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Abstrac 

t Four trienyl hydrocarbons, (Z3, Z6, Z9)-tricosatriene (Z3, Z6, Z9-23:HC), (Z3, Z6, Z9)-pentacosatriene 

(Z3, Z6, Z9-25:HC), (Z3, Z6, Z9)-heptacosatriene (Z3, Z6, Z9-27:HC), and (Z3, Z6, Z9)-nonacosatriene 

(Z3, Z6, Z9-29:HC) were identified in a non-polar fraction of the body wax of male and female yellow 

peach moth, Conogethes punctiferalis. The relative amounts and ratios of these hydrocarbons differed 

between sexes. In females, the ratios in body wax and pheromone gland extracts were similar, with lesser 

amounts found in gland extracts. Synergistic effects of these hydrocarbons when added to the known 

aldehyde pheromone components were assessed in wind tunnel tests. A blend of (E)-10-hexadecenal 

(E10-16: Ald) and (Z)-10-hexadecenal (Z10-16: Ald) elicited upwind flight and orientation of males to 

the pheromone source, but arriving males did not remain close to source for very long. 

Among the hydrocarbons identified, only Z3, Z6, Z9-23:HC enhanced the activity of the aldehyde blend 

by increasing the time spent close to the source and the number of source contacts. Z3, Z6, Z9-23:HC and 

(Z9)-heptacosene (Z9-27: HC) also increased close-range responses to the aldehyde blend. The activity of 

the aldehyde blend plus these two hydrocarbons was similar to that of crude pheromone extract. 

Positive dose-response relationships between the aldehyde blend and two hydrocarbon mixtures were 

found. The lowest doses that elicited synergism were 10−1 female equivalents (of body wax extracts) for 

the two hydrocarbons, and 10−2 female equivalents for the total unsaturated hydrocarbon mixture. 
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Introduction 

The yellow peach moth, Conogethes punctiferalis (Guenée)(Lepidoptera: Crambidae), is distributed 

through tropical and eastern Asia and Australia, where it causes damage to many orchard, spice, and 

vegetable crops, including peach, chestnut, durian, citrus, papaya, cardamom, ginger, eggplant, 

and maize (Sekiguchi, 1974; Waterhouse, 1993). Konno et al. (1982) identified (E)-10-hexadecenal (E10- 

16:Ald) as a sex pheromone component in pheromone glands of females, and reported a binary mixture 

(90:10) of E10-16:Ald and (Z)-10-hexadecenal (Z10-16:Ald) as an effective pheromone lure in field tests. 

These two aldehydes also were identified as sex pheromone components, with small alterations in ratios, 

for Chinese and Korean populations of this species (Liu et al., 1994; Jung et al., 2000). However, 

pheromone traps baited with this binary aldehyde blend did not perform well in some regions of Japan 

(Kondo et al., 2008), thus reducing the reliability of this technique thus reducing the reliability of this 

technique for monitoring this pest. Two additional compounds [n-hexadecanal and (E)-10-hexadecen- 

1-ol] that elicited responses from antennae of male moths were identified in Japanese populations of this 

species by coupled gas chromatography-electroantennogram detection (GC-EAD). However, when added 

to lures containing E10-16:Ald and Z10-16:Ald, neither of these components improved the attractiveness 

of lures (Kimura, 2002). 

We hypothesized that there might be some unknown components with low volatility that were essential to 

the pheromone of yellow peach moth. First, we found that non-polar fractions of pheromone gland 

extracts and body wax extracts of females, mixed with the aldehyde pheromone blend, synergistically 

enhanced male responses close to pheromone sources (Xiao and Honda, 2010). Then, using wind tunnel 

bioassay-driven fractionation, we found that 3 % and 50 % ether/hexane fractions of pheromone gland 

and female body wax extracts, from an AgNO3-impregnated silica gel column, increased attraction to the 

aldehydes. The components in the 3 % ether fraction were identified as a series of homologous 

monounsaturated hydrocarbons, among which (Z)-9-heptacosene (Z9-27:HC) enhanced male responses at 

short distances from the aldehyde source. However, blends of Z9-27:HC, or the entire monoene fraction, 

added to the aldehydes were still not as active as blends of the aldehydes with crude extracts of female 

body wax (Xiao et al., 2011), suggesting that there were additional active components in the 50 % 

ether/hexane fraction. 

In this paper, we report the identification of several polyunsaturated hydrocarbons in the 50 % 

ether/hexane fraction from analyses of male and female body wax, and extracts of pheromone glands of 

females, by liquid chromatography on columns of silica gel impregnated with silver nitrate. We also 

report the synthesis and testing of these polyunsaturated hydrocarbons and the previously identified 



monoenes as possible pheromone synergists that enhance the responses of male moths when close to an 

aldehyde pheromone source. 

Methods and Materials 

Insects  A colony of yellow peach moth was started from larvae collected in chestnut fields at Ibaraki 

prefecture, Japan. In the laboratory, larvae were reared on an artificial diet and chestnuts or corn (Honda 

et al., 1979). Pupae were sexed and the sexes kept separately in cages at 25±1 °C, 40–60 % R.H., under a 

15 L: 9 D photoperiod. Adults were provided with a 10 % sugar solution on cotton pads. A 15W red, 

incandescent lamp was used for observations during the scotophase.  

Preparation and Fractionation of Extracts  The terminal abdominal segments including the sex 

pheromone glands were excised with micro-scissors from 2 to 4 d-old virgin female moths anesthetized 

with CO2, 5–8 h after lights off. The abdominal tips were extracted for 15 min at room temperature with 

redistilled n-hexane (ca. 1 µl per insect) containing 0.01 % butylated hydroxytoluene (Wako 

PureChemical Industries Co. Ltd., Osaka, Japan) as an antioxidant. Crude pheromone extracts were 

pooled in screwcap vials [200 female equivalents (FE) per vial] with Teflon®-lined caps, and stored at 

−20 °C until use. Body wax extracts were prepared from 2 to 4 d-old virgin females and males, which 

were anesthetized during the photophase (4–6 h after lights on) to avoid contamination of extracts 

from females with the aldehyde pheromone components. A whole insect was dipped in redistilled 

n-hexane for 2 min in a small glass vial. Body wax extracts were passed through a cotton filter in a 

Pasteur pipette® to remove body scales. Extracts of 200 insects were pooled in each vial, and stored 

at −20 °C. Crude pheromone gland extracts and body wax extracts of females and males were 

concentrated under a N2 stream and subjected to liquid chromatography (1 cm diam.Å~3 cm long) on 1 g 

of Florisil (60–100 µm particle size, Wako Pure Chemicals) impregnated with 7 % distilled water (Carroll, 

1961). Extracts were successively eluted with 10 ml each of hexane and 5 % ether in hexane. The first 

eluate of each extract contained mainly hydrocarbons (non-polar fraction, NPF), whereas the second, 

slightly more polar, fraction of crude pheromone gland extracts contained E10-16:Ald and 

Z10-16:Ald. The NPF was further fractionated on a column, packed with 1 g of C-200 silica gel (1 cm 

diam.Å~3 cm long, particle size: 75–150 µm, Wako Pure Chemicals) impregnated with 10 % AgNO3 . 

The column was successively eluted with 10 ml each of hexane, 1, 3, 10, 30, and 50 % ether in hexane, 

and finally with 10 ml ether. Fractions were concentrated under N2 to 1 FE (female equivalent)/µl or 1 

male equivalent/µl, and stored at −20 °C until use. 

Analyses of Extracts Gas chromatography-mass spectrometry  (GC-MS) analyses were conducted with 

a Hewlett-Packard 5972 mass selective detector coupled to an HP 5890 SeriesIIGC, equipped with an 

HP-5ms column (30 mÅ~0.25 mm ID, film thickness 0.25 µm, J&W Scientific, Folsom, CA, USA). The 



oven temperature was held at 140 °C for 2 min, then increased to 280 °C at 5 °C.min−1, and held at 

280 °C for 10 min. Samples were injected in splitless mode at 280 °C, with He as carrier gas. The MS 

interface was maintained at 280 °C. 

Chemicals  E10-16:Ald and Z10-16:Ald were obtained from Shin-Etsu Chemical Co. Ltd. (Tokyo, 

Japan), and a mixture of these two aldehydes (ratio of 95.5:4.5) was prepared after purification (each 

99.5 % pure) by chromatography over 10 % AgNO3-impregnated silica gel. (Z)-9-Tricosene (Z9- 

23:HC), (Z)-9-nonacosene (Z9-29:HC), (Z)-9-pentacosene (Z9-25:HC), Z9-27:HC, and 

(Z)-9-hentricontene (Z9-31: HC) were synthesized by Z-selective Wittig reactions of the corresponding 

aldehydes with the C9-ylide generated by mixing KHMDS and n-nonyltriphenylphosphonium bromide, 

as described in Xiao et al. (2011). Four trienyl hydrocarbons were synthesized by reduction of the 

linolenic ester to the corresponding alcohol, followed by tosylation and chain extension with the 

appropriate dialkyllithium cuprates or alkylmagnesium bromides (Conner et al., 1980; Underhill et al., 

1983). The synthetic triene hydrocarbons were purified on a 20 % AgNO3–impregnated silica gel column. 

Purities of the trienes were confirmed to be more than 99.0 % by GC-MS. (Z3, Z6, Z9)-Heptacosatriene 

was used as an external standard for quantification of polyene hydrocarbons in body wax and pheromone 

gland extracts. 

Bioassays  All bioassays were conducted in an acrylic wind tunnel (2 m longÅ~0.3 m diam.) as 

described in Xiao and Honda (2010). All wind tunnel tests were conducted at 25±1 °C and 40–60 % RH 

under a red incandescent light at ca. 2 lux. One µl of a test solution in n-hexane was loaded on a 

triangular filter paper (0.5 cm baseÅ~1.5 cm height), and the filter paper hung 15 cm above the floor and 

15 cm from the upwind end of the wind tunnel. Two to 4-d-old males were acclimatized first in a wooden 

cage (20Å~20Å~30 cm) for 24 h and then individually in a small metal mesh cage (6 cm diamÅ~6 cm 

high) for 1 h. A cage containing a male moth was hung 15 cm below the ceiling at the downwind end of 

the wind tunnel. Male moths were allowed to leave the cage just after setting a stimulus source at the 

upwind end of the tunnel, and the following four behaviors recorded for 3 min: (1) flight initiation; (2) 

orientation to the plume (male moth flew upwind along the plume); (3) remained close to source (hovered 

within 10 cm of the source); and (4) source contact (Mazor and Dunkelblum, 1992; Xiao and Honda, 

2010). The time spent close to the source and the numbers of source contacts were also recorded. 

Statistical Analysis  Data on initiating flight, orientating to the plume, and remaining close to the source 

were first analyzed by nÅ~2 Fisher’s exact probability test using the actual number of insects. When 

probability was significant (P<0.05), multiple comparisons were performed employing Ryan’s method. 

Data on mean time for remaining close to the source and mean numbers of source contacts by male 

moths were analyzed by Tukey’s test. Software package R, version 2.10.0 (R Development Core Team, 

2009), was used for the statistical analyses. 



 

Results 

Identification Four major peaks (a: 19.9 min; b: 23.1 min; c: 26.2 min; d: 29.0 min; area percent of total 

peak area: 93 %) were detected by GC analysis of the fraction of female body wax extracts that eluted 

with 50 % ether/hexane from an AgNO3-impregnated silica gel column (Fig. 1). The mass spectra of 

these compounds were similar. In each spectrum, molecular ions were observed at m/z 318 (C23H44), 346 

(C25H48), 374 (C27H52), and 402 (C29H56), respectively. All spectra contained ions at m/z 79 and m/z 108, 

which were assigned as [(CH=CH)3H]+ and [CH3CH2 (CH=CH)3H]+, respectively, and which are 

diagnostic for methyleneinterrupted 3,6,9-alkatriene structures (Millar, 2000). Distinct fragment ions also 

were observed at m/z 262, 290, 318, and 346 in each spectrum, respectively, corresponding to M+−56 

(loss of C4H8); i.e., [H(CH=CH)3C13H27]+, [H(CH=CH)3C15H31]+, [H(CH=CH)3C17H35]+, and [H(CH= 

CH)3C19H39]+. On the basis of their mass spectra, these four compounds were tentatively identified as 3, 6, 

9-tricosatriene, 3, 6, 9-pentacosatriene, 3, 6, 9-heptacosatriene, and 3, 6, 9-nonacosatriene, respectively. 

The shorter retention times of these compounds, compared to those of corresponding alkanes, on a 

non-polar column verified that none of the double bonds in these molecules were conjugated (Millar, 

2000). The mass spectra and retention times of the four compounds matched those of synthetic Z3, Z6, 

Z9-23:HC, Z3, Z6, Z9-25:HC, Z3, Z6, Z9-27:HC, and Z3, Z6, Z9-29:HC (peaks a–d, respectively). 

The same trienyl hydrocarbons also were identified in the 50 % ether/hexane fraction of extracts of 

pheromone glands of females, and in body wax extracts of male moths. The quantitative profiles of the 

hydrocarbons from the female body wax extracts, the pheromone gland extracts, and male body wax 

extracts are shown in Table 1. Ratios (as peak area percentage) of the four hydrocarbons were similar 

between the female body wax and pheromone gland extracts, but markedly different from male body wax 

extracts, which contained relatively little Z3, Z6, Z9-23:HC in comparison to the extracts from females. 

The total amount of triene hydrocarbons from the female body wax extracts was ca. 9.4 ng/female, about 

10 times more than that in pheromone gland extracts, but 37 times less than in male body wax 

extracts. Synergistic Effects of Unsaturated Hydrocarbons We had previously shown that the NPF of 

female body wax was not by itself attractive to male moths (Xiao and Honda, 2010). The results of 

bioassays testing for synergism between the four trienyl hydrocarbons found in the NPF of female body 

wax and the aldehyde sex pheromone blend are summarized in Table 2. As reported previously, the 

aldehyde blend alone elicited orientation of males to the pheromone source, but once attracted, males did 

not remain close to the source. When each of the four trienes were tested as mixtures with the aldehyde 

blend, the orientation behavior of males did not change. However, the number of source contacts was 

enhanced by the addition of Z3, Z6, Z9-23:HC. The mixture of all the trienes and the aldehyde blend also 



induced males to spendmore time close to the source, and increased the number of source contacts in 

comparison to the aldehyde blend alone. Although Z3, Z6, Z9-23:HC alone or the mixture of all four 

trienes enhanced responses to the aldehyde blend, the responses were not as high as those elicited by the 

non-polar fraction of female body wax extracts or crude pheromone extracts. Similar reduced responses, 

compared to whole extracts, had also been observed by addition of Z9-27:HC and a mixture of other 

monoenes (Xiao et al., 2011). Thus, we tested the effects of mixtures of the monoenes and trienes 

added to the aldehyde blend. As shown in Table 3, similar response rates were found among all 

treatments for flight initiation, orientation to the plume, and arrestment close to the source. In comparison 

to the aldehyde blend alone, males remained close to the source longer, and the mean number of source 

contacts was higher, to the combination of Z9-27:HC, Z3, Z6, Z9-23:HC and the aldehyde blend. This 

activity was equivalent to that of crude pheromone extracts, and to the combinations of all monoenes and 

Z3, Z6, Z9-23:HC with the aldehyde blend, and all monoenes and all trienes with the aldehyde blend. In 

the remaining treatments, i.e., the aldehydes plus all trienes without Z3, Z6, Z9-23: HC, and the 

aldehydes with all monoenes and trienes except Z9-27: HC and Z3, Z6, Z9-23: HC, no enhanced effect, 

compared to responses to the aldehyde blend alone, was found. The dose-response relationships for a 

mixture of Z9-27: HC, Z3, Z6, Z9-23:HC, and aldehydes, and for a mixture of all monoenes and trienes 

and aldehydes, were tested. Similar patterns between dose and mean time remaining close to the source, 

and dose and mean number of source contacts were observed, so only the relationship between dose and 

mean time remaining close to source is shown in Fig. 2. Thus, for the blend of Z9-27:HC, Z3, Z6, 

Z9-23:HC, and the aldehydes, the lowest dose that elicited an enhanced effect was 10−1 FE (of body wax 

extracts), whereas for the mixture of all monoenes, trienes, and aldehydes it was 10−2 FE. No difference 

between responses to the two mixtures was found for doses of 10−1 FE or 1 FE. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trienes 
Ratio (%) a, b  Amount (ng/ insect) a 

FBW PG MBW  FBW PG MBW 

Z3, Z6, Z9-23: HC 25.2 ± 0.4 33.7 ± 1.0 0.1 ± 0.0  2.4 ± 0.1 0.3 ± 0.0 1.0 ± 0.0 

Z3, Z6, Z9-25: HC 7.4 ± 0.4 5.6 ± 0.8 4.6 ± 0.1  1.4 ± 0.1 0.1 ± 0.0 18.6 ± 0.7 

Z3, Z6, Z9-27: HC 27.0 ± 1.0 15.2 ± 1.7 41.4 ± 0.4  2.5 ± 0.1 0.2 ± 0.0 141.2 ± 7.9 

Z3, Z6, Z9-29: HC 40.5 ± 1.0 45.4 ± 2.7 53.9 ± 0.3   0.3 ± 0.0 182.7 ± 8.3 

Total     -  - -  9.4 ± 0.4 0.9 ± 0.1 343.6 ± 16.7 

Fig. 1 Total ion chromatogram of the 50 % ether/hexane fraction of the non-polar fraction of 
 female Conogethes punctiferalis body wax extract separated on a AgNO3-impregnated silica gel 
 column. Four major peaks (a–d) account for 93 % of total peak area. Compound identities: a=(Z3,  
 Z6, Z9)-tricosatriene, b=(Z3, Z6, Z9)-pentacosatriene, c=(Z3, Z6, Z9)-heptacosatriene, and 
 d=(Z3, Z6, Z9)-nonacosatriene. 
 Conditions: HP-5ms column (30 mÅ~0.25 mm ID, 0.25 µm film; 14 0 °C for 2 min, then to  
 280 °C at 5 °C.min−1, 280 °C for 10 min).Samples were injected in splitlessly mode 

a

18.00 22.00 26.00 30.00 34.00

b

c

d

19.86

23.11

26.16

29.02

Retention time (min)

Table 1 Ratios and amounts of triene hydrocarbons found in the Female Body Wax (FBW), Pheromone 
Gland (PG) and Male Body Wax (MBW) extracts of Conogethes punctiferalis 

a Trienes: (Z3, Z6, Z9)-tricosatriene (Z3, Z6, Z9-23:HC), (Z3, Z6, Z9)-pentacosatriene (Z3, Z6, 
Z9-25:HC), (Z3, Z6, Z9)-heptacosatriene (Z3, Z6, 
Z9-27:HC) and (Z3, Z6, Z9)-nonacosatriene (Z3, Z6, Z9-29:HC) 
b Ratios are shown as the integrated peak area of each triene as a percentage of the total area of all 
triene hydrocarbons 
c Values are shown as the mean±standard deviation, from 3 replicates 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment a 

N Male responses (%) c   Male remaining close to source e 

 Initiate 
flight 

Orientate to 
plume 

Close to 
source  Mean time     

(sec) d 
Mean number of 
source contacts d 

Z3, Z6, Z9-23: HC 19 100 a 94.7 a 89.5 a  30.6 ± 2.8 ab 11.2 ± 1.1 a 

Z3, Z6, Z9-25: HC 17 100 a 94.1 a 94.1 a  16.2 ± 2.5 c 5.3 ± 1.0 b 

Z3, Z6, Z9-27: HC 18 100 a 88.9 a 88.9 a  17.5 ± 2.0 c 5.2 ± 0.8 b 

Z3, Z6, Z9-29: HC 17 100 a 94.1 a 94.1 a  17.6 ± 3.0 c 4.8 ± 1.0 b 

Mixture b 20 100 a 90.0 a 90.0 a  34.3 ± 4.8 a 12.5 ± 1.7 a 

Control 24 100 a 95.8 a 95.8 a   21.1 ± 2.2 bc 6.8 ± 0.9 b 

a Z3, Z6, Z9-23:HC, Z3, Z6, Z9-25:HC, Z3, Z6, Z9-27:HC and Z3, Z6, Z9-29:HC are abbreviations  
 for (Z3, Z6, Z9)-tricosatriene, (Z3, Z6, Z9)-pentacosatriene, (Z3, Z6, Z9)-heptacosatriene and (Z3,  
 Z6, Z9)-nonacosatriene, respectively 
b Ten ng (1 female equivalent) of a blend of (E)-10-hexadecenal and (Z)-10-hexadecenal at a ratio of  
 95.5:4.5 were added to 10 ng each of all treatments; the control was the aldehyde blend alone 
c A mixture of all trienes at the natural ratio found in female body wax extracts 
d Data with different letters in the same column are different, P<0.05, by Ryan’s multiple comparisons 
 after Fisher’s exact probability test 
e Data with different letters in the same column are different, P<0.05, by Tukey’s multiple 
 comparisons after ANOVA 

Table 2 Behavioral responses of Conogethes punctiferalis males to mixtures of triene hydrocarbons 
plus the aldehyde blend in wind tunnel tests 



 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatment a,b (+ aldehyde 
blend) N 

Male responses (%)e 

 

Male remaining close to 
source e 

Initiate 
flight 

Orientate 
to plume 

Close to 
source 

Mean time 
(sec) 

Mean number 
of source 
contacts 

Z9-27:HC+Z3,Z6,Z9-23:HC 20 100 a 95.0 a 95.0 a   94.1± 8.5 a 40.8± 3.9 a 
Monoenesc + Z3,Z6,Z9- 
23:HC 17 100 a 88.2 a 88.2 a  97.0± 7.3 a 39.6± 3.4 a 

Monoenesc + Trienesd 20 100 a 95.0 a 95.0 a   90.6± 7.6 a 38.1± 3.2 a 
Crude pheromone extracts 14 100 a 87.3 a 87.3 a  88.1± 6.7 a 39.7± 7.3 a 
Trienesd− Z3,Z6,Z9-23:HC 16 100 a 93.8 a 93.8 a  19.7±2.8 b 6.3± 1.5 b 
Monoenesc + Trienesd− Z9- 
27:HC−Z3,Z6,Z9-23:HC 

19 100 a 94.7 a 94.7 a  35.6±4.0 b 12.2± 1.6 b 

Control 19 100 a 94.7 a 94.7 a  23.4±3.0 b 7.2±0.9 b 

a Ten ng (1 female equivalent, FE) of a blend of (E)-10-hexadecenal and (Z)-10-hexadecenal at a ratio 
 of 95.5:4.5 were added to all treatments (at 3FE), except that of the crude pheromone extract; the 
 control was the aldehydes blend alone 
b Z9-27:HC and Z3,Z6,Z9-23:HC are abbreviations for (Z9)-heptacosene and (Z3, Z6, Z9)-tricosa-  
 triene 
c Three FE of a monoenes mixture, including (Z)-9-tricosene, (Z)-9-pentacosene, (Z)-9-heptacosene,  
 (Z)-9-nonacosene and (Z)-9-hentricontene, at the natural ratio in female body wax extracts 
d Three FE of a trienes mixture, including (Z3, Z6, Z9)-tricosatriene, (Z3, Z6, Z9)-pentacosatriene,  
 (Z3, Z6, Z9)-heptacosatriene and (Z3, Z6, Z9)-nonacosatriene, at the natural ratio in female body  
 wax extracts 
e Data with different letters in the same column are different, P<0.05, by Ryan’s multiple comparisons  
 after Fisher’s exact probability test 
f Data with different letters in the same column are different, P<0.05, by Tukey’s multiple 
 comparisons after ANOVA 

Table 3 Behavioral responses of Conogethes punctiferalis males to mixtures of the aldehyde blend,  
 monoene and triene hydrocarbons identified in female body wax extracts 



 
 
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 
	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Dose-response relationships of the mean time remaining close to source by males in  
 wind tunnel tests when (Z9)-heptacosene and (Z3, Z6, Z9)-tricosatriene (open columns),  
 or the blend of all monoenes and trienes (closed columns), were added to the aldehyde  
 blend (10 ng). Values are shown as mean+standard error. Numbers in parentheses are 
 the replications of different individual insects. Amounts of hydrocarbons were calculated  
 based on female equivalents (FE) of body wax extracts. Values with the same letter were not  
 different, P< 0.05, by Tukey’s multiple comparisons after ANOVA 



Discussion 

In order to improve the relatively poor performance of the pheromone lure for the yellow peach moth, we 

searched for new pheromone components, and showed, in wind tunnel tests, that two fractions of crude 

pheromone gland extract or female body wax extract enhanced short-range male responses to the standard 

lure of E10-16:Ald and Z10-16: Ald. We initially identified Z9-27:HC as a synergist of the aldehyde 

blend (Xiao et al., 2011), but bioassays demonstrated that there must be additional compounds. In the 

work described here, we identified a second synergist, Z3, Z6, 9Z- 23:HC. This compound and several 

homologs were identified as methylene-interrupted trienes. In Lepidoptera, these and related polyene 

hydrocarbons are probably biosynthesized in oenocyte cells from linoleic or linolenic acid precursors, 

leading to the production of a series of homologous polyenes with all-Z configurations, and with double 

bonds at the 3, 6, and 9 positions (Schal et al., 1998; Millar, 2000). Our conclusion is also supported by 

the fact that all of the 3, 6, 9-polyene hydrocarbon pheromones found to date in pyralid and crambid 

species have Z configurations (Cabrera et al., 2001; Millar et al., 2005; Gibb et al., 2007; Strong et al., 

2008). 

The same trienyl hydrocarbons also were found in male body wax extracts, but in different ratios and, 

with the exception of Z3, Z6, Z9-23:HC, in much larger amounts (Table 3). Qualitative or quantitative 

sexual dimorphism of cuticular hydrocarbons occurs widely in insects that use cuticular hydrocarbon 

components as recognition signals between individuals (Howard and Blomquist, 2005). Sexual 

dimorphism of cuticular hydrocarbons might result from genetic factors (Liimatainen and Jalon, 2007), 

dopamine regulation of hydrocarbon biosynthesis (Marican et al., 2004), or even differential transport of 

hydrocarbons by lipophorin proteins. In yellow peach moth, the factors underlying the quantitative 

dimorphism of trienes between males and females have not been investigated. We had previously 

reported that body wax extracts of female and male yellow peach moth contained the same monoene 

hydrocarbons (Xiao et al., 2011). Our results indicate that there is little sex specificity for most of the 

unsaturated hydrocarbons in body wax, but that one or more key components may be increased in females 

to provide a sex-specific signal. In Lepidoptera, components of female sex pheromones generally are 

produced in specific ratios, and even small changes in ratios may decrease or eliminate the attraction of 

conspecific males (Cardé and Haynes, 2004). Thus, it is entirely plausible for a component found in both 

sexes to be a key component of the overall sexspecific signal produced by females. In yellow peach moth, 

similar amounts of Z3, Z6, Z9-23:HC were found in body wax of both sexes. However, because males do 

not produce the aldehyde pheromone components, its presence in males is unlikely to elicit responses 

from other males. In addition, the amount of the trienyl hydrocarbons was much less than 

that of the monoene hydrocarbons identified previously (Xiao et al., 2011), although even these low 

amounts synergized the response to the aldehyde blend. Our dose-response experiment suggests that 



synergism by these compounds is not particularly sensitive to dose, as long as the amount is above a 

certain threshold. 

Although Z3, Z6, Z9-23:HC synergized the aldehyde blend, its effect, or indeed the effect of the mixture 

of trienes, was not as high as that of the non-polar fraction of body wax extracts. The synergism of the 

aldehyde blend by Z9-27:HC also was lower than that of the whole non-polar fraction from female body 

wax extracts (Xiao et al., 2011). However, the combination of Z3, Z6, Z9-23:HC, Z9-27:HC plus the 

aldehyde blend was as active as crude pheromone extract (Table 3). These results indicate that the 

complete sex pheromone system of the yellow peach moth is composed of the two aldehyde components, 

E10-16:Ald and Z10-16:Ald, and at least two unsaturated hydrocarbons, Z9-27:HC and Z3, Z6, 

Z9-23:HC. 

Lepidopteran pheromone components are classified as Type I, which includes C10–C18 alcohols, acetates, 

and aldehydes, Type II, consisting of C17–C23 polyunsaturated hydrocarbons or their epoxide derivatives, 

and a number of miscellaneous components, which are not readily classified 

(Millar, 2000; Ando et al., 2004). Recently, more complex systems, consisting of blends of both Type I 

and Type II compounds have been found as sex pheromones, or sex attractants, in some pyralid (Millar et 

al., 2005; Strong et al., 2008) and crambid species (Cabrera et al., 2001; Gibb et al., 2007). The yellow 

peach moth is a further example of a crambid species that uses both Type I (E10-16:Ald and Z10- 

16:Ald) and Type II compounds (Z9-27:HC and Z3, Z6, Z9- 23:HC) in its pheromone. Such 

combinations may be a widespread motif in lepidopteran pheromone chemistry (Millar et 

al., 2005), and may indicate a shift in the range of compounds that constitute sex pheromone blends in 

Lepidoptera. Moreover, in the yellow peach moth, Z9-27:HC and Z3, Z6, Z9-23: 

HC were in both pheromone gland extracts and body wax extracts, indicating that the alkene components 

are distributed over the body surface (Table 1). In Lepidoptera, Type II pheromone components are 

synthesized in epidermal cells and transported to the pheromone gland (Schal et al., 1998; Wei et al., 

2004; Matsuoka et al., 2006; Ando et al., 2008), but there has been no report of direct evidence for 

specific sequestration of these hydrocarbons into pheromone glands. Because lepidopteran sex 

pheromone glands often occur as modified segmental membranes, between the 8th and 9th abdominal 

segments (Percy-Cunningham and MacDonald, 1987), pheromone gland extracts contain chemicals not 

only from the sex pheromone gland itself but also from associated tissues in these segments. In the yellow 

peach moth, the relatively small amounts of Z9-27:HC and Z3, Z6, Z9-23:HC in crude pheromone 

extracts may be from contamination from the cuticular hydrocarbons of the 8th and 9th abdominal 

segments. 

Cuticular hydrocarbons are well known as chemical signals in insects, having roles in species, gender, 

nest mate, and caste recognition, among other functions (Howard, 1993; Howard and Blomquist, 2005). 



In Lepidoptera, potential semiochemical functions for cuticular chemicals have long been known (Ono, 

1977; Rutowski, 1978; Shimizu and Tamaki, 1980). However, such cuticular hydrocarbons only appear to 

function as signals when presented in combination with more volatile sex attractant pheromone. For 

example, in the presence of the volatile sex pheromone, saturated cuticular hydrocarbons induced 

copulation attempts by male Orgyia leucostigma (Grant et al., 1987), or induced persistent approaches 

and contacts to pheromone sources by male Anarsia lineatella (Schlamp et al., 2005). In the yellow peach 

moth, Z9-27:HC and Z3, Z6, Z9-23:HC were not attractive to males (Xiao and Honda, 2010), but 

enhanced the activity of E10-16:Ald and Z10-16:Ald. This result confirms the essential role of the 

E10-16:Ald and Z10-16:Ald in elucidating the signal functions of Z9-27: HC and Z3, Z6, Z9-23:HC in 

the body wax of the yellow peach moth. 

Although possible semiochemical functions of cuticular chemicals of lepidopteran species have been 

postulated for some time (Ono, 1977; Rutowski, 1978; Shimizu and Tamaki, 1980), the behavioral 

activities elicited by these compounds have generally been carried out in small spaces, such as a cage 

(Grant et al., 1987; Schlamp et al., 2005). Our wind-tunnel assays, with free-flying moths, provide more 

robust data on the synergistic functions of cuticular hydrocarbons as critical components of sex attractant 

pheromones. 

Finally, the finding that Z9-27:HC (Xiao et al., 2011) and Z3, Z6, Z9-23:HC are close-range synergistic 

components of mate attraction is of fundamental importance to improving our understanding of 

lepidopteran pheromone systems. As described above, it is clear that, for some species at least, attraction 

to a long-range, volatile pheromone may be mediated over shorter distances by less volatile hydrocarbons 

associated with the cuticle. More careful observations of the responses of male moths of other species 

when close to a volatile pheromone source may reveal further examples of short-range signal components. 

In yellow peach moth, the poor performance of aldehyde-only pheromone lures was probably due to the 

absence of Z9-27:HC and Z3, Z6, Z9-23: HC, which enhance the activity of the aldehyde pheromone at 

shorter distances from the source. The addition of Z9-27:HC and Z3, Z6, Z9- 23:HC to the 

two-component aldehyde blend should induce male moths to stay near orwithin pheromone traps for a 

longer time, consequently increasing the likelihood of males being caught. 
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