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TI-{E OPTIMALITY OF THE GROUPED JACKKNIFE 
ESTIMATOR OF RATIO IN SOl\1E 

REGRESSION MODEL 

Masafumi Akahira * and Shinichi Kawai * * 

In some regression model, the minimum (asymptotic) variance estimator of a ratio 

is discussed for some class of linear combinations of ratio estimators, and the jackknife 
procedure is considered. It is seen that the grouped jackknife estimator is optimal in 
the sense that it has asymptotically the minimum variance in the class. Higher order 
bias reduction of the estimators is discussed, and some examples are given. 

1. Introduction 

In a regression model Y =rx+ jJX + U, the problem of estimating a ratio p=E(Y)/E(X) 

has been studied by many authors. The problem has been discussed from the viewpoint 

of the jackknife method, which Quenouille (1956) considered by dividing a sample of size 

11, at random into blocks. In particular, the problem of the optimum choice of the number 

of blocks has been investigated. The jackknife estimator has also been compared with 

other ratio estimators in the same model. (See, e.g., Durbin (1959), Rao (1965), Rao 

and Webster (1966), Gray and Schucany (1972), and Rao (1988)). 

In this paper we consider a class of linear combinations of ratio estimators of p, 

taking into consideration a grouped jackknife estimator. Sufficient conditions under 

which an estimator in this class has a bias reduction of order 11,-1 are obtained. Further 

the minimum (asymptotic) variance estimation of the ratio p is discussed for a class 

restricted to estimators with such a property. Consequently, we will see that the grouped 

jackknife estimator is optimal in the sense that it has asymptotically the minimum vari­

ance in the class. Higher order bias reduction of the estimators is discussed, and examples 

are given for the normal and gamma cases which were treated by Durbin (1959), Rao 

(1965), and Rao and vVebster (1966). 

2. Minimum variance in a ratio estimation 

Suppose that (Xl, Y1), "', (Xn, Yn) are a random sample of Slze n. We consider 

the problem of estimating the ratio p=E(Yi)/E(Xi). Let Yi=rx+ jJXi+ Ui, where E(Xi) = 

ko*O, E(UiIX1, "', Xn)=O, and V(UiIXl, "', Xn)=n6' andE(UiUJIXI J "'J Xn)=O (i* j) with 

a constant 6' of O(n.-C1
). Here E( .,.) and V( .,.) denote the conditional mean and variance, 

n n n 

respectively. Let X = 2J Xi/n, Y = 2J Yi/n, and U = 2J Ui/n. Assume that h=O(n-1). 
i=l i=l i=l 

Then, a ratio estimator r=Y/X is written as r=jJ+{(rx+U)/X}. Partition the sample 
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(Xl, YI), "', (Xn, Yn) into 9 blocks, each of size m, n=mg, where g?:.2. By (X~, Y~) 
we denote the sample means based on a sample of size m(g-l), where the j-th block 

of size m is deleted. Letting r~=Y~/X~ (j = 1, "., g), we consider a class R of linear 

combinations of the ratio estimators r and r~ (j = 1, .", g) defined by 

R= {r=wor+ ±wjri!-co<WJ<co (j=O, 1, ' .. , g)} . 
J=l 

LEMMA 2.1. Suppose that 

(2.1) 

and 

(2.2) 

koE(X-I)-l=h+o(h) , 

- - h . 
ko{E(Xj-I)-E(X-l)}= __ +o(h) (;=1, "', g) . 

g-l 

g 

Then the weights for any estimator r=wor+ ~ wJr~ in R with a bias reduction up to the 
j=l 

order o(h), i.e., E(r) = p+o(h), are of the form 

g 9 

~wj=l+o(h) ; ~ Wj= - (g-l) +o(g) . 
j=O j=l 

PROOF. Since 

E(Y) a a 
p= E(X) =P+E(X) =P+k;' 

E(r)=aE(X-l)+p, and E(rj)=aE(Xj-l)+j3 (j=1, ' .. , g) , 

it follows that for any r ER 

In order for the bias of r to be reduced up to the order o(h), it is necessary that ~}=o Wj= 

l+o(h). Since wo=l- ~~=l wj+o(h), we have 

(2.3) E(r)=p+ ~ +a{woE(X-l)- k~ + iIWjE(Xj-l)} +o(h) 

=p+ ~ {kowoE(X-l) -l+ko iI wjE(Xj-l)} +o(h) 

=p+ ~ {ko( 1- iI Wj )E(~~-l) -l+ko iI WjE(Xj-l)} +o(h) 

=p+ k
a 

[koE(X-l)-l+ ±Wjko{E(Xj-l)-E(X-1
)}] +o(h) . 

o J=l 

By conditions (2.1) and (2.2), we obtain 

a ( g h) E(r)=p+-k h+ ~Wj--1 +o(h) 
,,0 J=l g-

In order to reduce the bias of r up to the order o(h), it is necessary that 
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1 fl fl 
1+-- 2Jwj=o(l), i.e., 2JWj=-(g-l)+o(g) . 

g-l j=l j=l 

This completes the proof. 

N ow we consider a subclass Rl of R defined by 

which is the simplest form of R with a bias reduction up to the order o(h). Note from 

Lemma 2.1 that any estimator of R1 has a bias reduction of the order 11,-1. 

The following theorem shows that any estimator of R1 has the same bias up to the 

order 0(gh4). 

THEOREM 2.1. Suppose that 

koE(X-l) -1 =h+Clh2 +C2h3+0(h4
) 

and 

where Cl and C2 are constants, and C3 and C4 are quantities of order 0(1), depending on g. Then 

for any rERl, 

PROOF. By the same argument as in the proof of Lemma 2.1, we have 

(2.5) E(i)=p+ ~ [koE(X-l)-l+ ~Wjko{E(Xj-l)-E(X-l)}J 

= p+ ~ {h+Clhz+C2h3
- (g-l) ( 9~1 +cshz +C4h3

) +0(9h4)} 

which completes the proof. 

REMARK 2.1. As is easily seen from the above, any estimator r of Rl has the same 

bias up to the order 0(gh4), since the bias of r, i.e., the second term of the right-hand side 

of (2.4), is independent of the estimator r. 
The following theorem is used to obtain the asymptotic variance of the estimator 

rERl. 

THEOREM 2.2. Suppose that 

(2.6) E(X-Z)=kl+0(h4) and E(Xj-Z)=kz+0(h4), with kz>O (j=1, "', g) ; 

(2.7) E(X-IXj-l)=k3+0(h4) (j=1, "', g) and E(X~-JXtl)=k4+0(h4) 

(i=t= j; i, j=l, ":, g) . 

Then for any rERl, 
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(2.8) E[(r-;J)2J=[O}(kz-k4)+0{ gk~l _k(~~~:)}]C~W;) 
+a2{klg2-2kag(g-1) + k4(g-1)2}+0{klg Z -2ksg(g-1) +k4g(g-2)} J 
+O(g2h4) . 

PROOF. For any rERl we have 

Since E(UiIXl, "', Xn)=O and E(Ui2IXl, "', Xn)=no for i=l, "', n, and E(UiUjIXl, "', 

Xn)=O (i=l=j; i,j=l, ···,n) it follows from conditions (2.6) and (2.7) that 

E[(r-;J)2J=a2E[(~+ ± ~Jl )2] +E[( gf! + ± WJ~j )2] 
X J=l XJ X J=l Xl 

=a2 {g2E (X-2) +2g ~ WjE(X-IXj-l) 

+ ±w;E(Xj-2)+ .± WiWjE(X~-lXtl)} 
J=l ~,J=l 

iif.;j 

- - g -- - -
+g2E(U2X-2) +2g 2j WjE(UUjX-IXj-l) 

j=l 

g -- g ----+ 2j w;E (Uj2Xj-2) + 2j WiWiE(U~UjX~-lXj-l) 
j=l i,j=l 

i*j 

+O(g2h4) 

=aZ [k1 9Z -2kag(g-1)+k2 :±W;+k4f (±Wi)2 - ±W;}] 
J=l l J=l J=l 

[ 
2 kzg g 2 k4g(g-2) {( g )2 g "}] +0 klg -2kag(g-1)+-=--1 2jWj+ (-1)2 2jWi - 2jWj 

9 J=l 9 J=l )=1 

+O(g2h4) 

= (tIw;) [a
Z
(k2-k4)+0{ :~1 -k(~~~;) }] 

+a2{klg2-2kag(g-1) +k4(g-1)Z} 

+0{klg2 -2kag(g-1) +k4g(g-2)} 

+O(g2h4) . 

This completes the proof. 

REMARK 2.2. By Schwarz's inequality, it is easily seen that kz-k4?::.0. We also 

have 

kzg 
g-l 

1 
(g-l)Z {kzg(g-l) -k4g(g-2)} 

1 
(g-1)2 {g(g-2)(k2-k4)+kz} 

kz 
?::. (g-1)2 >0. 
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9 

From this we see that the coefficient of the term ~ w} on the right-hand side of (2.8) is 
j==l 

positive. 

From Theorems 2.1 and 2.2, we have the following theorem. 

THEOREM 2.3. Under the same conditions as in Theorems 2.1 and 2.2, the estimator 

_ g-l 9 

r*=gr--- ~r~· 
g j=l 

has the minimum asymptotic variance in the class Rl 'lip to the order 0(g2h4). 

PROOF. From Theorems 2.1 and 2.2, it follows that the asymptotic variance of iE 

Rl is given by 

V(i) = V(i- fJ) 

=E[(i- fJ)2] -{E(i- fJ)}Z 

= (ii w;) [a2(k2-k4)+O{ :~gl 
+a2[klg2-2kag(g-1) +k4(g-1)2 

-{I + (cl-ca(g-1))h2+ (c2-c4(g-1))hs}Z/ko2] 

+o{klg2-2kag(g-1) +k4g(g-2)} 

+0(g2h4) . 

By Remark 2.2, in order to find an estimator i* with minimum asymptotic variance in 

Rl up to the order 0(g2h4), it is enough to choose Wj (j=1, "', g), which minimizes ,2:~=1 w} 

under the condition ,2:J=lWj=-(g-l). By Lagrangean method, we see that such w/s 

are given by 

Hence the estimator 

g-l 
Wj=--- U=l, ''', g). 

g 

g-l 9 
i*=gr--- ~rj 

g j=l 

has the minimum asymptotic variance up to the order 0(g2h4). This completes the proof. 

REMARK 2.3. The estimator i* in the above theorem is known as a grouped jack­

knife estimator (e.g., see Rao, 1988). 

3. Higher order bias reduction of the estimators 

In this section we will discuss the problem of a bias reduction of estimators up to the 

higher order under the condition g=O(l). Define subclasses Rz and Ra of R by 

with -=<al<=} , 
and 
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fl 

2J Wj= - (g-l) +ad~+a2h2+0(h3) , 
j=l 

It is easy to see that Rl CR3CR2. Throughout the subsequent discussion in this section, 

we assume that the same conditions hold as in Theorem 2.l. We also set at=-c1(g-1)+ 

c3(g-1)2 and at = -c2(g-1) + (C1C3+C4) (g-1)2- cHg-1p. It is easily seen that the 

condition g=O(l) implies -=<at, at<=. The following theorem asserts that the bias 

of any estimator of Ri is given, up to the order O(hi) (i=3, 4). 

THEOREM 3.l. Suppose that g=O(l). Then, (i) for any rER2 

(3.1) 

and (ii) for any rERs 

(3.2) 
_ ex 

E(r) = p+ (g-l)ko [(al-al*)h2+{a2+c2(g-1) -c4(g-1)2 

+a1c3(g-1)}h3] +0(h4) . 

fl 

PROOF. Since, in the case of (i), rER2, it follows that r=wor+ 2J wjr~, with 
j=l 

fl fl 

2J wj=l and 2J wJ=-(g-1)+alh+0(h2). Then from (2:5), (3.1) holds. In a similar 
j=O j=l 

way to the above, we see that (3.2) holds in case (ii). 

Consider the classes Rt and Ri defined as follows: 

Rt= {r=wor+ ±Wjrj ! ±wj=l; 
j=l j=O 

fl 

2JWj=-(g-1)+al*h+0(h2) , 
j=l 

and 

R3*= {r=wor+ ±wjrj ! ±wj=l; )~_glWJ=-(g-1)+al*h+a2*h2+0(h3).), 
)=1 )=0 f 

where C1, C2, C3, and C4 are given in Theorem 2.l. Note that RicRt, but Rl is not 

generally included in Rt and Ri. In the following corollary it is shown that any es­

timator of Rt has a bias reduction up to the order O(hi+l) (i=2, 3). 

COROLLARY 3.l. Suppose that g=O(l). Then (i) E(r)=p+0(h3) for all rERt, and 

(ii) E(f)=p+0(h4) for all rERi. 

The assertion easily follows from Theorem 3.1. 

4. Examples 

Using the previous framework of the regression model, we now give examples in the 

normal and gamma cases, which were treated by Durbin (1959), Rao (1965), and Rao 

and Webster (1966). 

EXAMPLE 4.1 (Normal case). Let Xl, "', Xn be independently, identically, and nor-
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mally distributed random variables with mean 1 and variance nh, where h=O(n-l). Then 

we have, 

E(X)=ko=l, 

and for sufficiently large n, the asymptotic means 

E(X-l)=1+h+3h2+15h3 +O(h4
) , 

E(X,.-l)=l+-
g
-h+ 3g

2 
h2 + 15g

3 

h3+0(h4) 
J g-l (g-1)2 (g-1)3 ' 

E(X-2) =1+3h+15h2+105h3 +O(h4) =kl +O(h4) , 

(4.1) E(Xl-2)=1+~h+ 15g
2 

h2+ 105g
3 

h3+0(h4)=k2+0(h4) 
J g-l (g-1)2 (g-1)3 ' 

E(X-IXI.-l) =1 3g-2 h 15g2 -20g+8 72+ 3(35g
3
-70g

2
+56g-16) +O(h4) 

J + g-l + (g-1)2 ~ (g-1)3 

=k3+0(h4) , (j = 1, "', g) 

and 

(see Rao, 1965 for details). Thus it is clear that the conditions of Theorem 2.3 are satisfied. 

Hence the grouped jackknife estimator 

_ g-l 9 

r*=gr--- 2Jrj 
9 j=l 

has the minimum asymptotic variance up to the order O(g2h4) in the class RI. 

In the case where g=2, Gray and Schucany (1972, Chapter 2) treated the following 

as an estimator of the ratio: 

where 

A 1 
P3=1_Wr 

1+3h+15h2 

2(1 +6h+60h2
) 

W 

Applying the above, we obtain -Wj(1-W)=-1+6h+36h2+O(h3
). On the other hand, 

we have cl=3, c2=15, ca=9, and c4=105 as c/s in Theorem 2.1 in this case. Hence it 

follows that pa belongs to the class Ri, with at=6 and a;=36. By Corollary 3.1, pa has 

a bias reduction up to the order O(h4). 

REMARK 4.1. In Example 4.1, the asymptotic means are given by equations (4.1). 

However, they do not really exist, since the underlying distribution is normal. So, let 

{en} be a sequence of positive numbers satisfying en=O(e-,;n). Define X; as 

X,t= 1 X 
e11 

for \X\>en, 

for IXI~en. 
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Since E(X) = 1, it follows that X; and X are asymptotically equivalent up to any fixed 

order, and, in addition, the asymptotic mean E(X:;-l) exists. The difficulty can be 

avoided by using X; instead of X. Similar discussions of the other asymptotic means in 

(4.1) hold. 

EXAMPLE 4.2 (Gamma case). Suppose that Xl/n, "', Xn/n are independent and 

identically distributed random variables according to the gamma distribution with pa­

rameter h, the density of which is given by xh-1e-X/r(h) for x>O. It is well-known 

that X = Z~=l Xi/n has a gamma distribution with a parameter s=nh. Here we assume 

that s=O(l) and s>4. Under the previous setup, we have 

and 

E(X)=ko=s, 

E(X-l)=_l_, 
s-l 

g-l 
s(g-l)-g 

1 

(j=1, "',g) , 

(s-l) (s-2) , 

E(X'-2) - (g-1)2 (. 1 ) 
j - {s(g-1)-g}{s(g-1)-2g} J=, ''', 9 , 

g-l 
(j=l, ''', g) 

(s-2){g(s-1) -s} 

(see Durbin (1959) and Rao and Webster (1966) for details). By Schwarz's inequality we 

also see that there exactly exists E(X:-IX~-l) for i*j (i,j=l,"·,Q). Note that the 

above means are given exactly and are thus difierent from the asymptotic ones in the 

normal case. With the aid of the above expression, we get 

and 

- 1 
koE(X-1)-1=--1 

s-

If we consider a bias reduction of the term l/(s-l), a result similar to Lemma 2.1 holds 

without the remainder terms. We also see that the conclusion of Theorem 2.1 leads to 

E( -) ag f - R 
r =p- s(s-l){s(g-l)-g} or any rE 1. 

Since Theorems 2.2 and 2.3 hold with exact mean and variance, the grouped jackknife 

estimator 

g-l g 

r*=gr--- ~r~ 
9 j=l 

has the minimum variance in the class RI. 
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