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Abstract

We have experimentally observed the spin polarization process of single electrons in InP/InGaP quantum dots by time-resolved
Kerr rotation measurements. It is found that the inversion of the spin polarization direction occurs with the variation of the intensity
of the optical pulse. The spin coherence lifetime abruptly changes on the occurrence of the inversion. We have reproduced the
inversion in numerical simulations using the density operator of the electron-trion four-level system, assuming a small deviation of
the optical pulse from circular polarization. The change of the spin lifetime is attributed to the qualitative change of the four-level
system in the electric polarization state.
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1. Introduction

The two spin states of an electron withs= 1/2 in a semicon-
ductor quantum dot (QD) make up the space of the operational
states of a quantum bit (qubit) [1]. This solid-state qubit has
an excellence of the integratability with existing semiconductor
technologies. The lifetime of the spin states in QDs is generally
very long (up to microseconds) [2] owing to the suppression
of the relaxation mechanisms coming from the spin-orbit cou-
pling [3]. They can be initialized and manipulated by optical
field, which is resonant or near-resonant to the electron-trion
(negatively-charged exciton) transitions [4]. The initialization
is equivalent to the generation of coherence between the two
spin states, and its fastest process is obtained by the resonant
excitation by circularly-polarized light. According to the opti-
cal selection rule, theσ+ excitation transfers some of the prob-
ability amplitude of the electron state|z〉 to that of the trion state
|Tz〉 (herez is the growth axis of self-assembled QDs which is
antiparallel to the optic axis), which results in the net electron
spin polarization along−z [5, 6, 7].

Here we have experimentally observed the spin polarization
process of single electrons in InP/InGaP QDs by time-resolved
Kerr rotation (TRKR) measurements. It is found that the inver-
sion of the spin polarization direction occurs by the change of
the pump intensity, and that the spin lifetime abruptly changes
on the occurrence of the inversion. We discuss these findings
by means of numerical simulations using the density operator
of the electron-trion four-level system. It suggests that a small
deviation of the optical pulse from circular polarization is es-
sential for the inversion. The change of the spin lifetime is at-
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tributed to the qualitative change of the four-level system in the
electric polarization state.

The outline of this article is as follows. In Sec. 2, we note
the calculation model which is used in the discussion. The ex-
perimental observations are explained in Sec. 3 and discussed
in Sec. 4 by means of the model calculation. The summary of
this article is given in Sec. 5.

2. Calculation model

2.1. Basic Hamiltonian

In what follows, we confine ourselves to consideration of the
QD electron-trion system in a magnetic fieldB along thex axis,
which is affected by the classical field of light traveling along
−z (Voigt geometry). This situation is depicted in Fig. 1(a). We
assume single electrons with spins = 1/2 in self-assembled
QDs with the growth directionz consisting of zincblende ma-
terials. We denote the two energy eigenstates of the electron
in the magnetic fieldB ‖ x by |x〉 = |0〉 and |x̄〉 = |1〉. Then
the photoexcited trion is made of a hole, having a total angular
momentum of 3/2, and a singlet pair of electrons. We consider
only the lowest states of the trion. As they are made princi-
pally of the two heavy-hole states|mz = ±3/2〉, we can define
a pseudospin space to describe them (sT = 1/2), which has
two energy eigenstates|T x〉 = |2〉 and |Tx̄〉 = |3〉 in the field
B. Thus we can construct the four-level system represented in
Fig. 1(b). The angular frequenciesωe andωh are defined so as
to represent the Zeeman splittings of the electron and trion, re-
spectively: 2~ωe = geµBB and 2~ωh = ghµBB. HereµB is the
Bohr magneton,ge andgh areg factors (in the field ofB ‖ x)
of the electron and trion (heavy hole), respectively. We assume
they have positive values in the level configuration of Fig. 1(b).
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Figure 1: (Color online) (a) Schematic representation of the system under con-
sideration. Thez axis is defined to be along the growth direction of the QD, in
which one conduction electron is present. The optical pulse traveling along−z
induces the polarization of the electron spinS, which subsequently precesses
around the magnetic fieldB ‖ x perpendicular to thez axis (Voigt geometry).
The rotating electric field of aσ+-polarized pulse is expected to induce the
spin polarization along−z, according to the optical selection rule. (b) Energy
eigenstates of the four-level system consisting of the spin states of the elec-
tron |x〉 = |0〉, |x̄〉 = |1〉 and those of the trion (negatively-charged exciton)
|T x〉 = |2〉, |Tx̄〉 = |3〉 in the field ofB ‖ x. (c) The same spin states shown in
the basis of thezaxis.

The unperturbed part of the Hamiltonian of the four-level sys-
tem is expressed as

H0 = ~ωe|x〉〈x| − ~ωe|x̄〉〈x̄| + (εT − ~ωh)|T x〉〈T x|
+(εT + ~ωh)|Tx̄〉〈Tx̄|, (1)

whereεT = ~ωT is the energy separation between the electron
and trion levels atB = 0.

In the dipole approximation, the vertical and cross transitions
in the four-level system of Fig. 1(b) can be represented by the
dipole momentsµ and iµ which are coupled to optical electric
fields of orthogonal linear polarizationsπx andπy, respectively.
As these oscillating moments areπ/2 out of phase with each
other (atB = 0), we have the latter include the phase factori.
Then, in the rotating wave approximation, the interaction part
of the Hamiltonian is given by

V = −~Ωx(t)
{
e−iω0t |T x〉〈x| + eiω0t |x〉〈T x|

}
−i~Ωy(t)

{
−e−i(ω0t+δ)|T x〉〈x̄| + ei(ω0t+δ)|x̄〉〈T x|

}
−~Ωx(t)

{
e−iω0t |Tx̄〉〈x̄| + eiω0t |x̄〉〈Tx̄|

}

− i~Ωy(t)
{
−e−i(ω0t+δ)|Tx̄〉〈x| + ei(ω0t+δ)|x〉〈Tx̄|

}
. (2)

Hereω0 is the central frequency of the optical pulse,δ is the rel-
ative phase between theπx- andπy-polarized waves,Ωx(t) and
Ωy(t) are time-dependent real optical Rabi frequencies for the
respective polarizations. The basic Hamiltonian of the system
under consideration is the sum of Eqs. (1) and (2),

H = H0 +V. (3)

We assume a hyperbolic-secant pulse envelope [4, 8]

Ω0(t) = Ω sech (κt), (4)

whereκ is the bandwidth of the pulse, andΩ is a real Rabi am-
plitude. Then we assume the time-dependent Rabi frequencies
to be

Ωx(t) = Ω0(t) cosθ,

Ωy(t) = Ω0(t) sinθ, (5)

where tanθ determines the ratioΩy/Ωx [9], which is the ratio
of the amplitudes ofπx- andπy-polarized optical electric fields.
By tuning the values ofδ and θ, we can obtain an arbitrary
polarization state of the incident pulse. In the case ofθ = π/4
(Ωx = Ωy), δ = −π/2 gives the circular polarization ofσ+,
which connects the states|z〉 = (|x〉+ |x̄〉)/

√
2 and|Tz〉 = (|T x〉+

|Tx̄〉)/
√

2 while the states|z̄〉 = (|x〉−|x̄〉)/
√

2 and|Tz̄〉 = (|T x〉−
|Tx̄〉)/

√
2 are decoupled from this pulse field.

The Hamiltonian of Eq. (3) is the variation of the existing
models [8, 9, 10], which deal with coherent optical rotations of
the electron spin [4, 11, 12].

2.2. Equation of motion

Using the Hamiltonian of Eq. (3), we compute the time evo-
lution of the density operatorρ(t) of the four-level system by
solving the quantum Liouville equation

i~
d
dt
ρ(t) =

[H , ρ(t)] . (6)

For numerical calculation, it is preferable to obtain the equation
in the interaction picture removing the fast-oscillating terms
with ω0 or ωT . With this view, we define the operatorσ(t)
by

ρ(t) = exp
[
− i

~
H0t
]
σ(t) exp

[ i
~
H0t
]
. (7)

Replacingρ(t) in Eq. (6) with this expression, we obtain the
equation forσ(t)

d
dt
σ(t) = [VR, σ(t)] , (8)

where the operatorVR is defined by

i~VR = exp
[ i
~
H0t
]
V exp

[
− i

~
H0t
]
. (9)
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The specific form ofVR is

VR = iΩx(t)
{
e−iω1t |T x〉〈x| + eiω1t |x〉〈T x|

}
−Ωy(t)

{
−e−i(ω3t+δ)|T x〉〈x̄| + ei(ω3t+δ)|x̄〉〈T x|

}
+ iΩx(t)

{
e−iω4t |Tx̄〉〈x̄| + eiω4t |x̄〉〈Tx̄|

}
−Ωy(t)

{
−e−i(ω2t+δ)|Tx̄〉〈x| + ei(ω2t+δ)|x〉〈Tx̄|

}
. (10)

Here the frequencies are

ω1 = ω0 + ωe − ωT + ωh,

ω2 = ω0 + ωe − ωT − ωh,

ω3 = ω0 − ωe − ωT + ωh,

ω4 = ω0 − ωe − ωT − ωh. (11)

As far as we consider resonant or near-resonant cases (ω0 '
ωT), fast-oscillating terms are absent inVR.

2.3. Dissipation processes

In order to consider the time evolution of the electron spin
coherence for a long time period, we need to include dissipa-
tive processes in the model. We can define longitudinal and
transverse relaxations between any two states of the four-level
system of Fig. 1(b). Among them, we consider the following
processes which appears to be important for the electron spin
coherence : (a) the longitudinal relaxation from either of the
trion states (|2〉, |3〉) to that of the electron states (|0〉, |1〉) which
is mainly due tospontaneous emission(the rate 1/T1 = 2Γ),
(b) the transverse relaxations (decoherence) between the trion
states (2Γ) and between the respective pair of electron and trion
states (Γ), which arise from the decrease of the trion population
due to (a) the spontaneous emission, (c) the pure decoherences
between the trion states (γT2) and between the electron states
(γe2) which we callspin depolarizationhere, and (d)sponta-
neously generated coherence(SGC) which may accompany the
spontaneous emission (Γc = Γ) [5, 14].

Meanwhile, we do not cover (e) the longitudinal relaxations
between the trion states (1/TT1) and between the electron states
(1/Te1), i.e.spin-flip, as they seem to be less important than (or
their effect may be included in) the spin depolarization. We also
neglect (f) any decoherence processes between the electron and
trion other than (b), for simplicity.

2.3.1. Spontaneous emission
The relaxations (a) and (b) coming from the trion decay are

summarized as the terms

L[ρ] = −i~
∑
j,k

Γ j,k{| j〉〈 j|ρ + ρ| j〉〈 j|

− |k〉〈 j|ρ| j〉〈k|}. (12)

which is placed in the right side of Eq. (6). The state| j〉 is a
trion state (|2〉 or |3〉), and|k〉 is an electron state (|0〉 or |1〉). We
assume all the ratesΓ j,k to be the same (= Γ).

TheL[ρ] includes the trion decay of the rate 2Γ

L[ρ] j j = 〈 j|L[ρ]| j〉 = −2i~Γρ j j , (13)

and the population recovery of the electrons

L[ρ]kk = +i~Γ(ρ22 + ρ33). (14)

It also includes the decoherences accompanying the trion decay

L[ρ] jk = −i~Γρ jk (15)

and

L[ρ]23 = −2i~Γρ23. (16)

The Eq. (15) is for the respective pair of electron and trion
states, and Eq. (16) is for the trion spin coherence. In contrast,
L[ρ] does not affect the electron spin coherence,

L[ρ]01 = 0, (17)

since it allows only for the incoherent transitions.
For the interaction picture, we define the operatorL[σ] by

i~L[σ] = exp
[ i
~
H0t
]
L[ρ] exp

[
− i

~
H0t
]

= −i~
∑
j,k

Γ j,k{| j〉〈 j|σ + σ| j〉〈 j|

− |k〉〈 j|σ| j〉〈k|}. (18)

ThenL[σ] can be added to the right side of Eq. (8).

2.3.2. Spin depolarization
The relaxation (c) is expressed by

D[ρ] = −i~{γe2(|1〉〈1|ρ|0〉〈0| + |0〉〈0|ρ|1〉〈1|)
+γT2(|3〉〈3|ρ|2〉〈2| + |2〉〈2|ρ|3〉〈3|)} (19)

to be placed in the right side of Eq. (6), which includes the pure
decoherence of the trion spin of the rateγT2

D[ρ]23 = −i~γT2ρ23, (20)

and that of the electron spin of the rateγe2

D[ρ]01 = −i~γe2ρ01. (21)

For the interaction picture, we define the operatorD[σ] by

i~D[σ] = exp
[ i
~
H0t
]
D[ρ] exp

[
− i

~
H0t
]

= −i~{γe2(|1〉〈1|σ|0〉〈0| + |0〉〈0|σ|1〉〈1|)
+γT2(|3〉〈3|σ|2〉〈2| + |2〉〈2|σ|3〉〈3|)}. (22)

ThenD[σ] can be added to the right side of Eq. (8).

2.3.3. SGC
In aΛ-type three-level system, the spontaneous decay of the

highest state may create a coherent superposition of the two
lower ones in case their energy splitting is smaller than the ra-
diative linewidth. This process is called SGC (spontaneously
generated coherence) [13, 14]. Considering SGC in the present
case of the four-level system [Fig. 1(b)], the trion decay of the
process (a) may affect the electron spin coherence when the
Zeeman splitting of the lower states|0〉 and|1〉 is small.
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To take the effect into account, we append the term

i~Γc{〈Tz|ρ|Tz〉 − 〈Tz̄|ρ|Tz̄〉} = i~Γc(ρ32 + ρ23) (23)

to the right side of Eq. (6) for the componentsρ01 andρ10, fol-
lowing the manner of Economouet al. [14]. For this purpose,
we define a new operator

C[ρ] = i~Γc(ρ32 + ρ23) {|0〉〈1| + |1〉〈0|} . (24)

Then the operatorC[σ] for the right side of Eq. (8) in the inter-
action picture is given by

i~C[σ] = exp
[ i
~
H0t
]
C[ρ] exp

[
− i

~
H0t
]
. (25)

It has the following explicit form

C[σ] = 2ΓcRe
(
e−2iωhtσ32

)
×
{
e2iωet |0〉〈1| + e−2iωet |1〉〈0|

}
. (26)

2.3.4. Master equation

Considering the above dissipation terms, we obtain the mas-
ter equation for the density operatorρ(t),

i~
d
dt
ρ(t) =

[H , ρ(t)] +L[ρ] +D[ρ] + C[ρ], (27)

from Eq. (6) for the present four-level system. This is equiva-
lent to the equation forσ(t),

d
dt
σ(t) = [VR, σ(t)] +L[σ] +D[σ] + C[σ], (28)

which is obtained from Eq. (8) in the interaction picture. As
σ is a Hermitian operator (σ = σ†), there are ten independent
matrix elementsσi j on the basis set of four vectors,|0〉, |1〉, |2〉,
and|3〉. Consequently, Eq. (28) constructs a set of ten coupled
first-order differential equations onσi j (t).

In the present model, the spin decoherence rate for the trion
is

1/TT2 = 2Γ + γT2, (29)

as obtained from Eqs. (16) and (20). Meanwhile, it is

1/Te2 = γe2 (30)

for the electron [Eqs. (17) and (21)] if we neglect the effect of
SGC. The presence of SGC makes the situation a little more
complicated.

2.4. Mean values

To trace the time evolution of the four-level system, we use
two kinds of parameters as reference indices. One is the mean
values of spin components, and the other is those of electric
polarization components.

2.4.1. Spin components
Here we summarize the relations of the mean values of spin

components to the density matrix elements. For the electron
spins, they are

〈sx〉 = Tr (ρsx)

= (ρ00 − ρ11)/2 = (σ00 − σ11)/2, (31)

〈sy〉 = Tr (ρsy)

= {〈y|ρ|y〉 − 〈ȳ|ρ|ȳ〉} /2
= i(ρ10 − ρ01)/2 = −Im

(
e2iωetσ10

)
, (32)

and

〈sz〉 = Tr (ρsz)

= {〈z|ρ|z〉 − 〈z̄|ρ|z̄〉} /2
= (ρ10 + ρ01)/2 = Re

(
e2iωetσ10

)
. (33)

In the same way, for the trion pseudospinsT , they are

〈sT x〉 = Tr (ρsT x)

= (ρ22 − ρ33)/2 = (σ22 − σ33)/2, (34)

〈sTy〉 = Tr (ρsTy)

= {〈Ty|ρ|Ty〉 − 〈Tȳ|ρ|Tȳ〉} /2
= −Imρ32 = −Im

(
e−2iωhtσ32

)
, (35)

and

〈sTz〉 = Tr (ρsTz)

= {〈Tz|ρ|Tz〉 − 〈Tz̄|ρ|Tz̄〉} /2
= Reρ32 = Re

(
e−2iωhtσ32

)
. (36)

2.4.2. Induced electric polarization
To represent the dipole momentsµ andiµ mentioned in Sec.

2.1, we define the Hermitian operatorspx andpy,

px = µ {|3〉〈1| + |1〉〈3| + |2〉〈0| + |0〉〈2|} ,
py = iµ {|3〉〈0| − |0〉〈3| + |2〉〈1| − |1〉〈2|} . (37)

Then the electric polarization induced optically in a QD is given
by the density matrix elements as

〈px〉 = Tr (ρpx)

= µ (ρ20 + ρ31 + ρ02 + ρ13)

= 2µRe
[
e−iωT t

{
ei(ωh+ωe)tσ20 + e−i(ωh+ωe)tσ31

}]
(38)

for theπx, and

〈py〉 = Tr (ρpy)

= iµ (−ρ30 − ρ21 + ρ12 + ρ03)

= 2µIm
[
e−iωT t

{
ei(−ωh+ωe)tσ30 + ei(ωh−ωe)tσ21

}]
(39)

for theπy polarization direction. Then we define the polariza-
tion amplitudesPx(t) andPy(t) by

iPx(t) = ei(ωh+ωe)tσ20 + e−i(ωh+ωe)tσ31,

iPy(t) = ei(−ωh+ωe)tσ30 + ei(ωh−ωe)tσ21, (40)
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so that

〈px〉 = 2µRe
[
e−iωT t · iPx(t)

]
,

〈py〉 = 2µRe
[
−ie−iωT t · iPy(t)

]
. (41)

From Eq. (41), we can see that〈px〉 and 〈py〉 consist of the
fast oscillation part at the frequencyωT and the slowly-varying
amplitudePx(t) or Py(t). As a consequence, we can express the
polarization amplitude by a complex vector,

P(t) = Px(t)ex − iPy(t)ey, (42)

including the phase factor, in the unit of 2µ. Hereex andey are
the unit vectors along theπx andπy directions, respectively.

This polarization amplitude can also be expressed by two cir-
cular components. For this purpose, we define a new set of
bases,

e+ = (ex + iey)/
√

2,

e− = (ex − iey)/
√

2. (43)

Then, from Eq. (42), we obtain

P(t) = P+(t)e+ + P−(t)e−, (44)

where the two circular amplitudes are given as

P+(t) =
{
Px(t) − Py(t)

}
/
√

2,

P−(t) =
{
Px(t) + Py(t)

}
/
√

2. (45)

These components should become the source of the circularly-
polarized coherent radiation at the frequencyωT emitted from
the QDs after the experience of the incident optical pulse.

3. Experimental results

We have experimentally observed the optical spin polariza-
tion process by picosecond time-resolved Kerr rotation (TRKR)
measurements of single electrons in InP QDs. The experimen-
tal details are described elsewhere [15]. The sample is charge-
tunable InP QDs embedded in In0.5Ga0.5P barriers grown on an
n+-GaAs substrate [16, 17, 18, 19]. By applying an appropriate
bias voltage (U = −0.175 V) along the crystal growth axisz,
an ensemble of QDs with one residual electron each on average
is prepared [20]. This sample is mounted in a magneto-optical
cryostat (sample temperatureT = 5 K), and the TRKR is ob-
served by the degenerate pump-and-probe method in transverse
magnetic fieldB = 1 T. The pump (probe) photon energy is
1.746 eV, which is resonant to the electron-trion transition in
the QDs. The time resolution of the measurement is about 2 ps,
which is determined by the pulse width of the light source, a
mode-locked Ti:sapphire laser (repetition rate 82 MHz).

Figure 2 shows the time evolution of the TRKR signal and
its dependence on the pump intensityI . The oscillation with a
period of 47 ps comes from the spin precession of single elec-
trons in QDs. Its frequency corresponds to the known electron
g factor ofge = 1.52 in the QDs [16, 17, 18], from which we
can identify the origin. Although this oscillation can be seen
at any of the three pump intensitiesI in Fig. 2, it shows rather
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Figure 2: Experimental data of TRKR in the InP QDs, and its dependence on
the pump intensityI (I0 = 250 nJ/cm2) at B = 1 T andT = 5 K. The vertical
broken lines show the temporal points of the oscillation peaks in (c).

complicated dependence onI . The most interesting point is the
phase reversal which can be noticed by comparing the data at
(a) I = 4I0 and (c) 0.1I0 (I0 = 250 nJ/cm2). We can see the
oscillation bottoms in (a) at the temporal points of the vertical
broken lines correspond to the oscillation peaks in (c). This
phase reversal means that the spin polarization direction is in-
verted only by changing the pump intensity. Furthermore, we
find that the lifetime of the oscillation in (c) (about 200 ps) is
much shorter than that in (a) (longer than 1 ns), though the fre-
quency remains unchanged suggesting that the origin of the os-
cillation is not altered (single electrons in QDs). At the inter-
mediate pump intensity (b)I = I0, we can see the competition
of the two features observed in (a) and (c), which results in the
temporal disappearance of the oscillation around 200 ps as de-
noted by an arrow. In (a) and (b), another low-frequency oscil-
lation with a period of 177 ps is obvious. This originates from
the electron spins in the GaAs substrate, and is not important
here.

4. Discussion

In this section, we try to explain the experimental observa-
tions which shows the above intriguing behavior of the spin
polarization of single electrons by means of numerical simu-
lations. We obtain the solutionsσ(t) by solving Eq. (28) nu-
merically by the standard Runge-Kutta method. In the calcu-
lation, we assume the physical parameters to reproduce the ex-
perimental situation of the TRKR measurement of the InP QDs
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mentioned in the previous section. Theg factors of the elec-
tron and trion (heavy hole) in the field ofB ‖ x are assumed to
be ge = 1.52 andgh = 0.068, respectively [16, 17, 18]. The
electron-trion transition energy atB = 0 is εT = ~ωT = 1.746
eV. The trion recombination lifetimeT1 = 1/2Γ is 250 ps [19].
The relaxation rateΓc is equal toΓ or zero when the SGC ef-
fect is taken into consideration or not, respectively [14]. The
times for the pure spin decoherences are 1/γe2 = 1/γT2 = 2 ns.
The properties of the optical pulse is determined by five param-
eters (ω0, Ω, κ, δ, θ), but we deal only with the resonant cases
ω0 = ωT below. As the thermal energy atT = 5 K exceeds
the electron Zeeman splitting atB = 2 T, we assume the initial
state of unpolarized electron spins: att = −∞, ρ00 = ρ11 = 1/2
(σ00 = σ11 = 1/2), all other elements ofρ (σ) are zero.

First we discuss the origin of the phase reversal with the vari-
ation of I seen in Fig. 2. This means the change of sign in
〈sz〉, as we observe the time dependence of〈sz〉 in the TRKR
measurements. The pump pulse in the experiment is circularly-
polarized nominally. Therefore we assume the circular polar-
ization ofσ+ (θ = π/4, δ = −π/2) here for a while. Figure
3(a1) shows the calculated trajectory of the mean values of the
electron spin components~Se(t) = (〈sy〉, 〈sz〉) from t = −50 to
150 ps atB = 1 T. Here we assume the optical bandwidth of
κ = κ0 = 0.88 × 1012 s−1 corresponding to the experimen-
tal pulse temporal width of 2 ps. The figure shows the data
for a pulse peak intensity, i.e. the Rabi frequencyΩ = 1.5
[1012rad · s−1]. The trajectory starts from〈sy〉 = 〈sz〉 = 0.
Then, during the duration of the optical pulse,〈sz〉 oscillates
approximately between 0 and−1/4 showing the Rabi oscilla-
tion, whose number of cycles increases withΩ. The negative
sign of 〈sz〉 is natural, considering the optical selection rule as
mentioned before. The spin precession around the magnetic
field (B ‖ x) begins subsequently, which depicts the circular
trajectory shown in the figure. This results in the oscillation of
〈sz〉 which is observed in the TRKR measurements. When the
optical polarization isσ+, it always starts from a negative value
as seen in Fig. 3(a2) regardless ofΩ.

Interestingly enough,〈sy〉 does not remain zero during the
Rabi oscillation, and~Se(t) traces the leaf-shaped trajectory seen
in Fig. 3(a1). First,~Se(t) grows to the direction〈sy〉 > 0 (and
〈sz〉 < 0). After returning to the origin, it grows to〈sy〉 < 0 next.
Then, via the origin, it grows again to the direction〈sy〉 > 0,
and so on. Thus the trajectory draws the two leaf-shaped closed
loops in 〈sy〉 > 0 and〈sy〉 < 0 alternately. The appearance
of the two loops is characteristic of the case of narrow band-
width κ in comparison with the electron Zeeman splitting. Fig-
ure 3(b1) shows the trajectory atB = 0, which coincides with
the〈sz〉 axis thoroughly, and the two loops are absent. The an-
gle between them opens symmetrically to the〈sz〉 axis whenκ
decreases [Figs. 3(c1), (c2)], orB increases [(d1), (d2)]. The
starting point of the spin precession is somewhere in these two
loops, and it depends on the pulse area sensitively. Although
the spin precession begins from the right loop in Fig. 3(a1), it
can begin from the left one at differentΩ. This suggests the
oscillation phase of〈sz〉 in the spin precession slightly depends
onΩ. But its amount is too small in our experimental condi-
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tion to explain the phase reversal seen in Fig. 2. Moreover, as
our TRKR experiments are on ensemble QDs which have an
inhomogeneity in transition dipoles, we have not been able to
observe the Rabi oscillation directly.

As far as the ideal circular polarization is assumed, it is dif-
ficult to explain the phase reversal. Therefore we show next
the data when the finite deviation fromσ+ is assumed. Figure
4 shows the data when the polarization ellipticity is assumed
to beθ = 1.02× π/4. This makesΩy slightly larger thanΩx

(Eq. 5). This deviation fromσ+ enables the optical coupling
between|z̄〉 and the trion states, which give rise to the phase re-
versal as below. The data atΩ = 1 and 15 are shown in (a) and
(b), respectively. Although the effect of the deviation fromσ+
is not significant atΩ = 1, it causes essentially different behav-
ior atΩ = 15. With increase of the Rabi cycles, the turn-around
point of 〈sy〉 ∼ 0 denoted by arrows in (a1) and (b1) shifts in
the positive direction of〈sz〉. As a result, the spin precession
comes to start from positive〈sz〉, giving rise to the phase rever-
sal [(a2), (b2)]. This does not occur in the case ofθ = π/4.
In practical experiments, the small deviation ofΩx andΩy can
come from a slight difference in the dipole moments for theπx

andπy polarizations.
Next, we discuss the cause of the difference in the spin life-

time seen in Fig. 2 between (a)I = 4I0 and (c) 0.1I0. The spin
lifetime is usually determined uniquely by the pure spin deco-
herence rateγe2 [Eq. (30)]. The experimental data, however,
suggests that the lifetime changes abruptly on the occurrence of
the phase reversal. The longer lifetime atI = 4I0 (more than
1 ns) seems to be determined byγe2. The abrupt change of the
lifetime cannot be explained even when we include the effect
of SGC. In Figs. 4(a2) and (b2), the time dependences of〈sz〉
in the case ofΓc = Γ (gray lines) with the effect of SGC are
shown, and they are compared with those ofΓc = 0 (thin black
lines) without SGC. We can see that SGC makes no significant
effect on〈sz〉 in both the cases ofΩ = 1 and 15.

This is due to the precession of the electron spin in the mag-
netic field, which transfers the population alternately between
the states|z〉 and|z̄〉 as represented in Fig. 4(e) where the sizes
of circles express the level populations. We assume here that
the populations in the trion states are frozen because of the very
smallg factorgh. Then the decay of the trion from|Tz〉 to |z〉 de-
creases the electron spin polarization when the population ma-
jority is in the |z̄〉 state [the caseα in Fig. 4(e)], but increases
it when the majority is in the|z〉 state (the caseβ). Thus the
net effect of SGC dissipates because it is the process accompa-
nying the spontaneous emission which can occur whether the
majority resides in|z〉 or |z̄〉. The radiative process which has a
considerable effect on the electron spin coherence needs to oc-
cur selectively in the situation ofα or β. One of the candidates
of such a process is coherent light scattering. Then we look into
the electric polarization as a source of coherent radiation.

Figures 4(c) and (d) show the time dependence of the electric
polarization components atΩ = 1 and 15, respectively. As seen
in (c1) and (d1), both the componentsPx(t) andPy(t) are real
quantities, as their imaginary parts (gray lines) are negligibly
small. This is a general feature of the resonant case (ω0 = ωT).
Two circular componentsP+(t) andP−(t) are also real accord-
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ingly. They are shown in (c2) and (d2) with〈sz〉. They exhibit
slow oscillations with twice the period of the electron spin pre-
cession. Regardless ofΩ, P−(t) starts from its maximum am-
plitude att ∼ 0 and show cosine-like damped oscillation. The
dynamics ofP+(t) is rather different betweenΩ = 1 and 15,
however. AtΩ = 1, P+(t) starts from a small amplitude which
gradually increases. ThusP− dominatesP+ at t ≤ 100 ps. This
is the result of the fact thatP− is the co-circular component with
the rotating electric field ofσ+ of the excitation pulse. Thus the
dominantP− component can become the source of the coherent
radiation emission ofσ+. At Ω = 15, however, theP− and
P+ have comparable amplitudes even att ≤ 100 ps. This re-
sults in the quasi-linear electric polarization alongy as seen in
(d1). This is a consequence of the assumed deviation fromσ+
(θ = 1.02× π/4). The difference ofP betweenΩ = 1 and 15
can cause the different spin lifetimes.

At Ω = 1, theσ+ coherent radiation emission swells when
the absolute value ofP− comes close to extrema. Interestingly
enough, those temporal points coincides approximately with
the minima of〈sz〉(t) [Fig. 4(c2)]. At these points, therefore
the situationα in Fig. 4(e) is established, where the popula-
tion majority resides in|z̄〉, and simultaneously theσ+ coherent
radiation is expected. Thisσ+ emission will transfer the popu-
lation from |Tz〉 to |z〉, and act destructively on the electron spin
polarization. Meanwhile in the situationβ, theσ+ emission is
switched off because the maximum points of〈sz〉(t), where the
majority is in |z〉, correspond approximately to vanishing points
of P−(t) in Fig. 4(c2). In this way, althoughα andβ appear
alternately due to the spin precession, theσ+ emission comes
of P− in α selectively. This may lead to the fast decay of the
electron spin polarization observed at the low pump intensity in
Fig. 2(c). At the high pump intensity [I = 4I0, Fig. 2(a)], this
process is not effective because there is not a dominant circu-
lar component ofP in Fig. 4(d2). In this way, the change of
the spin lifetime betweenI = 4I0 and 0.1I0 in Fig. 2 is tenta-
tively attributed to the qualitative change of theP state in the
four-level system.

Although the pump pulse in the experiment is circularly-
polarized nominally, we assume that the slight deviation ofθ
from the ideal value ofπ/4 may arise from finite difference of
either the transition dipole moments or optical electric-field am-
plitudes for theπx andπy polarizations. They are inevitable to
some degree in the actual experimental situation and QDs. It
will, however, be possible for us to control the optical elliptic-
ity purposely, which may result in the variation of the critical
pump intensity for the spin inversion. It seems interesting but
is left for the future study at present.

5. Summary

We have experimentally observed the spin polarization pro-
cess of single electrons in InP QDs by TRKR measurements. It
is found that the inversion of the spin polarization direction oc-
curs by the change of the pump intensity, and that the spin life-
time abruptly changes on the occurrence of the inversion. The
numerical simulation using the density operator of the electron-
trion four-level system has reproduced the inversion assuming a

small deviation from circular polarization of the optical pulse.
The change of the spin lifetime is attributed to the qualitative
change of the four-level system in the electric polarization state.
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