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PAPER

Online Continuous Scale Estimation of Hand Gestures

Woosuk KIM†a), Nonmember, Hideaki KUZUOKA†b), and Kenji SUZUKI†,††c), Members

SUMMARY The style of a gesture provides significant information for
communication, and thus understanding the style is of great importance
in improving gestural interfaces using hand gestures. We present a novel
method to estimate temporal and spatial scale—which are considered prin-
cipal elements of the style—of hand gestures. Gesture synchronization is
proposed for matching progression between spatio-temporally varying ges-
tures, and scales are estimated based on the progression matching. For
comparing gestures of various sizes and speeds, gesture representation is
defined by adopting turning angle representation. Also, LCSS is used as
a similarity measure for reliability and robustness to noise and outliers.
Performance of our algorithm is evaluated with synthesized data to show
the accuracy and robustness to noise and experiments are carried out using
recorded hand gestures to analyze applicability under real-world situations.
key words: hand gestures, gesture synchronization, scale estimation,
longest common subsequence (LCSS)

1. Introduction

Using hand gestures to improve human-computer interfaces
has been of great interest for an expressive and natural way
of interaction [1]. As human behavior, the meaning of ex-
pression made by hand gestures can be interpreted in two
main ways—what is done and how it is performed [2]. Tra-
ditional gestural interfaces have usually been for recogniz-
ing the former (a message or content).

However, style—the way in which a gesture is
performed—also has significant importance in communi-
cation. For instance, stylistic differences can be used to
describe characteristics of individual personality [2], and
changes in the style may imply transition in emotional sta-
tus [3], [4]. Our interest is in expanding perspectives of ges-
ture recognition by taking into account style of gestures and
improving expressiveness of interfaces for applications like
3D animation. Especially, we focus on the dynamics of hand
gestures measured in temporal and spatial scale variation,
which is an essential element contributing to stylistic differ-
ences [2].

We have chosen single-handed motions as targets for
estimating scale. Single-handed motions can be thought of
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as spatio-temporal trajectories or shapes in space. So it is
less ambiguous to define scale measures on them, and var-
ious methods for representation and comparison of trajec-
tories and shapes are introduced by many researchers [5].
Even though single-handed motions may not be complex
gestures, estimating their scale is not a simple task. Compar-
ing time series or temporal sequence with variations in size
and speed requires, at the very least, representation meth-
ods which preserve scale-related information and similarity
measures independent from scale variations.

In addition, our method assumes real-time evaluation
of scales from online continuous user input streams, which
can improve interactivity by minimizing delay between in-
teractions and providing localized scale information since
many applications using gestural interfaces are required to
behave in a highly interactive manner (like multimedia and
entertainment applications). This requirement adds difficul-
ties to the problem since boundaries (start and end points
of gestures) are unknown for data from continuous input
streams [6]. Gesture spotting [7]–[10] in continuous gesture
recognition presents similar difficulties but with different re-
quirements; we are interested in on-going local progression
of gesture input for continuous scale evaluation, however
gesture spotting tries to isolate single and whole gesture data
for consecutive recognition without explicit intervention by
users or systems.

2. Related Work

Analysis on auxiliary information of gestures

Extracting and using auxiliary information of gestures has
been great a concern of researchers in various fields. Wil-
son and Bobick [11] put emphasis on systematic understand-
ing of variations in gestures, as well as recognition. They
introduced parametric hidden markov models (PHMMs),
which embed spatial parameters in hidden markove mod-
els (HMMs). The spatial variation of gestures may include
size, direction, and so forth. Herzog et al. [12] extended this
method to analyze human arm motions and synthesize the
motions using robot arms. However, PHMMs are used to
parameterize only spatial variations but not temporal vari-
ations. Appert and Bau [13] specifically focused on scale
detection in early stages of the recognition process. To mea-
sure scale difference explicitly, they proposed a gesture rep-
resentation method inspired by a turning angle representa-
tion in shape matching. Since the representation holds scale
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information of gestures measured as distance, it is not suit-
able for estimating temporal variations of gestures.

Various aspects of gestures are perceived by not only
low level features like size and speed, but also high level fea-
tures described by more abstract terms. Camurri et al. [14],
[15] attempted to analyze expressiveness of human motions
or gestures using a layered approach. From low level fea-
tures gathered from multiple cues, the system outputs emo-
tional status like anger, fear and joy. We share similar ideas
in interpreting gestures (style and expressiveness can be in-
terchangeable in many contexts). However their analysis is
of overall behaviors rather than specific gesture types. Rehm
et al. [16] introduced another interesting work, which differ-
entiate cultural influence from gestures.

Using human motions to improve naturalness and ex-
pressiveness of synthesized characters has a long history in
3D animation research. Some of the approaches use varia-
tions on gestures for changing style of animation. Thorne et
al. [17] adopted sketching gestures to control character mo-
tions. They defined gesture vocabulary, which is used to
map between gestures and motions. Different from typical
performance animation, their system identifies gesture input
to select motion types and adjusts motions with the varia-
tions of gestures like height and width of symbols or timing
of drawing. Shiratori and Hodgins [18] used accelerometer-
based motion sensing devices to control a physically sim-
ulated character. Changes in frequency, amplitude, and so
on are used to variate locomotion of a character. Both are
distinctive to traditional performance animation, since they
recognize what users performed and variations of gestures.

Similarity measures

A good review of similarity measures for shapes is pro-
vided by Veltkamp [5]. One of these methods, Turning angle
distance, compares shapes independently from translation,
rotation and scaling [13], [19], [20]. As a similarity mea-
sure for temporally mismatching data, dynamic time warp-
ing (DTW) has been widely adopted by various applica-
tions like speech/gesture recognition, image matching and
so forth [21]–[23]. Vlachos et al. [24] introduced a spatio-
temporally invariant similarity measure for 2D trajectories
by combining turning angle distance and DTW. Recently,
LCSS has been gathering interest as an alternative to DTW
for its robustness to noise [25], [26]. Although LCSS is orig-
inally for string matching, several modifications have been
suggested for trajectory matching [27]–[29].

Evaluating gesture progression

Bevilacqua et al. [30] proposed a method, referred to as ges-
ture following, to evaluate temporal progression of gestures
using HMMs. Their approach is analogous to incremental
search with windowing in gesture spotting algorithms [7]–
[10] but its focus is shifted from a segmenting task [6] of
continuous gesture to tracing local progression of on-going
gestures. Mori et al. [31] introduced similar incremental
search algorithm but with DTW to predict subsequent ges-
ture motion. However, in both [30] and [31], variation of

spatial and temporal scale is not taken into consideration.

3. Gesture Representation and Scale Measure

3.1 Gesture Representation

Trajectory data which is tracked from single-handed mo-
tions may differ in its location, scale and rotation, even for
gestures of the same type. These inconsistencies are usu-
ally caused by: 1) physical characteristics of subjects like
height, arm length and so forth, 2) changes in expression,
3) sensor configuration—position and orientation. Since we
are focusing on estimating scale of gestures, scale and trans-
lation independent gesture representation are necessary (for
rotation, we assume similar gesture shapes with different ro-
tation and orientation are not the same). Furthermore, scale
related information has to be preserved in the representation
to explicitly calculate scale differences.

For scale and translation invariant representation of
gestures, we have adopted ideas of turning angle representa-
tion [13], [19], [20]. In turning angle representation, a shape
or trajectory is defined as a cumulative angle function or
turning function between consecutive polylines. Comparing
turning angles between shapes with same perimeter (after
normalization) makes it scale independent. Similarly, our
approach takes angular changes into account for gesture de-
scription. Where a trajectory of single-handed gesture mo-
tion G in 3D space is described as a temporal sequence of
position vectors −→p = (x, y, z) (Eq. (1)), a displacement vec-

tor
−→
d defines a change in both angle and distance from ith

frame to (i+1)th frame. Then, the gesture G can be re-written

as a sequence of displacement vectors
−→
d i =

−→p i+1 − −→p i to
describe consecutive angular changes for the whole gesture
sequence (Eq. (2)) like in Fig. 1.

G = −→p 1,
−→p 2, . . . ,

−→p t, . . . ,
−→p N (1)

=
−→
d 1,
−→
d 2, . . . ,

−→
d i, . . . ,

−→
d N−1 (2)

This representation is translation invariant since dis-
placement vectors are calculated relatively between adjacent
frames (independent from its starting position) and invariant
in spatial scale by only comparing angles between displace-
ment vectors, and spatial information is preserved as length
of displacement vectors also. In addition, applying elastic

Fig. 1 An example of gesture representation: A sequence of points (a) is
converted into a sequence of displacement vectors (b) and a sequence of θ
is considered changes in turning angles of a gesture trajectory.
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matching like DTW or LCSS makes it possible to be tempo-
ral scale independent, which is explained in more detail in
Sect. 4.1.

3.2 Scale Measure

It is difficult to define absolute measure for scale differences,
since style is subject to various factors like personality, cul-
ture and so forth [2], [16]. So in our approach, scale varia-
tion is measured in a relative way. That is, scale of user input
is compared to pre-defined or recorded reference gestures.

For gesture sequences represented as Eq. (2), basically,
temporal length is measured in number of elements (N−1)

and spatial length is measured in arc length (
∑ ∣∣∣∣
−→
d i

∣∣∣∣). The
ratio of these lengths between a reference gesture and user
input describes scale variations.

In addition, the following ideas are taken into consid-
eration in our algorithm:

• global and local measurement: Local changes in scale
of gestures also affect the style. For instance, perform-
ing a gesture with incremental speed may express ac-
celeration. It is required to measure scales on limited
interval for estimating localized scale variations.

• excluding outliers: Gesture data may contain outliers,
which are caused by either sensor noise or human error
like hand shaking. For more accurate scale estimation,
it is desirable to exclude such outliers.

4. Algorithm

The estimation process mainly consists of the following
three steps:

1. preparing a reference gesture: Single-handed motion
is recorded and smoothed (e.g. by Gaussian or kalman
filters) to reduce noise. Then the recorded sequence
of position vectors is converted into a sequence of dis-
placement vectors (Eq. (2)). Scale of the reference ges-
ture is considered as unit scale.

2. gesture synchronization: After a user starts gesture
performance, amounts of progression by accumulated
(and possibly incomplete) input data are evaluated.
The evaluation of gesture progression is carried out by
searching for corresponding segments in the reference
and user input, which are spatio-temporally matching
each other.

3. estimating scale: Temporal and spatial scale of user in-
put are estimated using the progression matching given
by step 2. Scale of the user input is expressed in ra-
tio to scale of the reference gesture. Step 2 and 3 are
repeated until gesture performance is finished.

We assume the type of gesture is known before starting
gesture performance since this paper focuses on estimation
rather than recognition. Approaches for simultaneously ap-
plying gesture recognition and scale estimation will be dis-
cussed in Sect. 6.

4.1 Similarity Measure

In this paper, as an alternative to the DTW-based approach
in our previous work [32], LCSS is used to define a similar-
ity measure. In general, LCSS is known to be more robust
to noise than DTW since outliers, possibly caused by noise,
can be ignored [25], [26]. On the contrary, in DTW, by its
definition, every element must have one or more matching
elements whether they are similar or not. This means warp-
paths built by DTW may contain ill-matched pairs of ele-
ments under noisy conditions, which results in inaccurate
distance calculation.

Our similarity measure is motivated by other LCSS-
based methods for motion sequence and trajectory match-
ing [27]–[29] but also with modification under our own re-
quirements, as below:

• As mentioned in Sect. 3.1, a gesture is represented as
a sequence of displacement vectors and only their an-
gular changes are taken into consideration for scale in-
variant comparison. For comparing angular similarity,
we use a cosine distance and a matching function with
a threshold. If the distance is smaller than the thresh-
old, they are said to be matching. For two displacement

vectors
−→
A and

−→
B , the distance function d and matching

function match are described as:

d(
−→
A ,
−→
B) = 1 −

−→
A · −→B
∣∣∣∣
−→
A
∣∣∣∣

∣∣∣∣
−→
B
∣∣∣∣

(3)

match(
−→
A ,
−→
B) =

⎧
⎪⎪⎨
⎪⎪⎩

true, if d(
−→
A ,
−→
B) < dthreshold

f alse, otherwise
(4)

• Two elements of a matching pair are not neces-
sarily identical because matching is decided on co-
sine distance as above. Hence, it is necessary to
express the longest common subsequence as a se-
quence of matching pairs like a warp-path in DTW.
For given sequences Xi = x1, x2, . . . , xi and Yj =

y1, y2, . . . , y j, the modified LCSS with warp-path Wk =

w1,w2, . . . ,wk, where wk= (wX
k , w

Y
k ) is defined as:

LCS S (Xi,Yj)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ø, if i=0 or j=0

(LCS S (Xi−1,Yj−1), (xi, y j)) and Wk = (Wk−1, (i, j)),

if match(xi, y j) is true

longest(LCS S (Xi,Yj−1), LCS S (Xi−1,Yj)),

otherwise

(5)

4.2 Gesture Synchronization

To estimate the scale of an incomplete gesture from contin-
uous data streams, a segment in a given reference gesture
sequence, which corresponds to partial user input, must be
found prior to comparison (Fig. 2). In other words, it is nec-
essary to evaluate on-going spatio-temporal progression of



2450
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.10 OCTOBER 2012

Fig. 2 For a given reference gesture and user input, gesture synchroniza-
tion finds start and end point of the reference gesture, which describe the
most similar segment to the user input.

user input in relation to the reference gesture; we refer to
this process as gesture synchronization.

LCSS makes this process quite simple since its re-
sults are longest (or with maximum similarity) common se-
quences by themselves. For two sequences X and Y , the first
element of the longest common sequence C = LCS S (X,Y)
will be a start point, and the last element represents an end
point of the matching boundary.

The overall process of gesture synchronization is de-
scribed as follows:

1. For a given reference gesture R and partial user input
U, subsequence Rwin and Uwin are defined by a sliding
window algorithm (Sect. 4.2.1).

2. LCSS is performed on the two sliding windows. The
resulting sequence W = LCS S (Rwin,Uwin) represents
spatio-temporal matching between the sliding windows
and the last matching pair of W is appended to a se-
quence Wglobal, which describes gesture progression for
the whole user input.

3. Wglobal is expanded for compensating ignored matching
caused by LCSS (Sect. 4.2.2).

4.2.1 Sliding Window

We apply a sliding window algorithm for both reference ges-
tures and user input in gesture synchronization process with
the following reasons:

• computational efficiency: Time complexity of LCSS,
when comparing two sequences of n and m elements,
is O(n · m) in naive approaches. That is, the amounts
of time required for comparing gesture sequences in-
crease along with growing size of user input. So, it may
not be guaranteed to evaluate gesture progression in
constant time (e.g. sampling interval), which is not de-
sirable for interactive applications. Also, the similarity
measure for elements is quite a costly operation since it
compares 3D vectors using cosine distance. This may
be critical for real-time interaction in certain hardware
platforms, especially mobile devices.

• preventing ill-matching: When lengths of two temporal

Fig. 3 If a reference gesture has repeated segments A, B and C, user
input can be matched to all or any of them (depending on implementation)
in LCSS. However, it is natural to think of segment A as the best matching
since user input is on-going and there may be more input like B and C along
with progression.

sequences are greatly differ, LCSS may produce unex-
pected results. For instance, if a reference gesture has
repetitive patterns, partial user input which is similar to
the patterns can be matched to any of them (Fig. 3). It is
reasonable to think that matching should occur in tem-
poral order however LCSS can not differentiate them.
It is possible to prevent this kind of ill-matching by lim-
iting size of sequences to be compared.

Size of sliding windows should be small enough for
computational efficiency, but also large enough for reliabil-
ity of evaluation. The optimum size may differ by appli-
cation requirements and hardware characteristics (like cpu
power, sampling rates, sensor noise and so forth) thus it has
to be decided by empirical methods.

Also, as we assumed spatio-temporal deformation of
gesture sequences, both sliding windows of the reference
and user input are set to include the same amounts of ges-
ture progression data not the same number of elements. The
maximum ratio between the size of two sliding windows
varies depending on the range of scale variation required by
applications.

For a given reference gesture

R = −→r 1,
−→r 2, . . . ,

−→r N , (6)

user input at time t

U = −→u 1,
−→u 2, . . . ,

−→u t (7)

and a warp-path at time (t − 1)

Wk = w1,w2, . . . ,wk, where wk = (wR
k , w

U
k ) , (8)

let Mwin and Mratio be a maximum window size and a max-
imum size ratio between sliding windows respectively then
start and end index of the user input window (sU , eU) are
defined as:

(sU , eU) =

⎧
⎪⎪⎨
⎪⎪⎩

(1, t), k ≤ Mwin

(wU
k−Mwin

, t), otherwise
(9)

and start and end index of the reference window (sR, eR) are
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Fig. 4 Even if subsequence B is considered to be matched to the whole
subsequence A, only two elements of the subsequence B become parts of
matching in LCSS.

defined as:

(sR, eR)

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, �t × Mratio�), k ≤ Mwin

(wR
k−Mwin

,min(sR+�(eU−sU)×Mratio�,N)),

otherwise

(10)

4.2.2 Correcting Warp-Path

For sampled sequences of continuous trajectories, one el-
ement may have several matching elements because of
spatio-temporal deformation. However, in LCSS, one ele-
ment can have only one matching element as mentioned in
Sect. 4.1. As a consequence, elements which are considered
parts of matching may be ignored as outliers (Fig. 4). For
example, if a reference sequence is R = (a, a, a, b, b, c, c)
and a user input sequence is U = (a, a, b, b, b, c, c), it is rea-
sonable to think the subsequence R3 = (a, a, a) is matching
to the subsequence U2 = (a, a) since we consider a gesture
as a continuous trajectory rather than a sequence of discrete
symbols (R3 and U2 hold same amount of gesture progres-
sion data but are spatio-temporally stretched). To preserve
scale information properly, it is necessary to convert a warp-
path described as a sequence of matching elements into a se-
quence of matching subsequences by merging adjacent sim-
ilar elements into a subsequence. A warp-path W (Eq. (8)) is
converted into a corrected warp-path P (Eq. (11)) by a pro-
cedure shown in Algorithm 1.

P = p1,p2, . . . ,pk, (11)

where pk = (pR
k , p

U
k )

= ((wR
k − ak, w

R
k − ak + 1, . . . , wR

k + bk − 1, wR
k + bk),

(wU
k − ck, w

U
k − ck + 1, . . . , wU

k + dk − 1, wU
k + dk))

4.3 Estimating Scales

Temporal and spatial scale of input gestures are estimated
based on the gesture progression expressed in expanded
warp-path P (Eq. (8)). Let seqlen(A) be the length of a se-
quence A (number of elements in A) then temporal scale S T

Algorithm 1 Correcting warp-path
1: procedure CorrectWarppath(Wk ,R,U)
2: P← {}
3: for all k do
4: pR ← {wR

k }
5: n← wR

k − 1
6: while n > wR

k−1 do
7: if d(R[n],R[wR

k ]) < threshold then � d() is cosine distance
8: insert n at the start of pR

9: n = n − 1
10: else
11: break
12: end if
13: end while
14: n← wR

k + 1
15: while n < wR

k+1 do
16: if d(R[n],R[wR

k ]) < threshold then
17: append n at the end of pR

18: n = n + 1
19: else
20: break
21: end if
22: end while
23: pU ← {wU

k }
24: do the same as above for U and pU

25: append (pR, pU ) at the end of P
26: end for
27: return P
28: end procedure

is defined as:

S T =

∑k
i=k−τ seqlen(pU

i )
∑k

j=k−τ seqlen(pR
j )

(12)

If we define PU and PR as a set of indices in all pR and pU

respectively, spatial scale of user input U (Eq. (7)) compared
to R (Eq. (6)) is defined as:

S S =

∑
i∈PU ,k−τ≤i≤k

∣∣∣−→ui

∣∣∣
∑

j∈PR,k−τ≤ j≤k

∣∣∣−→r j

∣∣∣
(13)

For both S T and S S , τ (1 ≤ τ ≤ k) indicates an interval on
which scales are evaluated. That is, if τ is (k − 1), scales are
calculated on the whole gesture input (global scale) other-
wise express local scale variation.

5. Evaluation

5.1 Analysis on Real-World Data

Performance under real-world conditions was evaluated us-
ing recorded gesture data. 5 subjects recorded circle shaped
gestures with different styles. Each style has a distinctive
combination of size and speed (slow, medium or fast for
speed and small, medium or big for size). As a reference,
medium speed and medium size of the gesture was recorded
by each subject and scale variations were determined by
double or half the size and speed of the reference. Subjects
were requested to maintain style during performance as con-
sistently as possible. Each style was recorded 10 times (total
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Fig. 5 An example of comparison among measured, estimated by the
DTW-based method and LCSS-based method of one subject’s data. Styles
are described in the form of size:speed.

90 gesture data per subject).
Unlike synthesized gestures, it is very difficult to mea-

sure the actual scales of recorded data since it contains many
human errors—for example, one subject could not perform
consistently even for the same style. Thus measured scale
(trajectory length and performance time of raw data) should
not be interpreted as ground truth. Figure 5 shows the esti-
mation result of one subject. Although exact accuracy can-
not be given by these graphs, we found consistency in mea-
sured scales and estimated scales; for instance, big and fast
gestures can be grouped together or differentiated by other
styles.

For all recorded gestures, standard deviation of trajec-
tory length and performance time was 9.08% and 13.78%
in average, respectively. Roughly, this can be considered
as noise in gesture data under real-world conditions, which
is caused by inconsistency in user performance and sensor
noise.

5.2 Simulation on Synthesized Gesture Data

The accuracy of our algorithm was evaluated with synthe-
sized gesture sequences. To assess local scale changes, a
spiral shape was chosen for a target gesture class. It is a
simple but practical form to be expressed easily by users
since it can be thought of drawing two circles with different
scales (Fig. 6). Reference data and four input gestures with
different styles were created (Table 1). Also, Gaussian noise
from 1% to 17% was added to input gestures and an interval
for scale estimation was 10 (τ = 10). For each gesture style
and noise level, simulation was conducted 100 times and the
results of simulation were averaged. Our algorithm was im-

Fig. 6 A spiral gesture shape.

Table 1 Styles of spiral gestures used in simulation: the name of each
style expresses changes in style. For example, a big and fast to small and
slow spiral gesture means gesture performance starts as if a big circle drawn
quickly then ends as if a small circle drawn slowly.

temporal scale spatial scale
gestures sample # initial final initial final

reference 60 1.0 1.0 1.0 1.0
big and fast to small and slow 75 2.5 0.5 2.0 0.5
big and slow to small and fast 75 0.5 2.5 2.0 0.5
small and fast to big and slow 75 2.5 0.5 0.5 2.0
small and slow to big and fast 75 0.5 2.5 0.5 2.0

plemented with C++ and Python without optimization and
on a Core i5-2540M machine (2.5 GHz, 4 GB RAM) the ex-
ecution time of gesture progression matching and scale es-
timation for each new input sample was under 1 ms, which
means that computational efficiency of the algorithm is suf-
ficient for real-time applications.

Gesture progression matching

The accuracy of progression matching (gesture synchro-
nization) was assessed by comparing estimated progres-
sion to the actual progression of input gestures. Figure 7
shows the results of the overall comparison (5% of noise).
For all input gestures, the estimated progression resembles
the actual progression and stable through the progression.
Also, average matching error (actual progression index −
estimated index) under various noise levels was evaluated
(Table 2). The results show that our algorithm can estimate
gesture progression quite reliably under the noise levels we
are assuming in Sect. 5.1. These results are comparable with
the approach of Bevilacqua et al. [30], which is more sus-
ceptible to scale changes and noise.

Scale estimation

Changes in temporal and spatial scale were estimated
along with gesture progression. For estimating local scale
changes, scales were computed on small time interval (10
samples) and for the stability of estimation, scales are calcu-
lated only after samples are gathered more than the interval
size.

Figure 8 shows the estimated and actual scale along
with gesture progression when 5% of noise is added. The
overall changes of the estimated scale are quite similar to
the actual scale changes for all input gestures. However,
the estimated scales seem like they are lagging behind and
are smaller than the actual scales where scales changes un-
evenly (around 20th sample frame in (a) & (c) and 50th sam-
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Fig. 7 Comparison between actual progression and estimated progres-
sion under 5% of noise. The horizontal axis is the progression of input
gesture (sample index) and the vertical axis is the corresponding indices of
the reference gesture. Slopes indicate progression rate in comparison to the
reference. If the slope for a certain interval is greater than 1.0, it means the
user input is being performed faster than the reference and vice versa.

Table 2 Average errors of progression matching in samples (standard
deviation in parentheses). Gesture styles are: (a) big and fast to small and
slow, (b) big and slow to small and fast, (c) small and fast to big and slow,
(d) small and slow to big and fast.

gesture styles
noise

level (%) (a) (b) (c) (d)
1 2.30 (0.80) 2.21 (0.69) 1.33 (0.56) 1.32 (0.82)
3 2.30 (0.80) 2.20 (0.69) 1.34 (0.56) 1.31 (0.83)
5 2.30 (0.81) 2.20 (0.70) 1.33 (0.56) 1.33 (0.83)
7 2.32 (0.84) 2.20 (0.70) 1.34 (0.57) 1.35 (0.83)
9 2.29 (0.83) 2.21 (0.71) 1.34 (0.57) 1.36 (0.82)
11 2.33 (0.87) 2.20 (0.71) 1.34 (0.58) 1.38 (0.83)
13 2.32 (0.87) 2.22 (0.72) 1.34 (0.58) 1.39 (0.82)
15 2.31 (0.89) 2.22 (0.73) 1.35 (0.58) 1.44 (0.82)
17 2.31 (0.90) 2.22 (0.75) 1.36 (0.59) 1.44 (0.84)

Fig. 8 Evaluation of temporal scale estimation (5% noise). The horizon-
tal axis is progression of input gesture (sample index) and the vertical axis
represents temporal scale at the corresponding sample frame.

ple frame in (b) & (d)). We think the phenomenon is caused
by: 1) estimation intervals consisting of past data; 2) scales
are averaged on the interval. This indicates that estimation

Fig. 9 Evaluation of spatial scale estimation (5% noise). The horizontal
axis is the progression of input gesture (sample index) and the vertical axis
represents spatial scale at the corresponding sample frame.

Table 3 Average errors in temporal scale estimation (standard deviations
in parentheses). Gesture styles are: (a) big and fast to small and slow, (b)
big and slow to small and fast, (c) small and fast to big and slow, (d) small
and slow to big and fast.

noise gesture styles
level
(%) (a) (b) (c) (d)
1 32.59 (32.38) 20.50 (12.48) 27.53 (29.06) 19.00 (12.20)
3 32.05 (32.69) 20.47 (12.56) 27.36 (29.25) 18.98 (12.31)
5 32.07 (32.98) 20.49 (12.83) 27.25 (29.33) 19.06 (12.52)
7 32.08 (32.93) 20.52 (13.00) 27.23 (29.40) 19.24 (12.85)
9 31.99 (33.06) 20.54 (13.09) 27.21 (29.59) 19.26 (13.57)
11 32.43 (33.06) 20.60 (13.23) 27.20 (29.59) 19.73 (14.00)
13 32.69 (33.05) 20.82 (13.42) 27.35 (29.71) 20.01 (14.35)
15 33.15 (33.01) 21.00 (13.54) 27.46 (29.82) 20.99 (14.66)
17 33.64 (33.29) 21.03 (13.74) 27.54 (30.23) 21.45 (14.56)

Table 4 Average errors in spatial scale estimation (standard deviations
in parentheses). Gesture styles are: (a) big and fast to small and slow, (b)
big and slow to small and fast, (c) small and fast to big and slow, (d) small
and slow to big and fast.

noise gesture styles
level
(%) (a) (b) (c) (d)
1 17.90 (12.87) 11.27 (10.27) 19.74 (8.91) 21.89 (5.48)
3 18.23 (12.81) 11.38 (10.21) 19.60 (8.98) 21.92 (5.78)
5 18.45 (12.88) 11.67 (10.13) 19.55 (8.98) 21.83 (6.30)
7 19.19 (12.54) 11.88 (10.13) 19.54 (8.98) 21.79 (6.96)
9 19.70 (12.50) 12.08 (10.00) 19.52 (9.09) 21.83 (8.17)

11 20.46 (12.94) 12.32 (10.08) 19.31 (9.33) 21.92 (8.91)
13 21.71 (12.69) 12.84 (10.31) 19.48 (9.42) 21.62 (9.31)
15 22.29 (13.22) 13.08 (10.23) 19.47 (9.63) 22.10 (10.42)
17 22.89 (13.10) 13.56 (10.33) 19.67 (9.95) 22.09 (10.56)

intervals should be carefully determined for accuracy and
stability.

Results of spatial scale estimation are shown in Fig. 9
(also with 5% of noise). Estimated spatial scales are also
quite close to the actual scales overall. However, where the
input gesture is being performed faster than the reference, it
seems estimation error is increased (like the initial parts of
(a)). Average errors on temporal and spatial scale are listed
in Table 3 and 4 respectively. The overall results show that
the estimation error does not affected significantly by the
noise levels we are assuming as real-world conditions. The
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average errors are similar or slightly lowered compared to
our previous work [32]. Taking into account that Gaussian
noise was not added to input gestures in the previous evalu-
ation, this implies an increase in the accuracy of the current
method. Also, decreased standard deviation (more than 80%
in the worst case in the previous work) proves improved sta-
bility.

6. Conclusion and Future Work

In this paper, we presented a method for scale estimation
from continuous gesture input. Gesture synchronization is
introduced for matching gesture progression between input
and a reference. Temporal and spatial scales are estimated
based on progression matching. By adopting ideas of turn-
ing angle representation, scale-aware gesture representation
is defined and an LCSS-based similarity measure is used to
compare temporally mismatching gestures. Evaluation with
synthesized data and recorded gestures shows the accuracy
and reliability of our algorithm under noisy condition, and
applicability for real-world situations.

One limitation of this work is that we assume a tar-
get gesture type is known before starting estimation. In
reality, gesture types are usually unknown before gestures
are performed and recognized. Therefore, it is necessary
to carry out gesture recognition and estimation at the same
time. However, contradicting characteristics between recog-
nition and estimation makes this problem more difficult than
thought—gesture recognition needs as much data as possi-
ble for accuracy but real-time continuous scale estimation
has to be performed on incomplete partial data. Divid-
ing gestures into a preparation stage [33] (for recognition)
and a performance stage (for estimation) or using gesture
graph [31] may be candidate solutions.

In our future work, we are planning to extend our cur-
rent work to recognize the expressiveness of human mo-
tions for controlling animation characters. Expressiveness
of motions could be described in size, speed, and other fac-
tors [2]. After the relationship is modeled, it may be possible
to recognize motions at the affective level such as happy or
sad [4], [14], [15]. We expect that our approach will enable
us to control expressive animations more naturally and in-
tuitively, which is one of the important issues in computer
animation.
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