, we split the sample (Xl, Yl), "', (Xn, Y n) of size n into 9 groups of 

size m, i.e., n=mg for g~2. For each j = I, "', g, Xj and Yi are the sample means after 

omitting the J'-th group. \Vhen we set 

(j=l,,,,,g), 

the jackknife estimator rJK,g is given by 

g-l (J 

rJK,()=gr--- 2J rj. 
9 j=1 

Let aLB and ~LS be the least square estimators (LSEs) of a and p, that is, 

2:7=1 (Xi-X)(Yi-Y) 
2:.~=1 (Xi-X)2 

and 

Then we also consider the following estimator p based on the LSEs 

A A aLS 
P=(3LS+JC; , 

where ko is known. Since E(aLS) =a and E(~LS) =/f, it follows that p is the unbiased 

estimator of p. In the subsequent discussion we shall compare the above estimators 

using their MSEs. 

3. Comparison of the Estimators 

Suppose that Xl, "', Xn are independent and identically distributed (Li.d.) random 

variables with mean ko, variance (}2, and, for each I = 3, 4, "', we denote the l-th order 

moment by ,ut = E[(Xl- ko)l]. In this section and section 4 we assume that ko is known. 

In the regression model, without loss of generality we may assume ko = 1. Then we com

pare the mean square errors of p, rand rJK,g up to O(n-S). First, in order to get the mean 

square error of p, we need the following lemma. 

LEMMA 3.1. Assume that Xl, "', Xn are i.i.d. ramdom variables with a continuous 

density function with mean 1, variance (}2 and finite Jl6, where O<()2<oo. Then 

where X = 2:.~=1 Xi/no 

PROOF. Putting VVn=2:.~=l (Xi-l)2/2:7=1 (Xi-X)2, we have 
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vVn=l+ 2:~~1 (Xi-X)2 . 

Let Z =~n(X -1) and U =~n(S2-0-2) with S2=2:~=t{Xi-XYln. Then 

(3.1) 
Z2 

}Vn=l+-
S

" 
n -

1 Z~ =1+-?-~-
o-"n 

It is clear that E(Z2) = 0-2
• Then we have 

(3.2) 

Since 

we obtain 

(3.3) E(U2Z2) = 0-2jl4 + 0-
6 +2fd +o( ~) =0(1) . 

From (3.1), (3.2) and (3.3), we have 

E(Wn)=l+~+O(~) . n n-

This completes the proof. 

From Lemma 3.1, the mean square error of p, MSE(p), is given by 

l,,1SE(p) = V(p) 

=E[V(p I Xl, .. " Xn)] + V[E(p I Xl, . ", Xn)] 

=E[V(p I Xl, .. " Xn)] 

=E[V(.BLS!XI, "', Xn)+ V(aLS!Xl, "', Xn) 

+2COV(.BLS, aLs!XI, "', Xn)] 

-iE[ .L.~'=lX~ n 22::~=IXi ] 
- n 2:~=1 (Xi-)C)2 + 2::~=J (Xi-X)2 2::~=1 (Xi-X)2 

=iE[ 2:~'=1 (Xi-l)2 ] 
n 2:~=1 (Xi-X)2 

o 0 
=-+-+O(n-S

) • 
n n 2 

N ext we shall get the mean square error of the ratio estimator r. Letting 

Z=~n(.X-l), we have 

(3.4) 
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hence 

(3.5) 

\Ve also obtain 

(
_1 ) _ [\ 1 } 2J 

(3.6) E X2 -E ll+(Z/..! n) 

=1 

30-2 1 ( 1 \ 
=1+-+-2 (-4#3+150- 4)+0 -3 " 

n n n / 

which yields 

If follows from (3.5) and (3.7) that the mean square error of r, 11,;15E(r), is given by 

Further, we obtain the mean square error of the jackknife estimator rJK,r;. Letting 

Zj = In-m(Xj-l) (j = 1, "', n), we have 

{ I g } (1\ =a 1+-. --(#s-30-4
) +0 -), 

n~ g-l n 3 

which yields 

f( g g-l 9 1 )2J [( gU g-l (] u' \21 
E[ (rJ K, (] - /1)2J = 0.:

2 E l x- - -' - b X- ~ + E X- - --b Xr'7-! 
g )=1 J g J=I j / J 

{ 
0-2 2 g } 0 I 1 g \ I 1 \ 

=0.:
2 1+-+---(#3-20-4

) +-11+--' -0-2)+01-!. 
n n 2 g-l n \ n g-l \ n 3 

/ 

Hence the mean square error of rJK,(], A15E(rJK, (]), is given by 
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From the above, we get the following theorem in the setup of section 2. 

THEOREM 3.1. Assume that Xl, "', Xn are i.i.d. random variables with a continuous 

density function w£th mean 1, variance (J'2 and finite }l6, where 0 < (J'2 < 00. Suppose that 

E(X-l) and E(X-Z) asymptotically exist up to the order 0(n-3) in the sence of (3.4) and 

(3.6), respectively) and also E(Xj-Z), E(X-l_i{j-l) (j = 1, "', g) and E(Xf- 1 Xrl) (i* j; 

i, j = 1, "', g) asymptotically exist up to the order 0(n-3
) in a similar sence to the above. 

Then the MSEs of p, rand rJK,1J are given up to the order O(n-S
) as follows. 

and moreover) if 9 = n, then 

Further, the comparison of the estimators p, r a1ld rJK,n with respect to the MSE is given up 

to the order 0(n-3
) as follows. 

111SE(fJ) s;,MSE(rJK,n) s;,IVISE(r) 

IVISE(p) s;,MSE(r) s;,.MSE(rJK,n) 

NISE(YJK,n) s;,l'vISE(r) s;,lvISE(fJ) 

l11SE(rJK,n) s;,lvISE(p) s;,l'r1SE(r) 

J1!ISE(p) s;,.MSE(rJK,n) s;,lvISE(r) 

for a:;i:G and }lss;,(7/2)(J'4+o0-2/aZ 
, 

for a:;i:O and }l3> (7/2)(J'4+o0-2/a Z 
, 

for a=O and O<o-zs;,1/3, 

for a=O and 1/3< (J'zs;,1 , 

for a=O and 0-2 > 1 . 

The proof of the first half of Theorem 3.1 is given above. That of the latter half is 

omitted since it is straightforward from the first one. It is easily seen that MSE (YJK, IJ) :2: 

AISE(rJK,n)+O(n-S
) for 2s;,gs;,n. Hence YJK,n will often be used in the class of the 

grouped jackknife estimators. 

REMARK 3.1. In the problem of estimating p, it is seen from Theorem 3.1 that p 
is asymptotically better than the other estimators up to the order 0(n-8

) for a:;i:O or for 

a = 0 and (J'2> 1. Since p is also un biased for p and further seems to be simpler than 

rJK,n in the construction, p is recommended as an asymptotically better estimator up to 

the 0(11,-8), though a and (J'2 are unknown. 

4. Bias Adjustment of the Estimators 

Although p is an unbiased estimator of p, the ratio estimator Y and the jackknife 

estimator 1'JK,n have a bias up to the order 0(n-8
), 

a(J'2 a 
E(1') =P+--;:;----:;;z(}l8-30-') + o (n-8

) 
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So it is desirable to compare r with rJK,n after adjusting the bias of the order O(n-l) of r. 

Let 

* 1... "'2 r =r--CLLSf7 , 
n 

it follows that <irs8z is an unbiased estimator of o'Jr2
, hence 

which means that r* is a bias-adjusted ratio estimator from r up to the order O(n-3
). It 

is also noted that the estimator r= (r*+rJK,n)/2 is asymptotically unbiased up to the 

order O(n-a), i.e. E(r) = p+O(n-3). From the above, in the setup of section 2, we have 

the following. 

THEOREM 4.1. Assume that Xl, "', Xn are i.i.d. random variables with mean 1, 

variance cr2 and finite #6, where 0<0-2<=. Suppose that E[X-l(Xl-XVJ asymptoti

cally exists up to the order O(n-2) in a similar sense oj (3.4). Then the mean square error, 

AISE(r*), of the bias-adjusted ratio estimator r* is given by 

(4.1) 

PROOF. \Ve have 

(4.2) 

We also obtain 

(4.3) E[ra£s8 2J= ~lE[(fJ+ a'x'_D) Lv ~ (Xi-X)2_X ~ (Xi-X)(Yi-Y)~] 
n l 1=1 .=1 ) 

= afJcr2 + n~l E[(a+U) i ~ (Xi-_X)Z-(a+D) ~ (Xi-X)(Yi-Y)] 

1 [ - ( a+D \ n - ] =afJcr2+ n-l E (a+U) fJ+X-)~ (Xi-X)2 

- n~l E[~ (Xi-X)(Yi-Y)] 
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Since 

it follows from (4.3) that 

(4.4) 

Since 

it follows from (4.2) and (4.4) that 

This completes the proof. 

It is noted from (4.1) that, for #3?:.0, 

1~1SE(r*) -::;;.j1SE(r) +O(n-3
) • 

If we compare r* with rJK,n, then 

(4.5) 

(4.6) 

111SE(1'*) -::;;'i11SE(rJK,n) +O(n-S
) 

kISE(r*) ?:.111SE(rJK,n) +O(n-S
) 

If the distribution of Xl is normal, then r* is asymptotically better than rJK,n in the sense 

that (4.5) holds. The comparison of the other estimators with r* will be given in Ex

ample 6.1. 

5. Optimum Property of the Grouped Jackknife Estimator in Some Class 

As stated in the previous section, the jackknife estimator is not always asymptotically 

better than the others. However, if we restrict the estimators to some class of linear 

combinations of ratio estimators, then the grouped jackknife estimator has asymptoti

cally the minimum variance (see Akahira and Kawai (1990)). In this section, it is shown 

that the grouped jackknife estimator has the minimum variance in some class. 

'Ve consider a class of linear combinations of the ratio estimators rand rj (j = 1, ... I g) 

defined by 
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9:{1 = {r=gr+ ± WJYj I iJ Wj= -(g-l) 1 . 
)=1 J=l J 

It is easily seen that the grouped jackknife estimator rJK,(J belongs to 9:{1' Then, in the 

setup of section 2, we have the following. 

THEOREM 5.1. Assume that koE(ljX}=l+h, ko{E(ljXj)-E(ljX)}=hj(g-l) U= 

1, "', g), and there exist E(ljX2), E(ljX'/) U=l, "', g), E[lj(XXj)] U=l, . ", g) and 

E[lj(X~Xj)] (i=l= j; i, j = 1, "', g), where ko is unknown and h is a constant oj order O(n-l). 

Then any estimator r oj the class 9:{1 is unbiased jor p, and the J'ackknije estimator 1'JK,(J has 

the minimum variance in the class 9:{1' 

The proof is omitted since it is similar to those of Lemmas 2.1 and 2.3 of Akahira and 

Kawai (1990). An example for Theorem 5.1 will be given later. 

6. Examples 

In this section we give an example of the comparison of the estimators {1, r, r* and 

rJK,n with respect to the MSE up to the order O(n-S
) in the normal case according to 

Theorems 4.1 and 4.2. An example is also given on the optimality of the jackknife es

timator rJK,(J in the class fRl in the inverse Gaussian case according to Theorem 5,1. The 

examples on the latter property are given in the normal and gamma cases in Akahira and 

Kawai (1990). 

EXAMPLE 6.1 (Normal Case). Assume that Xl, "', Xn are independently, identi

cally and normally distributed random variables with mean 1 and variance (72. According 

to Theorems 4.1 and 4.2, it is seen that the MSEs of {1, r, 1'* and rJK,n are given up to the 

order O(n-3
) as follows. 

MSE(r*)=~(o+a2(72)+~(8a2(72+o)+O(n-3) , 
n n2 

It is noted that the MSEs of rand rJK,n coincide with those of Durbin (1959) and Rao 

(1965) for Jl = 1. Their comparisons are given up to the order O(n-S
) as follows. 

1I1SE({1) ~MSE(rJK,n) ~MSE(r*) ~MSE(r) 

.~1SE(rJK,n) = 1I1SE(r*) ~MSE(r) ~MSE({1) 

MSE(rJK,n) =MSE(r*) ~M SE({1) ~MSE(1') 

1I1SE({1) ~1I1SE(rJK,n) =MSE(r*) ~MSE(r) 

for a=t=O, 

for a=O and 0<(72~1/3, 

for a=O and 1/3<(72~1 , 

for a=O and (72)1. 

Note that the asymptotic values of E(X-l), E(X-2), etc. are given in Rao (1965) (see 

also Remark 4.1 of Akahira and Kawai (1990)), 
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EXAMPLE 6.2 (Inverse Gaussian case). Assume that Xl,"', Xn are i.i.d. random 

variables with the inverse Gaussian distribution with parameter (#, Il) (#>0, 1l>0), 

which is denoted as IG(#, Il), with the density function given by .J1l/(27TX8
) exp {-Il(x

/l,)2j(2Jl2 X )} for x>O and zero otherwise. Since X has the distribution IG(Jl, nil), the 

following holds. 

ko=E(X)=p, 

E( ~~ ) = ~ + n\ ' 
E(-1-) -~+ g Xi - Jl n(g-l)1l 

(j=l, "',g), 

(
1) 1 11 1 E V2 =-2+3-~+3~, _'"\. Jl Jl n/l.. n /I.. ~ 

E (-1-) = ~ + 3~ ______ g __ + 3 g2 
X? Jl2 Jl n(g-l)1l n2(g-I)21l2 

U=I, ... ,g). 

By Schwarz's inequality, we see that E[l/(XXi)] U=I, "', g) and E[l/(X~Xj)J (i=i=J-; 

i, j = 1, "', g) exist. We also have 

koE(-L)-I=L, X nil 

From the above it is easily seen that the conditions of Theorem 5.1 hold. A straight

forward calculation also leads to the fact that any estimator r of !Rl is unbiased for p, i.e., 

E(r)=j3+!!:..=p. 
Jl 

From Theorem 5.1 we see that the jackknife estimator rJK,(J is unbiased for p and has the 

minimum variance in the class !Rl' 
Though the bias-adjusted ratio estimator r* does not belong to the class !Rl) when 

comparing r* with rJK,n, we have from (4.5) and (4.6) 

for Jl= 1 . 
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