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Abstract. A maximum entropy method has been proposed by one of the authors as a variation of the fuzzy c -
means. In this paper this method and the standard fuzzy c-means are regarded as regularizations of the crisp k
- means. As a result, further variations of the maximum entropy method are developed that are parallel to the
corresponding methods of the ordinary fuzzy ¢ - means. Moreover, the fuzzy k - nearest neighbor classification
rule which has been derived from the standard fuzzy ¢ - means is transformed into the corresponding method

within the maximum entropy framework.
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1 Introduction

Fuzzy ¢ - means clustering (abbreviated as FCM) [5, 6,
2], which is the fuzzy version of the k - means [17], has
been studied by many researchers. Recently, one of the
authors has proposed a maximum entropy method [15,
16] that can be used instead of the standard FCM.

In this paper we show that the standard fuzzy c -
means and the maximum entropy method are different
types of regularizations for the crisp k - means.

Regularization is an old technique to solve ill-posed
problems of functional equations [23] and has been ap-
plied to many real problems. For example, the ridge
estimator in regression analysis [10] is closely related to
regularization. Regularization in general implies mod-
ification of a given problem that is singular in some
sense into a regular problem. The singular problem
is difficult to solve but the latter problem is easier to
handle. The latter problem is called the regularization
of the original problem when the solution of the regu-
larized problem approximates the original solution.

We recognize fuzzy c - means to be a regularization
for the crisp k - means. It is strange to say that the
well-known method of k - means is singular, since the
solution of the crisp k& - means is by no means ill-posed.

Although the crisp k - means is a well-posed prob-
lem, the crisp solution is characterized by the extremal
points when the optimal clustering is generalized into
the fuzzy membership case [2]. Thus, we regard ex-
tremal points as singular solutions, whereas intermedi-
ate points are considered to be regular solutions.

This idea is fruitful in the sense that we have pos-
sibility of other regularizations than the standard one
by Dunn [5, 6] and Bezdek [2].

The concept of the regularization in FCM has briefly
been suggested in Miyamoto [20]. In this paper we
show how this concept works for the maximum entropy

approach. As a result we obtain a number of new al-
gorithms that are parallel to the standard FCM.

Moreover, a method of supervised fuzzy classifica-
tion that has been derived from the k - nearest neigh-
bor rule [4] can be transformed into the corresponding
method of classification by the maximum entropy ap-
proach.

Thus, what we present is not a single method but
a framework of maximum entropy in which we can de-
velop a family of new methods.

2 Fuzzy c - means as a regular-
ization

2.1 Review of fuzzy c - means

Let us briefly review fuzzy ¢ - means for discussing
regularizations. In the following we are referring to
description by Bezdek [2].

Let us first assume that the individuals to be clus-
tered be X = {xy,...,2,} and suppose that zq,...,x,
are points of p dimensional Euclidean space, although
we consider other spaces later. Remark also that the
number of clusters is given by ¢. Hereafter we refer to
the methods as ¢ - means, not as k - means.

The introduction of the standard fuzzy ¢ - means
starts from a version of crisp ¢ - means algorithm for-
mulated as an optimization problem. Namely, the func-
tion to be minimized is

J1(U,v) = Z Zuikd(wk, vi),

i=1 k=1

(1)

where U = (uix) and wu; is a binary variable showing
whether z belongs to the cluster i (u;x = 1) or not



(uirg = 0); v = (v1,...,v.) and each v; is the center
for the cluster i. d(xy,v;) is a dissimilarity measure
between x; and v;, and for the most part d(zy,v;) =
||z, — v;||3 where || - ||2 is the Euclidean norm. Since
each individual belongs to one and only one cluster,
the admissible set for wu;y is

Mo = {(uin)| Y win = Lug € {0,1},k=1,...,n}.
=1

In most cases of different ¢ - means, a two stage alter-
native optimization procedure is used for minimization
of the objective function.

Procedure CM.
CM1. Set initial values for U and 7.

CM2. Minimize J(U,v) with respect to U € M and
let the optimal solution be U.

CM3. Minimize J(U,v) with respect to v and let the
optimal solution be v.

CM4. Check the stopping criterion. If the criterion is
not satisfied, go to CM2.

If we put J = J; and the admissible set M = M.,
the above procedure is reduced to a standard algorithm
of crisp ¢ -means which is sometimes referred to as
Forgy’s method [1, 7].

The first step toward the fuzzy ¢ - means is to gen-
eralize the binary valued U to fuzzy U. Thus, u;; may
take any value in the unit interval, and therefore the
admissible set becomes

My = {(uir) Zuik =1,uy € [0,1],k=1,...,n}.

i=1

This generalization is insufficient. Suppose that we use
the procedure CM with J = J; and M = M;. We
obtain crisp solutions, since the objective function is
linear for u;; and hence the step CM2 is a linear pro-
gramming. It is well-known that the optimal solution
for a linear programming is on an extremal point: in
this case u; is zero or unity.

Consequently, Dunn [5, 6] and Bezdek [2] studied a
modified criterion

=33 ()™ d(

i=1 k=1

Tk, V;)

using a parameter m > 1. By using this parameter,
we have fuzzy memberships; it is easily seen that 0 <
u;r < 1, unless the point x; is on a center v;.

It is well-known that the solution for U with a given
¥ in step CM2 is

i Z l’k,’l}z 11]71
ik = -
d :z:k,'uj ’

(2)

while the solution for ¥ with a given ¥ in step CM3 is

5. = 2ok (@ik) ™ @

e (@)™

in the case of the Euclidean space d(zy,v;) = ||z —

(3)

v;]|3. Moreover we sometimes write d; instead of d(xy,, v;).

In particular, the last symbol may imply variations of
the dissimilarity d(xy,v;).

As mentioned earlier, we regard binary solutions as
extremal and hence singular, when the admissble set
My of fuzzy memberships is assumed. Thus, the regu-
larizing parameter is m, and the objective function is
transformed by using this parameter which results in
regularized solutions that are fuzzy. Notice that when
we refer to regularizations, the regularized functional
is similar to the original one and the regularized solu-
tion is near the original solution. The last statement is
difficult to prove exactly, but we have many empirical
evidence that fuzzy solutions approximate correspond-
ing crisp solutions.

What is the advantage of taking this standpoint of
the regularization? The answer is that this argument
implies that other types of regularizations are possible.
Indeed, a recent method by one of the authors is con-
sidered to be a typical regularization of the crisp ¢ -
means.

In order to see this, notice that a typical regular-
ization for the optimization of J is done by adding
regularizing functional K with a positive parameter a:

Jo=J+aK

and the minimization of J, is considered instead of
minimizing J. The regularizing parameter « should be
adjusted so that good quality solutions are obtained.
The maximum entropy method has the last form, whereas
the standard fuzzy ¢ - means does not. In this sense the
standard fuzzy ¢ - means is a nonlinear regularization.

2.2 Maximum entropy approach

The maximum entropy method [15, 16] has been intro-
duced as the following optimization problem:

- Z Z w;k, log wp,

k=1 i=1

mazximize

c
subject to Zuik =1,

i=1

Jl(U,’U) =K

where J;(U,v) is given by (1) and K be a parameter.
Let the Lagrange multipliers be v, and A, and the La-
grange function be £. Then we have

n c
k=1 i=1

(Y uik — 1) + Ay - K).

i=1



The stationary point of £ is

e~ Mik

where d;r = d(xy,v;) for simplicity. The multiplier vy
has already been determined while A is still in (4). This
parameter should be determined so that the constraint
J1(U,v) = K is satisfied. The number K is, however,
difficult to determine beforehand.

The last statement implies that the multiplier A
should not be treated as a uniquely determined num-
ber, but an adjustable parameter. Thus, actually we
consider a regularized problem which is equivalent to
the above:

(4)

Uik = e_Adjk .

minimize Jy(U,v) + A1 Z Z w;r log ui

k=1 i=1

subject to Zuik =1,

i=1
where X is a positive regularizing parameter. Notice
that the number K can be neglected. It is easily seen
that the solution of the last problem is given by the
same formula of (4). Remark also that in the Euclidean
space d(zx,v;) = ||z — vil|3, the center v = (vy, ..., V)
in CM is given by

5= Yohe UirTy
C Yo T
When ;4 is replaced by (u:)™, the above formula be-

comes that of calculating centers in the standard fuzzy
¢ - means.

(5)

2.3 Logarithmic transformation of dis-
similarity

A simple calculation shows a relationship between (2)

and (4). Let di, = d(zx,7;) and a = == > 0 in (2).

T—
zloga

Since a* = ¢ , we have

c —

_ dik \ oq—
aeo= DG (6)
j=1
— [Z ea(log d;—log J]-k)]—l (7)
Jj=1
e—aloggik

B Z;=1 e—ologdji’ ®)
The last expression is similar to (4). Indeed, the equa-
tion (4) coincides with (8) by the substitutions A = «
and djk = longk.

Since the calculations of the centers are different be-
tween the both methods, we cannot say that the two
methods are equivalent. Nevertheless, the above loga-
rithmic transformation shows that the underlying idea
is essentially the same.

3 Methods derived from maxi-
mum entropy approach

3.1 Methods of clustering

The maximum entropy approach is not a single method,
but is providing a framework in which different algo-
rithms are incorporated. Namely, the consideration in
the previous section immediately leads us to a list of
new methods of clustering. Some of them are as fol-
lows.

(I) As shown by Bezdek and other researchers, there
are a number of variations such as the fuzzy c -
varieties [2] and fuzzy c - regression [8, 21]. These
models can be reconsidered by the maximum en-
tropy approach.

(ITI) Recently, Ly and L, spaces are considered by a
number of researchers [3, 9, 18, 19]. Their meth-
ods can also be studied within the present frame-
work.

Let us examine these statements in more detail, by
showing two examples: one in (I) and the other in (II).
In the alternative optimization CM, u;; is calculated
with a given © in CM2, and v is calculated with a given
U in CM3. This structure of the algorithm facilitates
development of new methods in the maximum entropy
framework.

Example 1 (FCV).

Let us take an example in the fuzzy ¢ - varieties, in
which the objective function is

J(U,w,s) = Z Z(Uik)mdik;

i=1 k=1

(9)

where

dix = |lzk — wil* — (zp — wi, 5:)%. (10)

Namely, the cluster ¢ is represented by a line w; + 8s;
where (3 is a scalar variable, w; means the center of
the cluster, and s; is the unit vector showing the di-
rection of the line. The line shows the principal axis of
the cluster. Thus, the dissimilarity is measured by the
distance between an individual and the line.
Consequently, the alternative algorithm requires three
steps:

Procedure FCV.
FCV1. Set initial values for U, w, .

FCV2. Minimize J(U,w,3) with respect to w. Let
the optimal solution be w.

FCV3. Minimize .J(U,w, s) with respect to s. Let the
optimal solution be 3.



FCV4. Minimize J(U,®@,3) with respect to U. Let
the optimal solution be U.

FCV5. Check stopping criterion. If the criterion is

not satisfied, go to FCV2.
It is known that in FCV2,
ke (W)™
ZZ:1 ('aik)m

In FCV3, let §; be the normalized eigenvector for the
maximum eigenvalue of the following matrix

c

Al = Z(aie)m(xe — ;) (ze —w;) "

(=1
In FCV4,
_ ~ dig 1
Uik = [Z(J )m=T] 7
j=1 F
as usual. (For simplicity, we write dix = ||z — w;]|* —

<:1?k — w;, §i>2-)
Now, it is easy to obtain the maximum entropy
method in which the objective function L is given by

L= Z Zuikdik +A7! Z Zuik log wig.

i=1 k=1 i=1 k=1
The solution in FCV2 is
o = okt TikTh
' ZZ:1 Uik
In FCV3, let §; be the normalized eigenvector for the
maximum eigenvalue of the matrix

Bi = Zﬂw(ﬂf@ — ’u_)i)(l‘g — u‘;i)T.

=1
Finally, in FCV4,
—Ad;x
P
which is the same formula as (4).

Example 2 (L; FCM).

As another example, let us consider the L, space based
fuzzy c - means [3, 9, 18]. Namely we assume that

Uik =

P

Az, v:) = |loe —vills =D |af —vf],
=1

(11)

where z}, is the /th component of the vector z;. Thus,
the dissimilarity is given by the L; norm.

Miyamoto and Agusta [18] show a fast algorithm in
the step CM3. (Remark that u; is calculated by the
same formula (2).) As in the Euclidean case, the solu-
tion ¥j; is calculated componentwise. Hence we consider

(th component alone. Assume that when {z¢,...,2¢}
is ordered, subscripts are changed using a permutation
function ¢(k), k = 1, ..., n, that is, acf;(l) < :z:f;@) <. <

a:f;(n). Using {xf;(k) }, the following algorithm calculates

ot

2

in which we put v = (ui)™.

Algorithm CC.

begin
Si=- ZZ:l Yiks
r:=0;
while ( S < 0 )do begin
ri=r+1;
S: =5+ Q'Yiq(r)
end;
output vf = xf;(r) as the fth coordinate
of
the cluster center v;
end.

Now, we can develop a maximum entropy algorithm in
which the objective function is

J (U, v) + 271 z": iuik log up,

k=1 i=1

where J;(U,v) is defined by (1) and the dissimilarity
given by (11). By a discussion parallel to the previous
work [18], the center is calculated by the algorithm
CC with the replacement ~v;; = ;. Notice that the
membership u;; is calculated by (4). It is obvious that
the latter method has the advantage of less calculation,
since calculation of the power m in (u;;)™ is necessary
in the former method.

These considerations show that a variety of other
methods can easily be transformed into the correspond-
ing algorithms in the framework of the maximum en-

tropy.

3.2 Fuzzy classifiers

Clustering is frequently called unsupervised classifica-
tion, whereas supervised classification means determi-
nation of classification rules given a number of classes
of individuals. Frequently the latter is simply referred
to as classification problem. There are various meth-
ods for this class of problems, which include classical
descriminant analysis [11] as well as the nonparametric
technique of the k - nearest neighbor method (kNN).
Fuzzy supervised classification techniques have been
studied as extensions of crisp nonparametric methods.
In particular, a fuzzy kNN and a method of fuzzy near-
est prototype has been studied by Keller et al. [13].



Their fuzzy kNN classifier, which assigns the member-
ship of z in the class i, is given by

2} u.]l[z

where y1,...,yx are k nearest individuals from z, and

d(z,y:) = llz - yill3-
Moreover, the fuzzy nearest prototype classifier therein

d(z,y;)
acyg

me1] ! (12)

is

) ml_l]fl

(13)

where z; (i = 1,.
i.

,¢) are prototype vectors for the class

It is immediate to see that these classifiers are closely
related to the rule (2) of determining memberships in
the standard fuzzy c¢ - means.

Now, we obtain, by analogy, fuzzy classifiers from
the maximum entropy principle:

(I) Fuzzy kNN classifier:

k o Ad(z,y;
Zi:l ujie ( )

() = 14
w0 = S it 1)
(y1, ---, yr are k nearest individuals from z.)

(IT) Fuzzy prototype classifier:

e—Ad(z,z]-)
uj(z) = W. (15)
(zi, 1 = 1,..., ¢, are prototype vectors for the class i.)

An advantage of the present classifiers is that the
combination of exponential functions provides a clear
view for behaviors of the function. For example, the
prototype classifier satisfies

wi(z)™ =1+ Z o= Md(w,20)—d(w,2;))
(#

(16)

When A is large enough, the fuzzy classifier is shown to
approach the crisp nearest prototype classifier by which
z is classified into the class of the nearest prototype.
To see this, let z; be the nearest prototype to z, then
the terms d(z,z;) — d(z, z;) are all positive. When
A — 0, the second term in (16) becomes sufficiently
small and hence u;(z) — 1. From ), us(z) = 1, we
have us(xz) — 0 (¢ # j). Thus, the classifier tends to
crisp one. It should be remarked that this property
is obtained from the assumption that the parameter
A > 0 is adjustable.

Another observation is that the above classifiers are
not limited in the Euclidean space, since d(z, v) may be
defined in terms of other spaces such as the L, space.

Moreover, we can derive fuzzy classifiers based on fuzzy
¢ - varieties by using

o Ad(2.V))

STAEEEA0k (an

uj(r) =

where V;, j = 1,...,¢, is not a single vector, but a set
of parameters characterizing a variety. In relation to
the FCV clustering shown as Example 1, d(z, V;) is the
"Uistance from z to the line representing the class.

4 Methods related to regulariza-
tion

Regularization is somewhat similar to the penalty method

for optimization by considering the regularizing func-
tional to be a penalty. Another relation between regu-

larization and bicriteria optimization is observed. Namely,

the regularized objective function J, = J 4+ aK keeps
balance between the original objective J and the reg-
ularizing functional a K.

The latter idea of the bicriteria optimization has
been used in fuzzy clustering [24]. Combining their
method and the consideration herein, we have a new
algorithm using the maximum entropy. The detailed
description is omitted here.

Another example of bicriteria fuzzy clustering is the
possibilistic approach by Krishnapuram and Keller [14].
They remove the assumption of the fuzzy partition
Ele u;, = 1 and consider an objective function

J:ZZ(uik) zk+znzz 1— i)™

i=1 k=1

Is should be noticed that the second term is introduced
in order to regularize the objective function: without
this term the solution becomes trivial. At the same
time the first and second terms should be balanced in
the optimization, and hence the method is regarded as
a bicriteria clustering algorithm.

An interesting exercise is to design a regularized
objective function using the entropy that leads us to
a very simple membership allocation scheme. See Ap-
pendix.

5 Conclusions

We have presented a number of methods that are par-
allel to existing methods within the framework of max-
imum entropy. Thus, the major purpose of the present
paper is to show potential of this framework or ap-
proach. Therefore examination of performances of the
individual methods presented here by numerical sim-
ulations and real data will be done as further works.
In this sense, the present paper is still a preliminary



report, and more studies should be done using this ap-
proach of the maximum entropy.

The crucial point in the present approach is that the
parameter ) is rather free to choose, whereas m = 2 has
frequently been used in the standard FCM, since this
value simplifies the calculation. From the viewpoint
of regularization, a regularizing parameter should not
uniquely be determined. For example, properties of a
regularized method can be made clear by moving the
regularizing parameter, as shown in Section 3.2.

For some readers it seems strange to use the maxi-
mum entropy for clustering, since the entropy criterion
has sometimes been referred to in validation of clus-
ters [2]. Actually we abandan the use of entropy in
validating clusters by employing the entropy criterion
in cluster generation. Thus, the relationship between
the criterion for clustering and that for validation is
delicate in general.

As another direction for future studies, mixture with
other methods and the approach here is promising.
There have been studies of clustering using Kohonen’s
associative memory [12]. Pal, Bezdek, and Tsao [22]
develop a crisp clustering algorithm GLVQ based on
the learning vector quantization. Fuzzy version of this
algorithm using regularization should be attempted.

Since the membership allocation rule obtained by
the maximum entropy has a simple form of exponential
functions, there are rooms for observing many theoret-
ical properties. Thus, the present approach provides
a new viewpoint for fuzzy clustering which has many
possibilities for future studies.
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Appendix

Let us consider an objective function that leads us to a
simple membership allocation scheme of an exponential
type. Put

L= uadi+»_ ¢G> uin(logui, — 1),
i=1 k=1 i=1 k=1
in which 25:1 u;;r = 1 is not assumed. From

oL

= dik + C;l loguik = 0
8uik

we have

Uip = e Sidix

References

[1] M. R. Anderberg, Cluster Analysis for Applica-
tions, Academic Press, New York, 1973.

[2] J. C. Bezdek, Pattern Recognition with Fuzzy Ob-
jective Function Algorithms, Plenum, New York,
1981.

[3] L. Bobrowski and J. C. Bezdek, c-means cluster-
ing with the ¢; and {., norms, IEEE Trans. on
Systems, Man, and Cybern., Vol. 21, pp. 545-554,
1991.

R. O. Duda and P. E. Hart, Pattern Classification
and Scene Analysis, Wiley, New York, 1973.

J. C. Dunn, A fuzzy relative of the ISO-
DATA process and its use in detecting compact
well-separated clusters, J. of Cybernetics, Vol.3,
pp- 32-57, 1974.

J. C. Dunn, Well-separated clusters and optimal
fuzzy partitions, J. of Cybernetics, Vol.4, pp. 95—
104, 1974.

E. W. Forgy, Cluster analysis of multivariate
data: efficiency vs. interpretability of classifica-
tions, Biometrics, Vol.21, pp. 768-769 (Abstract)
1965.

R. J. Hathaway and J. C. Bezdek, Switching re-
gression models and fuzzy clustering, IEEE Trans.
on Fuzzy Syst., Vol.1, pp. 195-204, 1993.

[9] K. Jajuga, Li-norm based fuzzy clustering, Fuzzy
Sets and Systems, Vol. 39, pp. 43-50, 1991.

[10] M. G. Kendall and A. Stuart, The Advanced The-
ory of Statistics, Vol. 2, 4th Ed., Griffin, London,

1979.

[11] M. G. Kendall, A. Stuart, and J. K. Ord, The Ad-
vanced Theory of Statistics, Vol. 3, 4th Ed., Grif-

fin, London, 1983.

[12] T. Kohonen, Self-Organization and Associative

Memory, Springer-Verlag, Heiderberg, 1989.

[13] J. M. Keller, M. R. Gray, and J. A. Givens, Jr.,
A fuzzy k - nearest neighbor algorithm, IEEE
Trans., on Syst., Man, and Cybern., Vol. 15,

pp. 580-585, 1985.

[14] R. Krishnapuram and J. M. Keller, A possibilis-
tic approach to clustering, IEEE Trans. on Fuzzy

Syst., Vol.1, pp. 98-110, 1993.

[15] R.-P. Li and M. Mukaidono, Gaussian clustering
and its application to rock classification, Proc. of
Eleventh Fuzzy System Symposium, Japan Society

of Fuzzy Theory and Systems, pp .697-698, 1995.



[16]

[17]

[19]

R.-P. Li and M. Mukaidono, A maximum en-
tropy approach to fuzzy clustering, Proc. of the
4th IEEE Intern. Conf. on Fuzzy Systems (FUZZ-
IEEE/IFES’95), Yokohama, Japan, March 20-24,
1995, pp. 2227-2232.

J. B. McQueen, Some methods of classification
and analysis of multivariate observations, Proc. of
5th Berkeley Symposium on Math. Stat. and Prob.,
pp- 281-297, 1967.

S. Miyamoto and Yudi Agusta, An efficient al-
gorithm for ¢; fuzzy c-means and its termina-
tion, Control and Cybernetics Vol. 24, pp. 421—
436, 1995.

S. Miyamoto and Yudi Agusta, Efficient algo-
rithms for ¢, fuzzy c-means clustering and their
termination properties. Fifth Conference of the In-
ternational Federation of Classification Societies
(IFCS 96), Kobe, Japan, March 27-30, Vol.2,
pp. 255-258, 1996.

S. Miyamoto, Fuzzy ¢ - means and its variations,
Journal of the Japan Society of Fuzzy Theory and
Systems, Vol.8, pp. 423430, 1996 (in Japanese).

Y. Nakamori, Fuzzy clustering and regression
analysis, Journal of the Japan Society of Fuzzy
Theory and Systems, Vol.8, pp. 431-439, 1996 (in
Japanese).

N. K. Pal, J. C. Bezdek, and E. C.-K. Tsao, Gen-
eralized clustering networks and Kohonen’s self-
organizing scheme, IEEE Trans. on Neural Net-
works, Vol.4, pp. 549-557, 1993.

A. N. Tihonov, Solutions of incorrectly formulated
problems and the regularization method, Dokl.
Akad. Nauk. SSSR, Vol.151, pp. 1035-1038, 1963.

H.-F. Wang and G.-Y. Wu, Bi-criteria fuzzy clus-
tering systems, IV IFSA World Congress, Séo
Paulo, Brazil, 1995, Vol.1, pp. 633-636, 1995.



