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Abstract

During the past half century, the Japanese city gas industry has experienced three key

changes : 1) shift from manufactured-gas to natural gas; 2) deregulation; and 3) emergence

of the all-electric house market. These changes impacted the way the city gas business had

been managed in Japan. The purpose of this thesis is to develop and analyze mathematical

models for capturing the impact of the three changes.

In Chapter 2, the driving forces behind the three changes are analyzed and new strategic

directions resulting from these changes are discussed. This prepares a basis for developing

mathematical models in subsequent chapters. Concerning the shift from manufactured-gas to

natural gas, Chapter 3 establishes a methodological approach for assessing the performance

of a co-generation system in terms of energy-saving. One of the advantages of natural gas

over manufactured-gas can be found in the enhanced efficiency of energy transportation. In

order to benefit from this advantage, it is crucial to facilitate the shift from manufactured-

gas to natural gas swiftly. For this purpose, Japanese city gas companies have been keen

to develop the market for co-generation systems so as to expand the demand for natural

gas. The methodological approach proposed in Chapter 3 provides a useful strategic tool for

disseminating co-generation systems.

Chapter 4 deals with new competitive features of the Japanese gas industry arising from

deregulation. The Nash equilibrium structure is expressed explicitly for the case of M

suppliers and N large-scale customers. It is shown that this game has the unique Nash

equilibrium of pure strategy type under the condition that each supplier secures a set of

near customers in an exclusive manner. If the delivery service areas of the two suppliers

overlap each other, there exists no equilibrium within pure strategies. In Chapter 5, the

competitive market model of Chapter 4 is again addressed, where the optimal pricing strategy
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among mixed strategies is analyzed. In order to assure analytical tractability, we limit

ourselves to two suppliers and two customers with complete symmetry. The two types of

Nash equilibriums are constructed explicitly when mixed strategies are defined on a finite set

of L discrete points that are chosen in such a way that their reciprocals are equally distanced

in a finite interval. The limiting strategies as L→∞ are also derived explicitly. It is shown

that these limiting strategies are Nash equilibriums within the context of mixed strategies

defined on continuum.

In order to respond to the growing emergence of all-electric house systems, it is quite

important to establish an economically viable investment strategy for installing gas pipelines

in a new residential area. This problem is addressed in Chapter 6, where a newly developed

residential area is formulated as a finite Markov chain in continuous time, describing moving-

in and moving-out behaviors of customers. The revenue of a gas company is expressed as a

reward process defined on the Markov chain, which would be affected by the number of gas

pipelines installed in the beginning as well as how customers may or may not choose an all-

electric house system. A computational algorithm is developed for evaluating the expected

revenue at time T , enabling one to find the optimal strategy for installing gas pipelines.
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Chapter 1

Introduction

Japanese city gas industry has been growing steadily during the past half century. As a

major part of the driving force for sustaining this growth, three key changes took place,

which restructured the industry through several stages. The three changes are: 1) shift from

manufactured-gas to natural gas; 2) deregulation; and 3) emergence of the all-electric house

market. These changes impacted the way the city gas business had been managed in Japan

significantly.

The city gas used to be manufactured from petroleum fuel or coal through the process

of heating or distillation, and the resulting product was called the manufactured-gas. On

the other hand, the natural gas was imported in the form of LNG (Liquefied Natural Gas),

which was manufactured from the original gas by removing the sulfur component through

the process of liquefaction before the import. Concerning the first change of the business

environment, Japanese gas companies began to introduce natural gas in the middle of 1960’s.

The shift from manufactured-gas to natural gas was accelerated throughout 1970’s, and

manufactured-gas has been almost eliminated from the market by now.

The reason behind the shift from manufactured-gas to natural gas can be found in that

the natural gas has three significant advantages over the manufactured-gas: 1) enhanced

safety; 2) less environmentally hazardous exhausts; and 3) energy efficiency. In particular,

1



CHAPTER 1. INTRODUCTION 2

the third factor provides the direct business advantage. More specifically, the calorific value

of natural gas is twice as large as that of manufactured-gas. Accordingly, natural gas can

provide city gas companies with much enhanced transportation efficiency. This advantage

urged the gas companies to develop new markets, such as industrial furnace, air-conditioning

of commercial buildings and co-generation. The contribution from the new markets to the

profits and sales volume of the gas companies has been increasing continuously until now.

Deregulation of the gas industry has been taking place in most of developed countries in

the world by now, led by the United States with the Natural Gas Policy Act (NGPA) enacted

in 1978. In parallel with this global trend, the gas utilities in Japan were liberated in March

1990, resulting in the second change of the business environment. Through this deregulation

in Japan, large-scale customers with consumption of more than 2 million (m3/year） of city

gas were allowed to choose a supplier freely and price regulations were abolished for these

customers. So as to motivate new entrants, the existing city gas companies were forced to

provide them with transportation services at regulated prices, although new entrants were

still responsible for procuring natural gas by themselves. The requirement to be a large-

scale customer has been relaxed step-by-step, and the requirement was set to have annual

consumption of 100 thousand (m3/year）or more in April 2007. While the price deregulation

to the large-scale customers has motivated new entrants, represented by Tokyo Electric Power

Company and Kansai Electric Power Company, to compete in the city gas market, it has

also facilitated the existing city gas companies to begin new businesses including sales to

large-scale customers through LNG lorry transportation. Accordingly, the pricing strategy

has become one of the most important marketing considerations for the city gas companies.

While the deregulation has changed the industrial market as well as the large-scale com-

mercial market substantially, the residential market was not affected much by the dereg-
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ulation and remained intact. However, upon entering the new century, the emergence of

all-electric house market has been changing these two markets substantially, causing the

third change of the business environment. In an all-electric house system, energy demand

for cooking and hot water within household is supplied totally by electricity with IH cooking

heaters and an electric “heat-pump water heating and supply system.” While these tech-

nologies are not new, all-electric house systems become popular because of enhancement

of price-performance of those equipment, combined with the strong promotion campaigns

by electricity companies. Along with the dissemination of all-electric houses, the city gas

companies now face severe competitions against electricity companies in domestic energy

services.

The purpose of this thesis is to develop and analyze mathematical models for capturing

the impact of the three changes in the Japanese gas industry discussed above. It is intended

to establish a foundation for helping Japanese city gas companies to develop new strategies

for dealing with such changes. The thesis is structured as follows. Chapter 2 discusses how

the three changes restructured the Japanese gas industry in detail. In particular, the driving

forces behind the three changes are explained and new strategic directions resulting from

the three changes are discussed. This chapter is supposed to prepare a basis for developing

mathematical models in subsequent chapters. In Chapter 3, a methodological approach is

established for assessing the performance of a co-generation system using natural gas in

terms of energy-saving. The model can be used as a useful strategic tool for disseminating

co-generation systems.

Chapter 4 deals with new competitive features of the Japanese gas industry arising from

deregulation. Focusing on the price deregulation, the Nash equilibrium structure is expressed

explicitly for the case of M suppliers and N large-scale customers. When the strategy space
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for possible price choices is finite and discrete, and only the pure strategies are considered, it

is also shown, with M = 2, that no Nash equilibrium exists and the two suppliers continue to

decrease their price in turn to the lower limit, followed by the sudden jump to the upper limit

in a cyclic manner. In order to avoid this cyclic phenomenon, the case of the mixed strategies

over the continuum strategy space is analyzed in Chapter 5. Approximating the continuum

strategy space by a set of L points in such a way that their reciprocals are separated with

equal distance, and considering the mixed strategies over the approximated discrete strategy

space, the two types of Nash equilibriums are constructed explicitly. Furthermore, the two

Nash equilibriums for the continuum strategy space are also derived explicitly by letting

L→∞.

Addressed in Chapter 6 is the problem of how to determine the optimal number of gas

pipelines in a newly developed residential area in face of the challenge from electric power

companies through all-electric house system. Prior to emergence of all-electric house system,

the city gas companies could count on the residential gas demand of a house located near a

gas pipeline network for a very long time. Recently, however, some customers may choose all-

electric house system even when the access to a gas pipeline network is available. In order to

capture this competitive phenomenon, a newly developed residential area is formulated by a

finite Markov chain in continuous time, where the revenue of a city gas company is described

as a reward process defined on the Markov chain. Based on the uniformization procedure

of Keilson [10], a computational algorithm is developed for evaluating the expected revenue

of the city gas company over a finite planning horizon T as a function of the number of gas

pipelines installed in the beginning. This in turn enables one to find the optimal strategy

for installing gas pipelines through numerical exploration.



Chapter 2

Three Key Changes that Restructured

Japanese City Gas Industry

2.1 Shift from Manufactured-Gas to Natural Gas and

Related Strategic Actions

Japan’s city gas industry has been growing steadily during the past half century. Figure 2.1.1

exhibits the city gas sales volume by sector in Japan, every 5 years from 1965 to 2005. It
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Figure 2.1.1: City Gas Sales Volume by Sector in Japan
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CHAPTER 2. THREE KEY CHANGES IN THE CITY GAS INDUSTRY 6

should be noted that the core of the city gas business has been shifting from the residential

sector to the industrial and commercial sectors, exceeding 60% of the total city gas sales

volume in 2010. The growth rate of each of the two sectors has been much larger than that

of any other sector, as can be seen in Table 2.1.1. This shift was triggered by introduction��� ����� ����	� 
� ���
�� ��������� ������ ��
� �� �������������� ���� �������
��� ��		������ �����
���� �
 �� �������
�����		������ �����
���� �
 ���!"# �$%$$& '%(!� $%"�" �%$!( ) ) ) )�!*� $!%'(! &%*** '%&'" $%"#� �!+$�, �'+&", �(+$�, �#+'#,�!*# '#%'�& �$%#"� &%!'$ '%�'# !+�", *+'(, �(+�', &+&$,�!&� #"%'"' �"%�&" �'%"!* #%"*' '+'#, #+$�, ��+'#, *+��,�!&# "*%'�! $�%#$' $(%$"& *%!!# (+"�, '+&", !+"$, *+��,�!!� **%"�$ $#%""$ '�%$"� ��%�'$ $+&#, '+#*, ��+#!, '+&*,�!!# !�%'$( ((%#'' *�%��# �'%#&' (+��, #+#�, ��+*�, *+#',$��� !'%&�" '�%#$& !(%#"# $�%$"# �+!#, (+&", #+!*, *+&(,$��# !!%($# '!%��( �'*%"&! $&%#"' �+!(, (+&&, !+#", "+�&,-./01234563 7898: ;8< =<</2>8?>/:@ ;8< A:B0<?1C DAEF=E G>: 7898:3<3HI
Table 2.1.1: Rate of Increase in Gas Sales Volume by Sector in Japan

of natural gas into the city gas industry in early 1960’s.

Prior to the natural gas, the city gas was manufactured from petroleum fuel or coal

through the process of heating or distillation, and the resulting product was called the

manufactured-gas. On the other hand, the natural gas was imported in the form of LNG

(Liquefied Natural Gas), which was manufactured from the original gas by removing the

sulfur component through the process of liquefaction before the import. As we will see, the

natural gas has several significant advantages over the manufactured-gas and the former has

almost eliminated the latter from the market by now.

For city gas companies, the shift from the manufactured-gas to the natural gas was quite

challenging. Apparently, Japan has no natural gas resources, and the natural gas had to be

imported in the form of LNG. Since the huge amount of investment would be needed for

developing the liquefaction plant to produce LNG, it was absolutely necessary for potential
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exporting countries to secure long-term buyers. However, LNG was not traded on commercial

basis at that time, and Japanese city gas companies, in collaboration with Japanese electric

power companies, had to create the LNG market from the very beginning. The market was

established in 1969. Japan is now the largest importer of LNG in the world, having 28 LNG

terminals within Japan and trades about 100 million ton LNG per year.

In order to introduce the natural gas into the market, another obstacle had to be over-

come. The burning rate of the natural gas is much higher than that of the manufactured-gas.

Accordingly, so as to replace the manufactured-gas by the natural gas, all stove burners and

any other gas equipment had to be adjusted, e.g. replacing burning parts. Workers had

to visit every customer one by one for making necessary adjustments. It was quite time-

consuming, laborious and costly.

Despite these difficulties, the shift from the manufactured-gas to the natural gas took

place because the natural gas has three significant advantages over the manufactured-gas:

1) enhanced safety; 2) less environmentally hazardous exhausts; and 3) energy efficiency, as

explained below.

Firstly, in comparison with the manufactured-gas, the natural gas could enhance the

consumer safety substantially because of the following reasons. The manufactured-gas con-

tains substances heavier than the air, represented by propane. Accordingly, if it leaks, the

manufactured-gas tends to pile from the floor, and can explode easily by catching a fire.

In contrast, the natural gas has methane as a major component, which is lighter than the

air. Consequently, even if it leaks, the natural gas will diffuse into the air, reducing the

probability of explosion significantly. Furthermore, the flammable range of the natural gas

is much smaller than that of the manufactured-gas, making the consumer safety better.

Secondly, the natural gas produces much less air pollutants, such as nitrogen oxide,
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sulfur oxide, and particle materials, than fossil fuel including crude oil needed to produce

the manufactured-gas.

Finally, the calorific-value of the natural gas is twice as much as that of the manufactured-

gas. In other words, given the same volume, the natural gas would produce energy twice as

much as the manufactured-gas, reducing the transportation cost by one half.

Because of these three advantages, the natural gas has enabled one to deal with large-

volume customers more easily, resulting in the shift of the core of the city gas business from

the residential sector to the commercial and industrial sectors.

By taking advantage of the merits of the natural gas, Japanese city gas companies adopted

a strategic change in early 1980’s, and penetrated into new markets of industrial plants and

commercial buildings with substantial demand of energy for manufacturing, air-conditioning

and the like. Traditionally, the former market had been dominated by crude oil companies,

while the latter market by electricity companies. The new strategy could be characterized

by three main targets: 1) factory energy demand; 2) air-conditioning for office buildings and

commercial facilities; and 3) CGS (Co-Generation System).

For the factory energy demand, city gas companies attempted to replace the crude oil

by the natural gas as the source of energy for industrial furnace and boiler. At that time,

the natural gas was slightly more expensive due to the additional cost for liquefaction and

sea transportation with minus-temperature. However, it had the environmental advantage

of emitting less air pollutants than other fossil fuels. In addition, the natural gas could be

provided through underground pipes, enabling one to utilize the space for oil tanks in the

factory for other purposes. Taking advantage of these merits for the customers combined

with the severe sales efforts, city gas companies could increase their share in the market

steadily, first around urban areas and subsequently in suburban areas.
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Before 1950, the commercial air-conditioning sector in Japan was totally dominated by

electricity companies. Since late 1980’s, however, city gas companies has been steadily

increasing their share in the market using the natural gas as the main vehicle, reaching

the market share of 40% in 2005, as illustrated in Figure 2.1.2. In order to provide air-

conditioning for commercial buildings by the natural gas, a gas absorption refrigerator is

used, which is more competitive for large buildings and less competitive for small buildings

against air-conditioning systems driven by electricity. Since the metropolitan areas tend to

have large buildings, it is estimated that the market share of the city gas in these areas

exceeds 50% now.

Figure 2.1.2: Market Share of Gas in the Commercial Air-Conditioning Sector in Japan

CGS is characterized by its capability to generate both electricity and heat through gas-

turbine or a gas engine within the premise of a customer. It could allow the customer to save

energy and utilize the heat which would be discarded at conventional power stations. Since

electricity and heat can be acquired through traditional channels, e.g. electricity purchased

from an electric power company and heat to be generated by a conventional boiler, the true

merit of CGS has to be evaluated by comparing the cost for electricity and heat with CGS
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against the cost for the same amount of electricity and heat to be acquired through traditional

channels. Typical customers who may enjoy the cost merit of CGS include manufacturing

plants, hospitals and hotels.

The possible cost merit of CGS must be estimated quantitatively in advance with ac-

curacy sufficient enough to convince a customer to invest in CGS. For this purpose, it is

necessary to precisely estimate hourly and monthly demand of electricity and heat, which

can be done often through computer simulation. This computer simulation may not be easy

because a variety of sample data ought to be collected from different places of the premise of

a customer. Chapter 3 deals with this problem so as to mitigate the burden of the necessary

data collection.

2.2 Deregulation of the Utility Industry

Following the strategic success through penetration into new markets of industrial plants

and large-scale commercial buildings, Japanese city gas companies experienced the second

wave of restructuring from 1990 to 2005 due to deregulation of electricity and gas utilities.

As suppliers of a public utility, Japanese city gas companies were used to be protected

by having the exclusive right to provide the gas service in their designated areas. From the

government point of view, this exclusive designation policy facilitated the efficient investment

in the installment of pipelines, which could be huge, by avoiding unnecessary overlaps. In

exchange, the city gas companies were obligated to provide gas services at regulated prices,

allowing them to obtain only reasonable profits. Typically, one designated area was isolated

from others. Accordingly, there were customers outside any designated area. If such a

customer was residential, the customer had to rely upon propane gas provided by a propane

gas company, not a city gas company. An industrial plant outside any designated area would
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rely upon crude oil.

Deregulation of the gas industry has been taking place in most of developed countries in

the world by now, led by the United States. In the late 1970’s in the United States, a serious

shortage of natural gas was caused by the regulated wellhead prices which were set much

lower than market prices. While these price gaps enabled the gas utility companies to make

huge profits, they offered little incentive for the natural gas producing companies to invest

further in exploration of new natural gas reserves, resulting in the serious shortage of natural

gas. So as to overcome this imbalance between supply and demand, the Natural Gas Policy

Act (NGPA) was enacted in 1978. Since then, various market regulations have been relaxed

or abolished until now. In the United Kingdom, the structural reform of British economy

was promoted by the Thatcher administration so as to recover from the prolonged economic

slump from 1970 to 1990. Electricity and gas industries were deregulated as a part of those

measures. For the case of European Union, the deregulation of electricity and gas industries

took place within a framework of establishing a single European market by removing barriers

between the nations to guarantee the free movement of goods, capital, services, and people.

In parallel with this global trend, the gas utilities in Japan were liberated in March 1995.

Large-scale customers with consumption of more than 2 million (m3/year） of city gas were

allowed to choose a supplier freely and price regulations were abolished for these customers.

So as to motivate new entrants, the existing city gas companies were forced to provide them

with transportation services at regulated prices, although new entrants were still responsible

for procuring natural gas by themselves. The requirement to be a large-scale customer has

been relaxed step-by-step as shown in Table 2.2.1. In April 2007, the requirement was set

to have annual consumption of 100 thousand (m3/year） or more.

In response to the deregulation, Japanese city gas companies started to introduce a new
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Table 2.2.1: Deregulation of City Gas Industry in Japan

strategy, where large-scale customers outside their designated service areas would become

potential targets. In this case, the competition for a city gas company would be against oil

companies that could provide crude oil and other city gas companies. If the city gas company

would win, it might eventually install a long-distance pipeline from its designated service

area to a new customer outside its designated service area. Since this investment would be

huge and time-consuming, the company would be likely to rely upon lorry transportation of

the LNG in the beginning.

In order to win the new competition described above resulting from the deregulation,

the key factor would be price. Accordingly, the pricing strategy is of crucial importance

to the suppliers. Chapter 4 and 5 deals with this problem by developing and analyzing a

mathematical model based on a game theoretic approach.
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2.3 Emergence of All-Electric House Market as a Ma-

jor Competitor

The industrial market and the large-scale commercial market have been liberated through

deregulation and the principle of free competition now prevails. On the other hand, the

residential market as well as the small-scale commercial market was not affected much by the

deregulation and remained intact. However, upon entering the new century, the emergence

of all-electric house market has been changing these two markets substantially.

In an all-electric house system, energy demand for cooking and hot water within house-

hold is supplied totally by electricity with IH cooking heaters and an electric “heat-pump

water heating and supply system.” While these technologies are not new, all-electric house

systems become popular because of enhancement of price-performance of those equipment,

combined with the strong promotion campaigns by electricity companies. Figure 2.3.1 and

Table 2.3.1 show the dissemination of all-electric house systems in Japan. It can be observed

that all-electric houses are more popular in rural areas. This is so because: 1) rural customers

tend to have enough space for the hot-water cylinder, necessary to store hot water made by

the heat pump system mainly at night; 2) residential customers in rural area usually use

propane gas for cooking, and IH cooking is often cheaper.����� ��� �������	�
���� ����
 �������� ��	�� ����� ���� ����
��� ������ �� �

��
������ ���
�
 ����� ��� ��� �������� ������ �� ���
�
 � �! ���"�� #��## ������ ������$�

��������� ���� �%�& �%�& "%�& �%�&�'�����()*+�+* ,*�*-. ./)0 /�'*1-�20 2�,3-�4!� �!������ �� ��������
 ��� ��
�5�����
 �
�
Table 2.3.1: Dissemination of All-Electric House Systems by Area (March 2007)

The emergence of all-electric house system has been forcing city gas companies to re-
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Figure 2.3.1: Dissemination of All-Electric House Systems in Japan
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consider their strategy for the residential market and the small-scale commercial market.

Previously, residential customers tend to choose city gas for cooking and hot water if a gas

pipeline is located near their houses. When a gas pipeline is not accessible easily, they may

use other energy such as propane gas or kerosene. However, if a new pipeline is installed

within their vicinity, they would switch to city gas upon a chance without much cost for

doing so, e.g. at the time of renovation or rebuilding. In short, if there are houses near

a network of gas pipelines, the city gas company owning the network could count on the

residential gas demand for a very long time. However, in the presence of all-electric house

system, this presumption is no longer valid. A residential customer may choose to adopt

all-electric house system upon moving into a house even with a gas pipeline, terminating

the use of city gas and hence the network of gas pipelines at that house. This change of the

market environment is important enough for city gas companies to reconsider their invest-

ment strategy for expanding their existing networks of gas pipelines, since it would require

huge capital spending and a very long time for investment recovery.

In order to establish a new investment strategy for expanding the existing network of

pipelines in face of all-electric house system, it is necessary to develop and analyze a math-

ematical model for capturing the cash flow of a residential area with a given network of

gas pipelines, where residents move in and move out stochastically, and choose city gas or

all-electric house system upon moving in. This problem is addressed in Chapter 6, where

residents move in and move out according to a Markov chain in continuous time, and the

relevant cash flow is described by a reward process defined on the Markov chain.



Chapter 3

Performance Analysis of

Co-Generation Systems in Terms of

Energy-Saving

3.1 Introduction

In management of energy demands for commercial buildings, hospitals, industrial plants and

the like, a co-generation system achieves high energy-saving by simultaneously producing

heat and electricity from a single source of power supply so as to satisfy the entire energy

demand. Since the energy conservation is an important social requirement in Japan, which

has no natural resources for energy generation, the benefits of the co-generation system have

been realized by many users of the system all over Japan, as can be seen by the steady

growth of the system since its introduction in 1960’s.

As we mentioned in Section 2.1, however, it was not an easy task for a city gas company

to disseminate co-generation systems due to the complexity involved in designing the system.

Prior to the installation of a co-generation system, it is usually necessary to evaluate the

impact of the system on energy-saving. In other words, one needs to define an evaluation

function for describing the ratio of the total energy consumption before and after the instal-

lation of the system. In general, the total energy demand consists of the electricity demand,

the cooling energy demand, the heating energy demand, and the hot water energy demand.

16
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In order to assess the effect of a co-generation system in energy-saving, the aggregated annual

sums of these energy demands, as well as their hourly and monthly consumption patterns

ought to be known. Considering these stochastic elements as random variables, the total

energy consumption per m2 at a premise with or without a co-generation system can be

derived as a random variable in terms of them. Let TCGS and TConv be such random vari-

ables with or without a co-generation system respectively. The ultimate decision criteria for

installing a co-generation system then hinges on RE defined by

RE =
TConv − TCGS

TConv
. (3.1.1)

In general, a co-generation system is designed as a general product for a specific group of

customers, e.g. apartment buildings. These customers are assumed to have a stochastically

identical energy demand structure, comprising of the aggregated annual sum and the hourly

and monthly consumption patterns for the electricity demand, as well as those for the cooling

energy demand, the heating energy demand, and the hot water energy demand. In order

to assess the level of energy-saving by a co-generation system, it is necessary to find the

estimate of RE specified in (3.1.1). For this purpose, the estimates of the underlying random

variables are first obtained by measuring actual heat and electricity consumptions at sampled

premises. Because of the tremendous cost involved in gathering such detailed information, it

is virtually impossible to collect the data from many different premises. A typical approach

to overcome this difficulty is as follows.

1) Several representative premises are selected for gathering the detailed information in

a complete form, using per m2 as a unit.

2) Many more premises are chosen so as to sample only a set of aggregated statistics

comprising of the stochastic components of the detailed information.
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3) The detailed information obtained in 1) is transformed so that the estimates of the

aggregated statistics generated from the transformed result would be the same as those

obtained in 2).

4) The transformed detailed information in 3) would be used to assess the estimate of

RE.

5) The assessment result of 4) is then applied to evaluate the performance of a co-

generation system at a premise which is assumed to have an energy demand structure

being stochastically identical to that of sampled premises.

The procedure above is common and the customization to individual premises is limited to

consider their areas.

Since gathering data for 2) is still costly, it is important to understand the sensitivity of

the performance of the co-generation system as a function of each of the aggregated statistics.

If an aggregated statistic significantly affects the ultimate result concerning the performance

of the co-generation system, the sample size for estimating this aggregated statistic may be

increased so as to improve its quality. Otherwise, the sample size may be reduced or the

aggregated statistic may be even discarded for cost saving. The purpose of this chapter is

to develop a methodological approach for numerically exploring such sensitivities.

The structure of this chapter is as follows. In Section 3.2, a stochastic structure of

various energy demands at a premise is first described. In terms of the random variables

constituting the stochastic structure, the three random variables TConv, TCGS, and RE, are

then expressed explicitly. Corresponding to 2), five aggregated statistics are introduced in

Section 3.3, and a procedure is summarized, in a succinct manner, for transforming the

detailed information gathered in 1) into the modified detailed information discussed in 4).

In Sections 3.4, the sensitivity of the performance of the co-generation system as a function
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of each of the aggregated statistics is explored numerically based on actual data involving

apartment buildings, hotels and office buildings.

3.2 Evaluation of the Effect of a Co-generation System

for Energy-Saving

In order to evaluate the effect of a co-generation system for energy-saving, we first describe

a stochastic structure of the energy demand at a premise. In this regard, it is important to

keep track of monthly and hourly demand patterns because of the seasonality and the daily

life cycle. However, the fluctuation of the energy usage over different days may not be so

essential. Keeping this observation in mind, we define the following random variables. For

notational convenience we define Nk = {1, 2, · · · , k}.

E = [Eij ] ; Eij : the electricity demand per m2 at a premise for the month

i ∈ N12 and the hour j ∈ N24 (3.2.1)

C = [Cij ] ; Cij : the cooling energy demand per m2 at a premise for the month

i ∈ N12 and the hour j ∈ N24 (3.2.2)

H = [Hij ] ; Hij : the heating energy demand per m2 at a premise for the month

i ∈ N12 and the hour j ∈ N24 (3.2.3)

W = [Wij] ; Wij : the hot water energy demand per m2 at a premise for the month

i ∈ N12 and the hour j ∈ N24 (3.2.4)

The stochastic nature of the total energy consumption per year per m2 is characterized

by

Y = [E, C, H, W ] . (3.2.5)

The performance measure of a co-generation system, given as RE in (3.1.1), can then be
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described as

RE = F (Y ) , (3.2.6)

where F denotes the evaluation function. In what follows, a procedure to construct F is

described explicitly. The following notation is employed.

mi : the number of days in the month i ∈ N12 (3.2.7)

η∗
E : the average power generation efficiency across all thermal power stations

in Japan, i.e. the generated power in jule/the consumed fuel in jule (3.2.8)

MG : the capacity in jule of the gas engine generator at the premise (3.2.9)

Lij
def
= min

{

Eij

MG
, 1

}

: the work load of the gas engine for the month i

and the hour j (3.2.10)

Lmin : the minimum work load of the gas engine (3.2.11)

ηE(Lij) : the power generation efficiency of the gas engine generator for the

month i and the hour j given Lij , where the underlying function

structure is determined empirically (3.2.12)

λC : the energy efficiency of the cooling system (3.2.13)

λH : the energy efficiency of the heating system (3.2.14)

λW : the energy efficiency of the hot water system (3.2.15)

ηH(Lij) : the heat recovery efficiency of the gas engine generator (3.2.16)

Sij : the cumulative amount of energy saved in a form of hot water

at the beginning of the hour j in the month i (3.2.17)

MS : the capacity for accumulating the energy in a form of hot water (3.2.18)

L : the ratio of energy loss per hour while saved in a form of hot water (3.2.19)
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The basic values of those parameters are shown in Table 3.2.1.

Table 3.2.1: Basic Value of the Underlying Parameters���� ���� ���� ����	��� ��
� ��

 ��
����� ���
 ���� ���������������
We begin the construction of F with specification of the random variable T conv denoting

the total energy consumption per year per m2 at a premise without a co-generation system.

One sees that

T conv =
∑

i∈N12

mi

∑

j∈N24

(

Eij

η∗
E

+
Cij

λC

+
Hij

λH

+
Wij

λW

)

. (3.2.20)

It may be worth noting that, by convention, the actual demand of one source is inflated

into the necessary energy consumption at the input level by dividing it by the corresponding

efficiency.

We next turn our attention to derive TCGS denoting the total energy consumption per

year per m2 at the premise with a co-generation system. Let GE
ij be the total energy con-

sumption of the gas engine generator for the hour j in the month i used to satisfy the

electricity demand. One then sees that

GE
ij =

min{Eij , MG}

ηE(Lij)
if Lij ≥ Lmin else GE

ij = 0 . (3.2.21)

If Eij > MG or Eij < LminMG, one faces the shortage which should be filled by purchasing

EB
ij from an external electric power company, where

EB
ij = (Eij −MG)+ . (3.2.22)
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Here (x)+ = x if x > 0 and zero else. For the hot water system, the energy recovered from

the gas engine power generator through the co-generation system can be utilized. More

specifically, the total energy consumption for the hour j in the month i used to satisfy the

hot water demand, denoted by GW
ij is given by

GW
ij =

(

Wij

λW
−Aij

)+

; Aij = ηH(Lij)G
E
ij + Sij , (3.2.23)

where Aij denotes the sum of energy recovered from GE
ij and energy saved in a form of hot

water. If Aij could cover the hot water consumption Wij/λW , the hot water cost is free.

Otherwise, the hot water consumption can be reduced by Aij .

The total energy consumption for heating denoted by GH
ij can be treated in a similar

manner, except that the priority is given to hot water for using the recovered and saved

energy Aij. One has

GH
ij =

(

Hij

λH
− Âij

)+

; Âij
def
=

(

Aij −
Wij

λW

)+

. (3.2.24)

Since the lowest priority is given to the cooling system concerning the usage of the recovered

energy, the total energy consumption for cooling, denoted by GC
ij is given by

GC
ij =

(

Cij

λC

− ˆ̂
Aij

)+

;
ˆ̂
Aij =

(

Âij −
Hij

λH

)+

. (3.2.25)

The cummulative heat at the beginning of the hour j + 1 is then updated to

Si, j+1 = min

{

(

ˆ̂
Aij −

Cij

λC

)+

, MS

}

(1− L) . (3.2.26)

Finally, the total energy consumption per year per m2 at the premise with the co-generation

system is given by

TCGS =
∑

i∈N12

∑

j∈N24

(

EB
ij

η∗
E

+ GC
ij + GH

ij + GW
ij

)

. (3.2.27)
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Remark 3.2.1 In some co-generation systems, the recovered energy cannot be used for cool-

ing system. In such a case, Equations (3.2.25) and (3.2.26) are replaced by GC
ij =

Cij

λC
and

Si, j+1 = min

{

(

ˆ̂
Aij

)+

, MS

}

(1− L) respectively.

Finally, the evaluation function F can be constructed by measuring the relative enhance-

ment for energy-saving due to the co-generation system, that is,

RE = F (Y ) =
TConv − TCGS

TConv
. (3.2.28)

3.3 Aggregated Statistics and Transformation of De-

tailed Information

In order to implement 2) in Section 3.1, we introduce the following five aggregated statistics

X1 through X5.

X1 =
∑

i∈N12

∑

j∈N24

(Eij + Wij + Hij + Cij) (3.3.1)

X2 =

∑

i∈N12

∑

j∈N24
(Wij + Hij + Cij)

∑

i∈N12

∑

j∈N24
Eij

, (3.3.2)

X3 =

∑

i∈N12

∑

j∈N24
(Hij + Cij)

∑

i∈N12

∑

j∈N24
Wij

, (3.3.3)

X4 =
(
∑

i∈N12

∑

j∈N24
Eij)/12

maxi{
∑

j∈N24
Eij}

+
(
∑

i∈N12

∑

j∈N24
Wij)/12

maxi{
∑

j∈N24
Wij}

+
(
∑

i∈N12

∑

j∈N24
Hij)/12

maxi{
∑

j∈N24
Hij}

+
(
∑

i∈N12

∑

j∈N24
Cij)/12

maxi{
∑

j∈N24
Cij}

(3.3.4)

X5 =
∑

i∈N12

{

(
∑

j∈N24
Eij)/24

maxj Eij
+

(
∑

j∈N24
Wij)/24

maxj Wij

+
(
∑

j∈N24
Hij)/24

maxj Hij
+

(
∑

j∈N24
Cij)/24

maxj Cij

}

(3.3.5)
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We note that X1 describes the annual energy demand, while X2 is the annual heat-

to-electricity ratio, that is, the ratio of the annual heat demand to the annual electricity

demand. Similarly, X3 is the annual cooling and heating-to-hot water ratio. Somewhat

complicated is X4 expressing the yearly load factor, i.e. the ratio of the monthly average

demand to the monthly peak-demand. X5 denotes the daily load factor in a similar manner,

that is, the ratio of the hourly average demand to the hourly peak-demand.

We now discuss 3) of Section 3.1. Assuming that the five statistics are sampled from many

premises, an algorithmic procedure is given to transform the detailed information collected

from only a few premises so that the transformed detailed information would produce the

estimates of the five statistics as sampled from many premises. More formally, let y =

[e, c, h, w] be the estimate of Y = [E, C, H, W ] collected from a few premises. Similarly,

corresponding to X = [X1, X2, · · · , X5], we define x = [x1, x2, · · · , x5] for the five statistics

sampled from many more premises. Our purpose is to find the transformation of y =

[e, c, h, w] into ŷ = [ê, ĉ, ĥ, ŵ] so that x̂ = [x̂1, x̂2, · · · , x̂5], derived from ŷ based on Equations

(3.3.1) through (3.3.5), is equal to x = [x1, x2, · · · , x5].

The transformation is constructed in five stages, where the k-th stage establishes x̂k = xk,

while preserving x̂r = xr for r = 1, · · · , k−1. Let x(z) = [x1(z), x2(z), · · · , x5(z)] be obtained

from z based on Equations (3.3.1) through (3.3.5). For k = 1, we define

ŷ(1)← α1 × y; α1 =
x1

x1(y)
. (3.3.6)

It is clear that x1(ŷ(1)) = x1. For k = 2, we introduce

ê(2)← α2 × ê(1) ; ĉ(2)← β2 × ĉ(1) ; ĥ(2)← β2 × ĥ(1) ; ŵ(2)← β2 × ŵ(1) , (3.3.7)

where

α2 =
x1

(1 + x2)
∑

i∈N12

∑

j∈N24
êij(1)

(3.3.8)
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and

β2 =
x1x2

(1 + x2)
∑

i∈N12

∑

j∈N24
(ĉij(1) + ĥij(1) + ŵij(1))

, (3.3.9)

yielding ŷ(2). After a little algebra, one finds that x2(ŷ(2)) = x2 and x1(ŷ(2)) = x1.

Similarly for k = 3, the transformation stage is constructed by

ê(3)← ê(2) ; ĉ(3)← β3 × ĉ(2) ; ĥ(3)← β3 × ĥ(2) ; ŵ(3)← α3 × ŵ(2) , (3.3.10)

where

α3 =
x1 −

∑

i∈N12

∑

j∈N24
êij(2)

(1 + x3)
∑

i∈N12

∑

j∈N24
ŵij(2)

, (3.3.11)

and

β3 =
x3{x1 −

∑

i∈N12

∑

j∈N24
êij(2)}

(1 + x3)
∑

i∈N12

∑

j∈N24
{ĉij(2) + ĥij(2)}

, (3.3.12)

resulting in ŷ(3). One sees that x3(ŷ(3)) = x3, x2(ŷ(3)) = x2 and x1(ŷ(3)) = x1.

The final two stages are somewhat more complicated. For k = 4, we define

êij(4)←
êij(3)

∑

j∈N24
êij(3)

{

∑

j∈N24

êij(3) + αe
4

(

∑

j∈N24

êij(3)−
1

12

∑

i∈N12

∑

j∈N24

êij(3)

)}

(3.3.13)

for all i ∈ N12 and j ∈ N24 . Here, αe
4 and βe

4 are defined by

αe
4

def
= −

maxi∈N12

∑

j∈N24
êij(3)−

1

x4βe
4

(
∑

i∈N12

∑

j∈N24
êij(3))/12

maxi∈N12

∑

j∈N24
êij(3)− 1

12

∑

i∈N12

∑

j∈N24
êij(3)

(3.3.14)

and

βe
4

def
=

1

x4(ŷ(3))

(
∑

i∈N12

∑

j∈N24
ŷij(3))/12

maxi∈N12
{
∑

j∈N24
êij(3)}

. (3.3.15)

ĉij(4), ĥij(4) and ŵij(4) can be defined similarly based on (3.3.13) through (3.3.15), where

êij(3) are replaced by ĉij(3), ĥij(3), and ŵij(3), respectively, leading to ŷ(4). It can be

confirmed that x4(ŷ(4)) = x4, x3(ŷ(4)) = x3, x2(ŷ(4)) = x2 and x1(ŷ(4)) = x1.



CHAPTER 3. PERFORMANCE ANALYSIS OF CO-GENERATION SYSTEMS 26

Finally for k = 5, we define

êij(5)← êij(4) + αe
5:i

(

êij(4)−
1

24

∑

j∈N24

êij(4)

)

, (3.3.16)

where αe
5:i and βe

5:i are given for i ∈ N12 by

αe
5:i

def
= −

maxj∈N24
êij(4)−

1

x5βe
5:i

(
∑

j∈N24
êij(4))/24

maxj∈N24
êij(4)− 1

24

∑

j∈N24
êij(4)

(3.3.17)

and

βe
5:i

def
=

1

x5(ŷ(4))

(
∑

j∈N24
êij(4))/24

maxj∈N24
êij(4)

for i ∈ N12 . (3.3.18)

As for the case of k = 4, ĉij(5), ĥij(5) and ŵij(5) can be obtained from (3.3.16) through

(3.3.18), where êij(4) are replaced by ĉij(4), ĥij(4), and ŵij(4), respectively, yielding ŷ(5). It

follows that x5(ŷ(5)) = x5, x4(ŷ(5)) = x4, x3(ŷ(5)) = x3, x2(ŷ(5)) = x2 and x1(ŷ(5)) = x1,

completing the transformation stated in 3) of Section 3.1.

Through the procedure above, RE in (3.2.28) can be rewritten as

R̂E = F (Ŷ ) , (3.3.19)

which can be evaluated numerically given the estimate ŷ of Y .

3.4 Numerical Examples for Exploring the Performance

Sensitivity of the Co-Generation System

In the previous sections, we have discussed in detail a systematic approach for evaluating

the performance of the co-generation system along the line of the procedure 1) through

5) given in Section 3.1. The key consideration in the approach is the balance between

the information gathering cost and the reliability of the estimated performance. Since the

five aggregated statistics introduced in Section 3.3 represent the information gathered from
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Table 3.4.1: Standard Deviations of Five Aggregated Statistics�� �� �� �� �����	
��

������
�� �� �� �� �� ��������  ! " �# �� ��$%%&'�� �(  ! "� �� ��
large data samples, it is important to understand how sensitive the performance of the co-

generation system is as a function of each of the five aggregated statistics. For this purpose,

we treat R̂E in (3.3.19) as a function of X = [X1, · · · , X5] and rewrite R̂E as

R̂E(X) = F (Ŷ ) . (3.4.1)

The purpose of this section is to explore the sensitivity of R̂E(X) with respect to Xi,

i = 1, · · · , 5, based on actual data involving apartment buildings, hotels and office buildings.

For the detailed information in 1) of Section 3.1, the sample size of three is taken for

each of the three categories above. In order to conduct the sensitivity analysis numerically,

we define µ = [µ1, · · · , µ5] and σ = [σ1, · · · , σ5], where µi = E[Xi] and σ2
i = V ar[Xi],

i = 1, · · · , 5. Of interest is then

Sen(i) = |R̂E(µ + σi1i)− R̂E(µ− σi1i)| , (3.4.2)

where 1i is the vector with all components being 0 except the i-th component of 1.

For µ, we count on the detailed information. The standard deviation vector σ is obtained

from the literature, see e.g. [2], [9], [12], [13]. Since the collected detailed information is

proprietary, µ cannot be disclosed. So as to provide some sense concerning σ for the three

categories above, we express σi in terms of the percentage of µi, i = 1, · · · , 5, as given in

Table 3.4.1. The ultimate measure for the sensitivity analysis is defined as

ρ(i) =
Sen(i)

∑5
i=1 Sen(i)

, i = 1 · · · , 5 , (3.4.3)
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Figure 3.4.1: Sensitivity Vector ρ for Apartment Buildings

which can be disclosed explicitly. For apartment buildings, X1 affects the performance of

the co-generation system most, while X5 for hotels and office buildings, as we will see.

3.4.1 Numerical Results for Apartment Buildings

Figure 3.4.1 shows sensitivity vector ρ = [ρ(1), · · · , ρ(5)] for the category of apartment

buildings, where the generator capacity of the co-generation system is varied from 30 kW

to 80 kW. One observes that the annual energy demand X1 affects the performance of the

co-generation system most when the capacity of the generator is between 30 kW and 50

kW. From an economic point of view, it is quite reasonable to install a generator of this

size, since it works as the base-load generator and the investment recovery period becomes

shorter. Accordingly, one should focus on estimating X1 most precisely.

This result may be explained as follows. If the capacity of the generator is relatively

small, the electricity generated by the co-generation system is likely to be submerged in the

demand-fluctuation curve of a day, as demonstrated in Figure 3.4.2. Under this condition,

the generator operates at full capacity and the hourly change of the energy demand in a day
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Figure 3.4.2: Typical Daily Energy Demand Pattern for Apartment Buildings

would not affect ρ(i) for i 6= 1 at all.

3.4.2 Numerical Results for Hotels

Figure 3.4.3 shows ρ = [ρ(1), · · · , ρ(5)] for the categroy of hotels, where the generator

capacity is varied from 200 kW to 700 kW. One observes that the daily load factor X5

affects the performance of the co-generation system most when the capacity of the generator

is between 400 kW and 600kW. According to Figure 3.4.4, within this range of the generator

capacity, the energy-saving is relatively high, with maximum efficiency between 500 kW and

600 kW. The co-generation system works quite effectively since the demand and the supply

of heat and electricity are well balanced. For hotels, within this range of the capacity of

the co-generation system, one may conclude that the daily load factor X5 has the greatest

influence on the performance among the five statistics.

3.4.3 Numerical Results for Office Buildings

For the case of office buildings, X5 also has the biggest impact on the performance of

co-generation system among the five statistics, as can be seen in Figure 3.4.5. The energy

demand of the office building during the night is very low and the co-generation system

usually works only during the standard working hours as shown in Figure 3.4.6. The value
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Figure 3.4.3: Sensitivity Vector ρ for Hotels
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Figure 3.4.4: The Energy-Saving Versus the Capacity of the Generator for Hotels
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Figure 3.4.5: Sensitivity Vector ρ for Office Buildings
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Figure 3.4.6: Typical Energy Demand Pattern for Office Buildings
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of X5 is directly affected by the energy demand at night. As the energy demand at night

increases, the operating time of the co-generation system becomes longer, which leads to

improvement of the performance.



Chapter 4

On Non-Existence of Nash

Equilibrium of M Person Game with

Pure Strategy for Delivery Services

4.1 Introduction

Competitive market models for homogeneous products and services such as the energy supply

can be traced back to 1920’s. The pioneering paper by Hotelling [7] develops a duopoly model

where customers are distributed uniformly over a finite line and serviced by two suppliers

who choose their locations and prices so as to maximize their profits. If the two suppliers are

not located relatively far apart, it is shown by D’Aspremont et al [3] that Nash equilibrium

does not exist. Subsequently, the Hotelling model has been extended in several directions.

Economides [4] deals with the case where customers are distributed uniformly on a bounded

plane. Anderson [1] incorporates stackelberg leadership within the context of the Hotelling

model. Other variations include Thisse and Vives [17], Zhang and Teraoka [18] and Rath

[19]. Gabszewicz and Thisse [5] provide an excellent review of the literature. More recently,

for a spatially duopoly model with customers located at different nodes having separate

demand functions, Matsubayashi et al. [11] establish a necessary and sufficient condition

for the existence of Nash equilibrium and develop computational algorithms for finding the

equilibrium point. When mixed strategies are allowed, Takahashi and Sumita [16] derive

33
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two types of Nash equilibriums explicitly for a two person model.

The purpose of this chapter is to develop an M person game with pure strategy, describing

a competitive market of a homogeneous service such as LNG lorry transportation. The

market consists of M suppliers and N customers, where each supplier offers a uniform

price upon delivery to all customers. Locations of suppliers and customers are fixed. The

thrust of this chapter is to show that, except under a rather peculiar necessary and sufficient

condition, Nash equilibrium for pure strategy does not exist, demonstrating that the suppliers

exercise their price strategies in a cyclic manner indefinitely. The structure of this chapter

is as follows. In Seciton 4.2, a competitive market model is formally introduced and the

game-theoretic framework is established. A necessary and sufficient condition is derived in

Section 4.3 for existence of Nash equilibrium with pure strategy. It is shown that the Nash

equilibrium is unique, if any, and rather peculiar in that all suppliers adopt the price upper

bound U . Finally in Section 4.4, a duopoly model is discussed explicitly demonstrating the

cyclic phenomenon of the suppliers in exercising their price strategies so as to maximize their

profits.

4.2 Model Description

We consider a market consisting of M suppliers and N customers as depicted in Figure 4.2.1,

where each supplier provides a homogeneous service such as delivering propane gas cylinders.

Each customer may represent one large industry or a group of residents in the same district.

Let M = {1, 2, 3, · · · , M} and N = {1, 2, 3, · · · , N} be the set of suppliers and the set of

customers respectively. The cost for supplier i ∈M to provide a unit of service to customer

j ∈ N is denoted by cij.

Since the service under consideration is typically an energy supply service, it is natural
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Figure 4.2.1: M Supplier-N Customer Model with M = 3 and N = 6

to assume that there exists a price upper bound U . In our model, each supplier has to offer a

uniform price upon delivery to all customers, and this uniform price is denoted by πi, i ∈M.

Supplier i may offer the service to customer j only when it results in a positive return to do

so. In other words, supplier i may offer the service to customer j only if cij < πi. In order

to avoid trivial cases, we assume that each supplier can offer the service to at least one of

the customers so that

min
j∈N

cij
def
= ci < πi ≤ U for all i ∈M . (4.2.1)

Let Dj be the total demand of customer j . We assume that the production capacity of

each supplier is large enough to cover the entire demand
∑

j∈N Dj . If there exists only one

supplier who offers the lowest price to customer j , the supplier monopolizes the demand of

customer j . Should k different suppliers offer the same lowest price to customer j , then

each of such suppliers would sell Dj/k to customer j . In what follows, we describe an M

person game defined on the strategy set S where

S =
M
∏

i=1

Si ; Si = [ci, U ]i ∈M .
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Given πT def
= [π1, π2, · · · , πM ] ∈ S, let Pi(π) be the payoff function of supplier i. In order to

define the function specifically, the following index sets are introduced. Given πT ∈ S, we

define for j ∈ N the set of suppliers available to provide service to customer j by

AVj(π) = {m ∈M|πm > cmj} . (4.2.2)

We also define for i ∈M,

LEi(π) = {m ∈M|πi > πm} ; (4.2.3)

LAi(π) = {m ∈M|πi < πm} ;

EQi(π) = {m ∈M|πi = πm} . (4.2.4)

It should be noted that AVj(π) consists of those suppliers who can offer the service to

customer j because a positive return results from doing so, and LEi(π) is the set of those

suppliers who would eliminate supplier i if they happen to offer the service to the same

customer. Similarly LAi(π) consists of those suppliers who would be eliminated by supplier

i. With those suppliers in EQi(π), supplier i would split the demand equally, should they

offer the lowest price to the same customer simultaneously.

Let Wij(π) be the set of suppliers who would offer the service to customer j together

with supplier i . Using the above notation, Wij(π) can be written as

Wij(π) =

{

{m ∈M|m ∈ EQi(π) ∩ AVj(π)} if AVj(π) ∩ LEi(π) = ø and i ∈ AVj(π)
ø if AVj(π) ∩ LEi(π) 6= ø or i /∈ AVj(π)

(4.2.5)

It should be noted that Wij(π) = ø if either supplier i cannot gain positive profit by offering

service to customer j so that i /∈ AVj(π), or supplier i does not offer the lowest price to

customer j. In the latter case, there exists m′ ∈M satisfying m′ ∈ LEi(π) and m′ ∈ AVj(π),

and hence AVj(π) ∩ LEi(π) 6= ø. When supplier i offer the lowest price to customer j, one

sees that AVj(π) ∩ LEi(π) = ø and i ∈ AVj(π) so that i ∈Wij(π).
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Based on these index sets, the following index functions are now introduced.

Iij(π) =

{

1 if |Wij(π)| = 1
0 else

(4.2.6)

Jij(π) =

{

1 if |Wij(π)| > 1
0 else

(4.2.7)

where |A| denotes the cardinality of a set A. It should be noted from (4.2.5) that if Wij(π) 6= ø

then i ∈ AVj(π) so that i ∈ Wij(π). Hence if Iij(π) = 1 , then Wij(π) = {i}, i.e. Iij(π) = 1

if and only if supplier i exclusively provides the service to customer j. Similarly, one has

Jij(π) = 1 if and only if supplier i jointly provides the service to customer j with other

suppliers. When a price vector π
def
= [π1, π2, · · · , πM ]T ∈ S is given, the payoff function of

supplier i is then given by

Pi(π) =
∑

j∈N

Dj(πi − cij)

{

Iij(π) +
Jij(π)

|Wij(π)|

}

for all i ∈M (4.2.8)

where Jij(π)/|Wij(π)|
def
= 0 if Jij(π) = 0 and Wij(π) = 0.

The following conventional notion in game theory is employed. Given π = [π1, · · · , πM ]T ,

we write π\i = [π1, · · · , πi−1, πi+1, · · · , πM ]T and (ai, π\i) = [π1, · · · , πi−1, ai, πi+1, · · · , πM ]T .

Definition 4.2.1

a) For i ∈M, π∗
i is a best reply against π\i if Pi(π

∗
i , π\i) = maxπi∈Si

[Pi(πi, π\i)] .

b) For i ∈M, Bi(π\i) = {π∗
i | π

∗
i is a best reply against π\i} is called the set of best

replies of supplier i against π\i .

c)The best reply correspondence B : S → S is defined as B(π) =
∏M

i=1 Bi(π\i) .

d)π∗ is a Nash equilibrium, denoted by π∗ ∈ NE, if and only if π∗ ∈ B(π∗) .

Of interest is to see whether one or more than one Nash equilibrium points exist, i.e. NE 6= ø .

In the next section, a necessary and sufficient condition is given under which NE 6= ø . An

example is provided for illustrating this case. This condition is rather restrictive however
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and normally one has NE = ø . Section 4 is devoted to exhibit typical strategies of suppliers,

when NE = ø , through a numerical example.

4.3 A Necessary and Sufficient Condition for Existence

of Nash Equilibrium

In this section we prove a necessary and sufficient condition under which Nash Equilibriums

exist for the model defined in the previous section. A few preliminary lemmas are needed.

The first lemma states that, if supplier i is the only supplier to service customer j when all

suppliers offer the maximum price U , then supplier i remains to be the unique supplier to

customer j for any price vector as long as supplier i could generate a positive return from

πi.

Lemma 4.3.1 Let U = [U, · · · , U ]. If AVj(U) = {i} for some j ∈ N , then, for any price

vector π satisfying i ∈ AVj(π), one has Wij(π) = {i}.

The next lemma states that if π 6= U , then at least one supplier could serve at least one

customer with price less than the upper limit U .

Lemma 4.3.2 If π satisfies the condition in (4.2.1) and π 6= U , then there exists at least

one pair of supplier i and customer j such that |Wij(π)| ≥ 1 and πi < U .

The third and last lemma implies that if supplier i is the unique supplier for customer j,

then supplier i could increase its price, while remaining to be the single service provider to

customer j, as long as the increased price is less than the nearest price of the competitors.

Lemma 4.3.3 For π∗ = [π∗
1 , π

∗
2, · · · , π

∗
M ] with π∗

i < U for some i ∈ M, let ∆ > 0 be

sufficiently small so that

π♯
i

def
= π∗

i + ∆ < min
m∈LAi(π∗)

{π∗
m} . (4.3.1)
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Then the following statements hold true for all j ∈ N .

1) |Wij(π
♯
i , π

∗
\i)| ≤ 1

2) If |Wij(π
∗)| = 1 , then |Wij(π

♯
i , π

∗
\i)| = 1

We are now in a position to prove the main theorem of this section.

Theorem 4.3.4 For the game defined in Section 4.2, the following two statements hold true.

1) NE 6= ø if and only if |AVj(U)| ≤ 1 for all j ∈ N

2) If NE 6= ø, then NE = {U}

From Theorem 4.3.4, one sees that U is the only candidate to be the Nash equilibrium. If

U is not Nash equilibrium, then this game has no equilibriums. In this case, the market is

completely separated by the suppliers, where there is only one supplier for each customer.

The rest of the suppliers cannot offer the customer since the cost is above the upperbound

price. However, this situation is rather unnatural. In the next section we show the case of

NE = ø and illustrate how players may continue to behave forever in a cyclic manner in

pursuit of maximizing their profits.

4.4 Cyclic Phenomenon in Case of Non-Existence of

Nash Equilibrium

In this section, we illustrate typical strategies of suppliers, when NE = ø. We assume that

there are two suppliers and three customers, where U = 50 (Yen/m3), D1 = 100 (Mcm/y),

D2 = 200 (Mcm/y) and D3 = 150 (Mcm/y) (Mcm/y=thousand cubic meter per year). The

transportation costs cij are given in Table 4.4.1. Theorem 4.3.4 shows that, if U /∈ NE , this

game has no Nash equilibriums. In this example, each supplier tries to obtain the furthest

customer demand by setting lower price than its competitor. This supplier acquires the
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new distant customer at the expense of losing profits of the existing near customers since

each supplier must set the same delivery price to all customers. We show this situation

through a numerical example. Since |AVj(U)| = 2 > 1 for all j = 1, 2, 3, one has NE = ø

from Theorem 4.3.4. Let π = U be an initial price vector. For the sake of convenience, we

discretize the strategy set so that each supplier can only take integer prices, and suppose

each supplier changes its strategy in turn so as to maximize its profit. Table 4.4.2 and Figure

4.4.1 show the cyclic behavior of each supplier under the condition of Table 4.4.1. Here the

initial price vector is U = [50 , 50], and the first action is taken by Supplier 1. At the first

step, Supplier 1 tries to maximize its profit by setting the price of 49 (Yen/m3) lower than
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Figure 4.4.1: Cyclic Phenomenon with 2 Supplier and 3 Customer Model when NE = ø

its competitor and to eliminate Supplier 2. In return, Supplier 2 also takes a similar action

by setting the price of 48 (Yen/m3). This process continues several times. At the 4th step,

Supplier 2 has no choice but to set the lower price of 46 (Yen/m3) to secure Customers 1

and 3 at the expense of giving up Customer 2. Since it does not result in a positive return

to provide service to Customer 2 at the price of 46 (Yen/m3), Supplier 2 cannot offer the

service to Customer 2. However it is better off to acquire the other customers even with low

average earning per unit instead of losing all customers or splitting demands of all customers.

At this point, Supplier 1 already monopolizes Customer 2, and it is in a position to enjoy

the highest per-unit earning without losing the customer by setting the upper-bound price

of 50 (Yen/m3). And this cyclic process is repeated indefinitely.



Chapter 5

Structural Analysis of Two Person

Game with Mixed Strategy for

Delivery Services

5.1 Introduction

In this chapter, the competitive market model for a homogeneous service discussed in Chapter

4 is again addressed, where the optimal pricing strategy among mixed strategies is analyzed.

In order to assure analytical tractability, we limit ourselves to two suppliers and two cus-

tomers with complete symmetry. As shown in Chapter 4, this game has the unique Nash

equilibrium of pure strategy type under the condition that each supplier secures the nearest

customer in monopoly. If the delivery service areas of the two suppliers overlap each other,

there exists no equilibrium within pure strategies. To the best knowledge of the author, the

literature discussed in Chapter 4 largely focuses on pure strategies and analysis for mixed

strategies has been ignored. However, the role of mixed strategies has been increasing its

importance in analyzing the energy supply industry in Japan. This is so because the price

table is not revised frequently even after the deregulation in Japan. Accordingly, it is nec-

essary to read pricing strategies of competitors at the time of bidding, which demands to

device a mixed strategy since reading the competitors’ strategies involves uncertainty.

The purpose of this chapter is to fill this gap by developing a duopoly model with two

42
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symmetric customers and to construct the Nash equilibriums explicitly when mixed strategies

are defined on a finite set of L discrete points that are chosen in such a way that their

reciprocals are equally distanced in a finite interval. The limiting strategies as L → ∞ are

also derived explicitly. It is shown that these limiting strategies are Nash equilibriums within

the context of mixed strategies defined on continuum.

The structure of this chapter is as follows. In Secion 5.2, a duopoly model with two

symmetric customers is introduced and a game-theoretic framework is described formally.

By choosing discrete pricing points in a peculiar way, the Nash equilibriums are constructed

explicitly in Section 5.3. Section 5.4 is devoted to analysis of the limiting behavior of the

strategies derived in Section 5.3 as L→∞ and prove that the limit of the Nash equilibrium

in the discrete model is also the Nash equilibrium in the original model. In the last section,

numerical examples are presented and managerial implications are discussed.

5.2 Model Description

We consider a market consisting of two suppliers and two customers, where each supplier

provides a homogeneous service such as natural gas transported by LNG tank lorry for

industrial use. Each customer may represent one large industry or a group of residents in

the same district. For convenience, the near customer of supplier i is defined as customer

i and the distant customer as customer 3 − i, i = 1, 2 as depicted in Figure 5.2.1. The

market is assumed to be symmetric in that a) both suppliers have the same costs chigh and

clow for providing service to the distant customer and the near customer respectively, where

chigh < clow; b) both customers have the same demand D; and c) each supplier has to offer a

uniform price upon delivery to both of the two customers despite the cost difference. Each

supplier provides its service only when it results in a positive return to do so and each
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Figure 5.2.1: Two Supplier Two Customer Model

customer chooses the supplier which offers the lower price. When the two suppliers happen

to offer the same price to a customer, the demand of the customer is split evenly between the

two suppliers. Since the service under consideration is typically an energy supply service,

it is also natural to assume that there exists a price upper bound U . It should be noted

that, if clow < πi ≤ chigh, supplier i monopolizes its near customer and the price can be

increased to chigh without losing its monopoly of the near customer. Accordingly, one has

πi ∈ I = [chigh, U ] for i = 1, 2 where πi is the uniform price offered by supplier i. In what

follows, we describe a game structure defined on the strategy set I.

Let (Ω,F , P ) be a probability space, and let RV be a set of random variables defined on

(Ω,F , P ) with full support on I = [chigh, U ]. A mixed strategy of supplier i then corresponds

to a random variable Xi ∈ RV . Each supplier decides its strategy independently of the other

and each supplier has enough production capacity to meet customers’ demands. Given

π1 = X1(ω1) and π2 = X2(ω2) for some ω1, ω2 ∈ Ω, the payoff function of supplier i is given
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by

hi(π1, π2) =































































2(πi − cmid)D, πi < π3−i, πi, π3−i ∈ (chigh, U ]

(πi − cmid)D, πi = π3−i, πi, π3−i ∈ (chigh, U ]

0, πi > π3−i, πi, π3−i ∈ (chigh, U ]

(chigh − clow)D, πi = chigh, π3−i ∈ (chigh, U ]

(πi − clow)D, πi ∈ (chigh, U ], π3−i = chigh ,

(5.2.1)

where cmid
def
= (clow + chigh)/2. If chigh < πi < π3−i ≤ U , supplier i can monopolize the entire

market with demand 2D at the average earning per unit of πi − cmid. When chigh < πi =

π3−i ≤ U , the demand D of each customer is split evenly between the two suppliers and

the average earning per unit is again πi − cmid. The case that chigh < π3−i < πi ≤ U is the

opposite of the first case and the competitor of supplier i monopolizes the entire market.

For the case of chigh = πi < π3−i ≤ U , supplier i can not produce a positive profit from the

distant customer and therefore captures only the near customer with average earning per

unit of chigh− clow. Finally, if chigh = π3−i < πi ≤ u, supplier i is forced to settle for the near

customer with the average earning per unit of πi − clow .

Let Si be the strategy set of supplier i and define S = S1 × S2. In our model, one has

S1 = S2 = RV so that S = RV × RV . Given (X1, X2) ∈ S, let Vi(X1, X2) = E[hi(X1, X2)]

be the expected payoff function of supplier i.

In the next section, we focus on discrete random variables in RV when the discrete

support points are chosen in such a way that their reciprocals are separated by equal distance,

and two types of Nash equilibriums for the descretized game are constructed explicitly. It

is shown in Section 5.4 that the limiting mixed strategies are also the Nash equilibriums for

the original game defined on continuum when the equal distance diminishes to 0.
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5.3 Nash Equilibriums with Specific Discrete Support

In this section, we provide a constructive proof for the existence of Nash equilibriums by

discretizing the game defined in Secion 5.2.

Let a = [a1, · · · , aL]T ∈ RL (L ≥ 2) be such that

a1 = (chigh − cmid)D ; (5.3.1)

1

am
= (L−m)∆ +

1

aL
, m ∈ L \ {1}; and (5.3.2)

aL = (U − cmid)D , (5.3.3)

where K =
1

a1
−

1

aL
, ∆ =

K

L− 3
2

, L = {1, 2, 3, · · · , L} . (5.3.4)

It should be noted that a is constructed in such a way that

1

am

−
1

am+1

= ∆, m ∈ L \ {1, L}; (5.3.5)

1

a1
−

1

a2
=

1

2
∆ . (5.3.6)

We now define vL = [v1, · · · , vL] ∈ RL in terms of a as

vL =
1

D
a + cmid1L , (5.3.7)

where 1m is the m-dimensional vector whose components are all 1. We note that v1 = chigh <

v2 < v3 < · · · vL−1 < vL = U .

Let DRV (vL) be a set of discrete random variables with full support on {v1, · · · , vL},

where X ∈ DRV (vL) is represented by a probability vector q with P [X = vm] = qm, m ∈ L,

and we write X ∈ DRV (vL) or q ∈ DRV (vL) interchangeably.

The decomposition of the interval [chigh, U ] by vL is depicted in Figure 5.3.1. Let H
i

=

[hi(vm, vn)]m,n∈L, i = 1, 2 with hi(vm, vn) as given in (5.2.1). One sees that Vi(q1
, q

2
) =

qT
1
H

i
q
2
, i = 1, 2 . From (5.2.1), it can be seen that h1(π1, π2) = h2(π2, π1) so that H

2
= HT

1
.
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Figure 5.3.1: The Decomposition of the Interval

It then follows that V2(q1
, q

2
) = qT

1
H

2
q
2

= qT
2
HT

2
q
1

= qT
2
H

1
q
1

. Hence, it is possible to

define Vi(q1
, q

2
) as

Vi(q1
, q

2
) = qT

i
H q

3−i
for i = 1, 2 (5.3.8)

where H
def
= [h1(vm, vn)]m,n∈L = H

1
. (5.3.9)

We then introduce the following notation.

Definition 5.3.1

a)α1 = 2a1

C1
( 2

aL
−∆), α2 = 2a1

C1
∆, α3 =

2
aL

1
a1

+ 1
aL

, α4 = 2∆
1

a1
+ 1

aL

, α5 = a1∆, α6 = a1(
1

aL
+ ∆

2
)

C1 = 2( a1

aL
+ 1)− a1∆

b) f ∈ RL−1 as (f)m = {1 + (−1)m}/2, m ∈ L \ {L}

c) êm ∈ R
L−1 and em ∈ R

L are m−th unit vectors in RL−1 and RL respectively.

d) w(x, y) = x1L−1 + (y − x)êL−1 ∈ R
L−1

e)NE(vL) is a set of Nash equilibriums of the discretizing game defined in this section.

We show the first type of Nash equilibrium of this section in the following theorem, and

proof is given in Appendix B.
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Theorem 5.3.2 Define q∗T = [α1, α21
T
L−1]. If L > aL

2a1
+ 1, then (q∗, q∗) ∈ NE(vL). The

payoff values are V1(q
∗, q∗) = V2(q

∗, q∗) = D(chigh − clow).

This theorem states that a Nash equilibrium can be achieved when the two suppliers offer

the same mixed strategy q∗T = [α1, α21
T
L−1] ∈ DRV (vL). One sees from Definition 5.3.1 that

α1 is much larger than α2 for large values of L. This means that it is necessary to assign a

higher probability of α1 to v1 = chigh to secure near customer, and at the same time it is also

crucial to allocate a small but positive probability α2 to all other price alternatives so that

(q∗, q∗) ∈ NE(vL) can be assured. Next theorem shows that there exists a different type of

Nash equilibrium (q♯, q†) ∈ NE(vL), where the two suppliers take different mixed strategies,

and one of the two player’s payoff is the same as that of Theorem 5.3.2. As before proof is

given in Appendix.

Theorem 5.3.3 Define q♯ T def
= 4

4−α4
[α3, α4f

T ] and q†T def
= [0, wT (α5, α6)] . If L is even and

L ≥ 4, then (q♯, q†), (q†, q♯) ∈ NE(vL). The payoff values at this equilibrium are given as

V1(q
♯, q†)(= V2(q

†, q♯)) = D(chigh − clow), V2(q
♯, q†)(= V1(q

†, q♯)) = 4
4−α4

D(chigh − clow).

It should be noted that, as we will see, one has limL→∞ q∗ = limL→∞ q♯, while limL→∞ q† is

quite different. The supplier with q♯ tends to protect the near customer by offering lower

prices with higher probabilities, while the strategy with q† places importance of acquiring

both customers by expanding the service area.

5.4 Limit Theorems of Nash Equilibriums with Spe-

cific Discrete Support

In the previous section, three Nash equilibriums (q∗, q∗), (q♯, q†) and (q†, q♯) are constructed

explicitly, when the strategy set consists of L discrete supporting points for pricing with vL =

[vL:1, · · · , vL:L] as given in (5.3.7), where we write each compenent of vL as [vL:1, · · · , vL:L]
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instead of [v1, · · · , vL] throughout this section to emphasize the demesion of vL . The purpose

of this section is to analyze the limiting behaviour when L→∞, and focus on the situation

where L is large enough. Therefore in the remaider of this section we assume that L is even

and L > max{2, aL

2a1
+ 1}. We write L̃→∞ (L̃

def
= L/2) instead of L→∞ to clarify that L

moves toward infinity in a set of even numbers.

Let X∗
L,X♯

L and X†
L be discrete random variables associated with q∗,q♯ and q† respectively,

which are given by Defitition 5.4.1 c). Next two theorems (proof is provided in Appendix)

show that these random variables converge to some mixed strategies (X∗, X∗), (X∗, X†) and

(X†, X∗) in S = RV × RV of the original problem as L̃ → ∞, and they are also Nash

equilibriums. We then introduce the following notation.

Definition 5.4.1

a)α1:∞ = limL̃→∞ α1(= 2a1/(a1 + aL)) α6:∞ = limL̃→∞ α6(= a1/aL)

b) F ∗
∞(x) and F †

∞(x) are distribution functions defined on [chigh, U ] given by

F ∗
∞(x) = α1:∞ + (1−α1:∞)

KD

(

1
chigh−cmid

− 1
x−cmid

)

F †
∞(x) =

{

(1−α6:∞)
KD

(

1
chigh−cmid

− 1
x−cmid

)

, chigh ≤ x < U

1 , x = U

c) r∗L:m =
∑m

m′=1 q∗L:m′; r♯
L:m =

∑m
m′=1 q♯

L:m′; and r†L:m =
∑m

m′=1 q†L:m′ where q∗ = [q∗L:1, · · · , q
∗
L:L]T ;

q† = [q†L:1, · · · , q
†
L:L]T ; and q♯ = [q♯

L:1, · · · , q
♯
L:L]T are as in Theorem 5.3.2 and 5.3.3.

c) (Ω,F , P ) is a probability space where Ω = (0, 1], F is a Borel field on Ω = (0, 1] and P is

the one-dimensional uniform probability measure on (Ω,F).

e) {Ω∗
L:m}, {Ω

♯
L:m} and {Ω†

L:m} for m ∈ L are partitions of Ω given by Ω∗
L:1 = (0 , r∗L:1 ]; and

Ω∗
L:m =

(

r∗L:m−1 , r∗L:m

]

for m = 2, · · · , L. {Ω♯
L:m} and {Ω†

L:m} are defined similarly.

f)X∗
L(ω), X♯

L(ω), X†
L(ω) ∈ DRV (vL) are the random variables defined on (Ω,F , P ) given by

X∗
L(ω) = vL:m if ω ∈ Ω∗

L:m, m = 1, 2, · · · , L. X♯
L(ω) and X†

L(ω) are defined in a similar way
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by replacing Ω∗
L:m by Ω♯

L:m and Ω†
L:m.

g)X∗(ω), X†(ω) ∈ RV are the random variables defined on (Ω,F , P ) given by

X∗(ω) =

{

vL:1 if ω ∈ (0, α1:∞]

F ∗−1
∞ (ω) if ω ∈ (α1:∞, 1]

X†(ω) =

{

F †−1
∞ (ω) if ω ∈ (0 , 1− α6:∞]

vL:L if ω ∈ (1− α6:∞ , 1]
.

h)NE is a set of Nash equilibriums of the game defined in Section 5.2

Theorem 5.4.2

a)F ∗
∞(x) and F †

∞(x) are the distribution functions of X∗(ω) and X†(ω) repectively.

b) q∗, q♯ and q† are the probability vectors of X∗
L(ω), X♯

L(ω) and X†
L(ω) repectively.

c) X∗
L(ω)

a.e.
→ X∗(ω) , X♯

L(ω)
a.e.
→ X∗(ω); and X†

L(ω)
a.e.
→ X†(ω) as L̃→∞

where “
a.e.
→ ” denotes the almost everywhere convergence.

In what follows, we prove that these limiting strategies are also Nash equilibriums

for the original game. For this purpose, we need to deal with the limiting behavior of

V1(X
∗
1,L, X∗

2,L). In the remainder of this section, we write X∗
i,L, X♯

i,L, X†
i,L; and X∗

i , X†
i , i =

1, 2 instead of X∗
L, X♯

L, X†
L; and X∗, X† to emphasize the player of the stategies. Since

hi(π1, π2) in (5.2.1) is not continuous function of π1, π2, it does not, in general, hold that

limL̃→∞ E[hi(XL, YL)] = E[hi(X, Y )] even if XL and YL converge almost everywhere to X

and Y as L̃→∞. A preliminary lemma is needed and a proof is provided in Appendix.

Lemma 5.4.3 For i = 1, 2 let Yi be any independently and identically distributed (i.i.d.)

random variables in RV , and define the associated pairs of i.i.d. random variables Yi,L by

Yi,L(ωi) = vL:1 if ω ∈ {ωi|Y (ωi) = vL:1} and Yi,L(ωi) = vL:m if ω ∈ {ωi|vL:m−1 < Y (ωi) ≤

vL:m} for m = 2, 3, · · · , L, where we write ωi instead of ω to emphasize the player. Then the

following statements hold ;
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a)Yi,L
a.e.
→ Yi as L̃→∞ for i = 1, 2

b) limL̃→∞ Vi(X
∗
1,L, X∗

2,L)=Vi(X
∗
1 , X

∗
2 ), i = 1, 2

c) limL̃→∞ V1(Y1,L, X∗
2,L) = V1(Y1, X

∗
2 ), limL̃→∞ V2(X

∗
1,L, Y2,L) = V2(X

∗
1 , Y2)

d) limL̃→∞ Vi(X
♯
1,L, X†

2,L)=Vi(X
∗
1 , X

†
2), i = 1, 2

e) limL̃→∞ V1(Y1,L, X†
2,L) = V1(Y1, X

†
2), limL̃→∞ V2(X

♯
1,L, Y2,L) = V2(X

∗
1 , Y2)

Theorem 5.4.4 The following two statements hold true.

a) (X∗
1 , X∗

2) ∈ NE

b) (X∗
1 , X

†
2) ∈ NE , (X†

1, X
∗
2 ) ∈ NE

Proof: First we note that the equilibrium (q∗, q∗) in Theorem 5.3.2 is written as (X∗
1,L, X∗

2,L)

here. For any Y1 ∈ S1, define Y1,L as in Lemma 5.4.3. Since (X∗
1,L, X∗

2,L) ∈ NE(vL), one

has V1(Y1,L, X∗
2,L) ≤ V1(X

∗
1,L, X∗

2,L) for L ∈ {2, 4, 6, · · · } so that limL̃→∞ V1(Y1,L, X∗
2,L) ≤

limL̃→∞ V1(X
∗
1,L, X∗

2,L). It then follows from Lemma 5.4.3 b) and c) that V1(Y1, X
∗
2 ) ≤

V1(X
∗
1 , X

∗
2 ) for all Y1 ∈ S1 . Similarly one has V2(X

∗
1 , Y2) ≤ V2(X

∗
1 , X∗

2) for all Y2 ∈ S2(=

RV ), proving part a).

For part b), since (X♯
1,L, X†

2,L) ∈ NE(vL) one has V1(Y1,L, X†
2,L) ≤ V1(X

♯
1,L, X†

2,L) for all

L > max{2,
aL

2a1

+ 1} and L is even, so that limL̃→∞ V1(Y1,L, X†
2,L) ≤ limL̃→∞ V1(X

♯
1,L, X†

2,L).

It then follows from Lemma 5.4.3 d) and e) that V1(Y1, X
†
2) ≤ V1(X

∗
1 , X

†
2) for all Y1 ∈ S1(=

RV ). Similarly one has V2(X
∗
1 , Y2) ≤ V2(X

∗
1 , X

†
2) for all Y2 ∈ S2(= RV ), proving that

(X∗
1 , X

†
2) ∈ NE . The fact that (X†

1 , X
∗
2 ) ∈ NE can be proven in a similar manner. 2

5.5 Numerical Examples

In this section, numerical examples are provided, yielding managerial implications for energy

suppliers. We consider the case that two customers are middle-sized industrial customers,
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receiving natural gas transported in LNG lorry tankers. It should be noted that, unlike usual

city gas distribution through pipeline networks, the trasportation costs are considered to be

marginal costs. Although the price and cost vary depending on the condition or demand

pattern, for the sake of convenience, we suppose here clow = 40[Yen/m3], chigh = 50[Yen/m3]

and U = 60[Yen/m3]. For energy supply within this price range, the demand price elastricity

is thought to be very small.

The probabilities to win only near customer or both customers are evaluated when

(X∗
1 , X

∗
2 ) ∈ S. In our model we assume each player has the same cost structure. If one

player tries to secure its near customer while giving up the distance customer, it offers chigh

since each player provides its service only when it results in a positive return. In this case,

the player can capture the customer with probability one. If the player tries to capture both

customers, it must offer the price x > chigh. In this case, the probabiity to win its near

customer is below one since it could lose both customers when the other player offers the

price between chigh and x. The probability can be written as F ∗
∞(x) − F ∗

∞(chigh) where F ∗
∞

is as in Definition 5.4.1 b). By substituting α1:∞, a1, aL, K of Definition 5.4.1a)(5.3.1)(5.3.3)

and (5.3.4) into this, one has

F ∗
∞(x)− F ∗

∞(chigh) =
1

2

dhigh + dlow

dlow

(

1−
dlow − dhigh

2x + dhigh + dlow − 2U

)

where dhigh
def
= U − chigh, dlow

def
= U − clow . Figure 5.5.1 and 5.5.2 depicts the winning

probablity for each supplier exercising the Nash equilibtiumin (X∗
1 , X

∗
2 ) in Theorem 5.3.2.

Similarly we show in Figure 5.5.3 the pobablitiy for player 1 to win both customers when

the equilibrium (X∗
1 , X

†
2) is realized. It can be seen that these winning probabilities are

nonincreasing as a function of price, i.e., the higher the offering price is, the lower the

two winning probabilities are. The monotonicity appears in such a way that at the price

equilibrium for the mixed strategies, the expected profit is the same regardless of the offering
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price. However, this does not mean that the offering price is not important. It affects the

winning probabilities which may be quite important for assuming the company’s presence

in the market.

���������������
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Figure 5.5.1: Probability to Win Only Near Customer When (X∗

1 , X∗
2) ∈ S

It is worth noting that X∗
i , i = 1, 2 in Theorem 5.4.4 has the mass m(chigh) = 2a1/(a1 +

aL) at chigh. Let U = chigh + dhigh. From (5.3.1) and (5.3.2), one then sees that

m(chigh) =
chigh − clow

chigh − clow + dhigh

. (5.5.1)

Adopting the lowest possible price at chigh is the risk aversive strategy in that the supplier

secures the near customer while giving up the distant customer. Equation (5.5.1) states that

the mass assigned to this strategy at the limit is the ratio of the unit profit expected from the

near customer under this strategy against that obtained by offering the highest possible price

U = chigh + dhigh. Clearly, the mass m(chigh) vanishes as U → ∞ and the associated limit-

ing distribution becomes absolutely continuous on [chigh,∞) having the probability density

function given by

f∞:U=∞(x) =
chigh − clow

2
(x− cmid)

−2 . (5.5.2)

The interpretation for Theorem 5.4.4 b) can be stated as supplier i takes the risk aversive

strategy by placing the mass mi(chigh) as given in (5.5.1), while supplier 3 − i adopts the
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Figure 5.5.2: Probability to Win Both Customers When (X∗

1 , X∗
2 ) ∈ S
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Figure 5.5.3: Probability to Win Both Customers When (X∗

1 , X†
2) ∈ S
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risk taking strategy by placing the mass m3−i(U) at the highest possible price U where

m3−i(U) =
chigh − clow

chigh − clow + 2dhigh
.

Both mi(chigh) and m3−i(U) diminish to zero as U → ∞ and one observes again that both

suppliers have the same associated limiting strategy specified by (5.5.2). One may then

expect that there exists the unique Nash equilibrium specified by (5.5.2) with the strategy

space S = RV ×RV where RV is the set of all random variables defined on [chigh,∞). This

conjecture is currently under study and will be reported elsewhere.



Chapter 6

Pipeline Investment Strategy in

Response to All-Electric House

Systems

6.1 Introduction

Since the beginning of the new century, all-electric house systems have been strengthening

the presence in the residential energy market. In an all-electric house system, the residential

energy demand within the household is supplied totally by electricity with IH (Inductive

Heating) cooking heaters and an electric “heat-pump water heating and supply system.”

Popularity of all-electric house systems is largely due to the price-performance improvement

of those equipment, as well as the strong promotion campaigns by electricity companies.

As the strategy of electricity companies for promoting all-electric house systems became

clear, city gas companies have been forced to reconsider their strategy for the residential

market and the small-scale commercial market. They used to enjoy the fact that residential

customers tend to choose city gas for cooking and hot water if a gas pipeline is located

near their houses. Because of this, if there are houses near a network of gas pipelines, the

city gas company owning the network could count on the residential gas demand for a very

long time. However, in the presence of all-electric house system, a residential customer

may choose to adopt all-electric house system upon moving into a house even with a gas

56
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pipeline, terminating the use of city gas and hence the network of gas pipelines at that house.

In response to this market change, city gas companies have been changing their investment

strategy to expand their existing networks of gas pipelines, since it would require huge capital

spending and a very long time for investment recovery.

The purpose of this chapter is to develop and analyze a mathematical model for capturing

the cash flow of a gas company in a residential area with a given network of gas pipelines,

where residents move in and move out stochastically, and choose city gas or all-electric house

system upon moving in. Computational algorithms are developed for numerically evaluating

the optimal number of pipelines to be installed through the cost-performance analysis of the

mathematical model. Numerical examples are also given for demonstrating the efficiency of

the numerical algorithms.

The structure of this chapter is as follows. In Section 6.2, a mathematical model is

formally described, where residents move in and move out according to a Markov chain in

continuous time, and the relevant cash flow is represented by a reward process defined on

the Markov chain. In order to reflect the reality, we assume that the Markov chain and

the associated cash flow are affected by an exogenous Markov chain representing the macro-

economic condition. Computational algorithms are developed in Section 6.3 for numerically

evaluating the expected cash flow and the expected profit at time t, enabling one to explore

the optimal strategy for the number of gas pipelines to be installed at time 0. Some numerical

examples are given in Section 6.4.

6.2 Model Description

We consider a newly developed residential area in which K houses can be made readily

accessible to an existing network of gas pipelines at the cost of UcK. How these K houses



CHAPTER 6. PIPELINE INVESTMENT STRATEGY 58

may or may not be occupied would depend on the exogenous macro-economic condition.

More specifically, let J(t) be a birth-death process defined on J
def
= {−1, 0, 1} governed by

hazard rate matrix η where (η)ij = 0 if i = j or i = 3, j = 1 or i = 1, j = 3; and (η)12 = η+
−1,

(η)23 = η+
0 , (η)21 = η−

0 , (η)32 = η−
1 , with state −1 describing a bad economic condition, state

0 a normal economic condition, and state 1 a good economic condition. Customers arrive

according to a Poisson process with parameter λi if J(t) = i. Dwell times of customers

occupying one of K houses are i. i. d. (independently and identically distributed) having a

common exponential distribution with mean β−1
i whenever J(t) = i. A customer finding all

K houses occupied upon his/her arrival would be lost.

In order to capture the competition of city gas against all-electric house system, it is

assumed that a customer finding one of the K houses available upon his/her arrival would

choose to use city gas with probability p. With probability 1 − p, the customer decides

to adopt all-electric house system. Let M1(t) be the number of houses occupying one of

the K houses and using city gas at time t. Similarly, let M2(t) be the number of houses

occupying one of the K houses and using all-electric house system at time t. We note that

K − {M1(t) + M2(t)} represents the number of vacant houses among the K houses at time

t. The joint process [M1(t), M2(t)] has the state spaceM12 given by

M12
def
= {(i, j) | 0 ≤ i + j ≤ K}

= {(0, 0), (1, 0), · · · , (K, 0), (0, 1), (1, 1), · · · , (K − 1, 1),

(0, 2), · · · , (1, K − 1), (0, K)} . (6.2.1)

Excluding the installment cost UcK, the profit per unit time for the gas company per house

using city gas is denoted by ρ.

Let N(t) = [J(t), M1(t), M2(t)] be the trivariate Markov chain in continuous time on
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S
def
= J ×M12. The hazard rate matrix ν governing N(t) is given by

ν =







ξ
−1

η+
−1I 0

η−
0 I ξ

0
η+

0 I

0 η−
1 I ξ

1






(6.2.2)

where

ξ
i
=















G
i:K×K

G
i:K×(K−1)

· · · 0
i:K×1

G
i:(K−1)×K

G
i:(K−1)×(K−1)

. . .
...

...
. . .

. . . G
i:2×1

0
i:1×K

· · · G
i:1×2

G
i:1×1















, (6.2.3)

and

G
i:m×n

=





































































































































































0 λip 0 0 · · · 0
βi 0 λip 0 · · · 0
0 2βi 0 λip · · · 0

0 0 3βi
. . .

. . . 0
...

...
...

. . .
. . . λip

0 0 0 0 mβi 0



















if n = m











(K −m)βi 0 0 · · · 0
0 (K −m)βi 0 · · · 0
...

...
. . .

. . . 0
0 0 0 (K −m)βi 0











if n = m + 1















(1− p)λi 0 · · · 0
0 (1− p)λi · · · 0
0 0 · · · 0
...

...
. . . (1− p)λi

0 0 0 0















if n = m− 1

0 otherwise .

Let ZK(t) be the cumulative profit of the gas company up to time t, excluding the

installment cost, given that K houses are connected to the existing network of gas pipelines

at time 0. Clearly, this reward process ZK(t) can be written as

ZK(t) = ρ

∫ t

0

M1(t)dt . (6.2.4)
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The major interest of the gas company is then to maximize the investment return over a

planning horizon of time T , that is

[Problem 6.2.1]

Find K∗ = arg max{K : E[R(K, T )]} ,

where

R(K, T ) = ZK(T )− cK . (6.2.5)

Based on Equation (5.13) of Sumita and Masuda [14] combined with the uniformization

procedure of Keilson [10], computational algorithms will be developed in the next section so

as to solve [Problem 6.1] numerically.

6.3 Development of Computational Algorithms for Find-

ing Optimal Number of Gas Pipelines to Be In-

stalled

In the previous section, we have seen that the trivariate process N(t) = [J(t), M1(t), M2(t)]

is a Markov chain in continuous time defined on S = J × M12 and governed by ν =

[νm n], m , n ∈ S given in (6.2.2). Let P (t) be the transition probability matrix of N(t)

defined by

P (t) = [Pm,n(t)] m,n∈S ; Pm,n(t) = P [N(t) = n|N(0) = m] . (6.3.1)

From the Kolmogorov forward equation, P (t) can be expressed in terms of the infinitesimal

generator Q of N(t). More specifically, let ν
D

be the diagonal matrix defined by

ν
D

= [δ{m=n}νm] m,n∈S ; νm =
∑

n∈S

νm n (6.3.2)

and define

Q = ν − ν
D

(6.3.3)
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One then sees that d
dt

P (t) = P (t)Q. By solving this equation with P (0) = I, it then follows

that

P (t) = e
tQ

=
∞
∑

k=0

tK

k!
Qk . (6.3.4)

In principle, Equation (6.3.4) enables one to compute P (t). Since the infinitesimal generator

Q involves negative numbers, however, the numerical procedure based on (6.3.4) may not be

numerically stable, especially when the size of the space is huge. In order to overcome this

difficulty, we employ the uniformization procedure of Keilson [10]. Let ν ≥ maxm∈S{νm}

and define

a
ν

= I −
1

ν
ν

D
+

1

ν
ν . (6.3.5)

One sees that a
ν
≥ 0 since the diagonal elements of 1

ν
ν

D
is less than or equal to 1 and ν ≥ 0.

Furthermore, a
D
1 = 1 since ν

D
1 = ν 1 from (6.3.2). Consequently, a

ν
is a stochastic matrix.

Furthermore one sees from (6.3.3) and (6.3.5) that a
ν

= I + 1
ν
Q or equivalently

Q = −ν(I − a
ν
) . (6.3.6)

Substituting (6.3.6) into (6.3.4), it then follows that

P (t) = e−νt[I−a
ν
] =

∞
∑

k=0

e−νt (νt)k

k!
ak

ν
. (6.3.7)

Since Equation (6.3.7) involves only non-negative numbers, the numerical procedure for

computing P (t) based on (6.3.7) is numerically stable. It may be worth noting that Equation

(6.3.7) has the following probabilistic interpretation. Let Kν(t) be the Poisson process with

intensity ν. One then sees that P [Kν = k] = e−νt (νt)k

k!
. If we define N̂(k) to be the discrete

time Markov chain on S governed by one-step transition probability matrix a
ν
, then ak

ν
is

the k-step transition probability of N̂(k). Hence, it follows that

N(t) = N̂(kν) (6.3.8)
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where the dwell time of N(t) in any state m ∈ S can be “uniformized” to exponential random

variate of parameter ν. In order to prepare the stochastic equivalence under iniformization,

the probability of transition from m to n upon expiration of the dwell-time in state m is

altered from
νm n

νm
to (a

ν
)m n. The expected reward E[Zk(t)] can be obtained from (5.13) of

Sumita and Masuda [14]. By reinterpreting the result in our context, one sees that

E[Zk(T )] =

∫ T

0

pT (t)dtρ
D

1 (6.3.9)

where

ρ
D

= ρ





L 0

L
0 L



 ; L = diag{0, 1, 2, · · · , k, 0, 1, · · · , k − 1, · · · , · · · , 0, 1, 0} . (6.3.10)

From (6.3.7), it can be seen that

∫ T

0

pT (t)dt =
∞
∑

k=0

∫ T

0

e−νt (νt)k

k!
dt pT (o)ak

ν
. (6.3.11)

We now define, for k = 0, 1, · · · that

PS(k, T ) = e−νT (νT )k

k!
; IN(k, T ) =

∫ T

0

PS(k, t)dt . (6.3.12)

It can be readily seen that

PS(k + 1, T ) =
νT

k + 1
PS(k, T ) with PS(0, T ) = e−νT . (6.3.13)

For IN(k + 1, T ), we note that from integration by parts, that

IN(k + 1, T ) =
νk+1

(k + 1)!

∫ T

0

e−νttk+1dt =
νk+1

(k + 1)!

{

[

−
1

ν
e−νttk+1

]T

0

+
k + 1

ν

∫ T

0

e−νttkdt

}

= −
1

ν
PS(k + 1, T ) + IN(k, T ) .
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Since IN(0, T ) =
∫ T

0
e−νtdt = 1

ν
(1− e−νT ), the following recursion formula holds true.

pT (t) =

∞
∑

k=0

PS(k, t)pT (0)ak

ν
(6.3.14)

E[ZK(T )] =

∞
∑

k=0

IN(k, T )pT (0)ak

ν
ρ

D
1 (6.3.15)

PS(k + 1, T ) =
ν

k + 1
PS(k, T ) with PS(0, T ) = e−νT (6.3.16)

IN(k + 1, T ) = −
1

ν
PS(k + 1, T ) + IN(k, T ) (6.3.17)

with IN(0, T ) = −
1

ν
(1− e−νT )

Based on (6.3.14) through (6.3.17), we are now in a position to describe a computational

algorithm for evaluating E[Zk(T )].

Algorithm 6.3.1

Input:

pT (0): initial probability vector

ν: hazard rate matrix in (6.2.2)

ν: uniformization constant in (6.3.5)

a
ν
: stochastic matrix given in (6.3.5)

ρ
D
: diagonal reward matrix in (6.3.10)

T : planning horizon

Output:

0] Set k ← 0, PS ← e−νT , IN ← −
1

ν
(1− e−νT ), ZK ← 0, rT ← pT (0)

1] Loop: ZK ← ZK + INrT ρ
D
1

2] k ← k + 1

3] PS ←
ν

k
PS

4] IN ← −
1

ν
PS + IN

5] If INρk < ǫ, stop. Otherwise set rT ← rT a
ν

and to LOOP
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We note that E[R(K, T )] is increasing in T , as shown in the next proposition.

Proposition 6.3.1 E[R(K, T )] is increasing in T .

Proof: From (6.3.12), it can be readily seen that IN(k, T ) is increasing in T for all k ≥ 0.

It then follows from (6.3.15) that E[R(K, T )] is also increasing in T . 2

6.4 Numerical Examples

In this section, we provide numerical examples so as to demonstrate that Algorithm 6.3.1

works efficiently, enabling one to solve Problem 6.2.1 with speed. The basic values of the

underlying parameters are summarized in Table 6.4.1. Throughout this section, these pa-

rameter values are assumed, unless specified otherwise. As time unit, we adopt one year. It

may be worth noting that the arrival rate of customers with intention of moving into one of

the K houses is one every six month when the macro-economic condition is “normal”, which

is increased to one every four month as the macro-economic condition improves to “good”

and is decreased to one every year as it deteriorates into “bad”. Once a customer moves into

one of the K houses, he/she stays, on the average, ten years, which would not be affected by

the macro-economic condition. The probability of choosing city gas over all-electric system is

assumed to be 0.7, which is also indifferent to the changes of the macro-economic condition.

If a house is occupied with city gas chosen, the investment recovery period for installing one

gas pipeline is expected to be five years.

In order to estimate the birth-death process parameters for specifying the stochastic

nature of the macro-economic condition, we adopt the approach by Huang and Sumita

[8], where the monthly LIBOR (London Inter-Bank Offered Rate) in US dollars for the

period September 1989-December 2008 was employed. By applying the maximum likelihood
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Table 6.4.1: Basic Values of the Underlying Parameters� �� � � � �� �� � 	 
�� ��� ���
 
�� �	 ��
 ��
 ��
� ���� ���
Table 6.4.2: Birth-Death Process Parameters������������������������

estimator approach for continuous time Markov chain originally proposed by Hansen [6] ,

the monthly estimators of Huang and Sumita[8] are converted to the yearly estimators as

shown in Table 6.4.2.

Figures 6.4.1 through 6.4.3 depict E[R(K, T )] as a function of K and T for p = 0.6, 0.7

and 0.8 respectively. We note that E[R(K, T )] increases as T or p increases, as expected

from Proposition 6.3.1. It seems that E[R(K, T )] is concave in K. In order to observe this

point more carefully, E[R(K, T )] for T = 10, 20, 30 are plotted for p = 0.6, 0.7 and 0.8 in

Figures 6.4.4 through 6.4.6. The concavity of E[R(K, T )] in K can be seen more explicitly.

The optimal values K∗ for these nine cases are summarized in Table 6.4.3. One realizes that

K∗ increases as T or p increases.
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Figure 6.4.1: E[R(10, T )] as a Function of T
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Figure 6.4.2: E[R(20, T )] as a Function of T
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Figure 6.4.3: E[R(30, T )] as a Function of T



CHAPTER 6. PIPELINE INVESTMENT STRATEGY 67

��������������
������

� � � � � � � 	 
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��
��
������ �������������

Figure 6.4.4: E[R(K, T )] as a Function of K for p = 0.6
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Figure 6.4.5: E[R(K, T )] as a Function of K for p = 0.7
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Figure 6.4.6: E[R(K, T )] as a Function of K for p = 0.8
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Table 6.4.3: The Optimal Values K∗� � ��� ��� ����� 	 
 ��� 
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Appendix A

On Non-Existence of Equilibrium of

M Person Game

A.1 Proof of Preliminary Lemmas and Main Theorem

Proof of Lemma 4.3.1 From (4.2.2), it can be readily seen that AVj(π) ⊂ AVj(U) for

any π ∈ S. Since AVj(U) = {i} and i ∈ AVj(π), this then implies that AVj(π) = {i}. Hence,

one has AVj(π) ∩ LEi(π) = ø so that Wij(π) = {i} from (4.2.5).

Proof of Lemma 4.3.2 Since π 6= U , there exists at least one i satisfying πi < U . Let j

be such that cij = minn∈N cin . Then one has cij < πi from (4.2.1) so that i ∈ AVj(π). We

consider the following two cases.

Case1: AVj(π) ∩ LEi(π) = ø

Since i ∈ AVj(π), one has i ∈Wij(π) from (4.2.5) and hence |Wij(π)| ≥ 1.

Case2: AVj(π) ∩ LEi(π) 6= ø

Let i′ be such that πi′ = minm∈AVj(π)∩LEi(π) πm . Then AVj(π) ∩ LEi′(π) = ø . One also sees

that i′ ∈ AVj(π) ∩ LEi(π) implies i′ ∈ AVj(π). These observations together with (4.2.5)

imply that i′ ∈Wi′j(π) and |Wi′j(π)| ≥ 1 .

Proof of Lemma 4.3.3 We first prove part 1) by contraposition. Suppose |Wij(π
♯
i , π

∗
\i)| ≥

2 for some j. Then from the definition of Wij(π) in (4.2.5), one has |EQi(π
♯
i , π

∗
\i)| ≥ 2. From

73
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(4.3.1) it is clear that

LAi(π
♯
i , π

∗
\i) = LAi(π

∗) . (A.1.1)

Since ∆ > 0, it follows from (4.2.3) and (4.2.4) that LEi(π
♯
i , π

∗
\i) =LEi(π

∗)∪ (EQi(π
∗)\{i}).

From this and (A.1.1), it is readily seen that

EQi(π
♯
i , π

∗
\i) = M\ [LEi(π

♯
i , π

∗
\i) ∪ LAi(π

♯
i , π

∗
\i)]

= M\ [LEi(π
∗) ∪ (EQi(π

∗) \ {i}) ∪ LAi(π
∗)]

= M\ [(LEi(π
∗) ∪EQi(π

∗) ∪ LAi(π
∗)) \ (LEi(π

∗) ∩ {i} ∩ LAi(π
∗))]

= M\ (M\ {i}) = {i} ,

which contradicts to |EQi(π
♯
i , π

∗
\i)| ≥ 2 .

For part 2), suppose |Wij(π
∗)| = 1 and |Wij(π

♯
i , π

∗
\i)| 6= 1 for some j ∈ N . Then from

part 1), one has |Wij(π
♯
i , π

∗
\i)| = 0, and hence Wij(π

♯
i , π

∗
\i) = ø . Accordingly from (4.2.5),

one has either

AVj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i) 6= ø or i ∈ NAj(π

♯
i , π

∗
\i) . (A.1.2)

Similarly from (4.2.5), since Wij(π
∗) 6= ø from the assumption, one has

AVj(π
∗) ∩ LEi(π

∗) = ø ; and (A.1.3)

i ∈ AVj(π
∗) . (A.1.4)

From (4.2.2) and (A.1.4), it is clear that

AVj(π
∗) ⊂ AVj(π

♯
i , π

∗
\i) . (A.1.5)

Hence one has i ∈ AVj(π
♯
i , π

∗
\i) from (A.1.4) and (A.1.5). This, in turn, implies from (A.1.2)

that

AVj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i) 6= ø. (A.1.6)
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It then follows from (A.1.3), (A.1.5) and (A.1.6) that

SE
def
= AVj(π

∗) ∩ [LEi(π
♯
i , π

∗
\i) \ LEi(π

∗)]

= {AVj(π
♯
i , π

∗
\i) ∩ LEi(π

♯
i , π

∗
\i)} \ {AVj(π

∗) ∩ LEi(π
∗)} 6= ø . (A.1.7)

Suppose i′ ∈ SE. It is clear from (A.1.7), that i′ ∈ LEi(π
♯
i , π

∗
\i) and hence i′ /∈ LAi(π

♯
i , π

∗
\i) =

LA(π∗) from (A.1.1). Since i′ ∈ SE, one sees that i′ /∈ LEi(π
∗) . Consequently, one has

i′ ∈ EQi(π
∗). Thus i′ ∈ (EQi(π

∗) ∩ AVj(π
∗)) so that i′ ∈ Wij(π

∗). Since i′ ∈ LEi(π
♯
i , π

∗
\i),

one has i′ 6= i, so that Wij(π
∗) ⊃ {i, i′} and hence |Wij(π

∗)| ≥ 2, which contradicts to

|Wij(π
∗)| = 1, completing the proof.

Proof of Theorem 4.3.4 We first prove part 2) by contraposition. Suppose π∗ ∈ NE

and U 6= π∗. From Lemma 4.3.1, there exists î ∈M and ĵ ∈ N such that |Wîĵ(π
∗)| ≥ 1 and

π∗
î

< U . We consider the following two cases.

Case1: Jîj(π
∗) = 0 for all j ∈M

From the definition of Pi(π) in (4.2.8), one sees that

Pî(π
∗) =

∑

j∈N

Dj(π
∗
î
− cîj)Iîj(π

∗) . (A.1.8)

Let π♯

ĵ
be as in (4.3.1). Then from 1) of Lemma 4.3.3, one has Jîj(π

♯

î
, π\̂i) = 0 for all j ∈M.

It then follows from this and (4.2.8) that

Pî(π
♯

î
, π\̂i) =

∑

j∈N

Dj(π
∗
î

+ ∆− cîj)Iîj(π
♯

î
, π\̂i) . (A.1.9)

From 2) of lemma 4.3.3, Iîj(π
∗) = 1 implies Iîj(π

♯

î
, π\̂i) = 1 so that Iîj(π

♯

î
, π\̂i)− Iîj(π

∗) ≥ 0

for all j ∈ N . Since |Wîĵ(π
∗)| ≥ 1 and Jîĵ(π

∗) = 0, it is clear that Iîĵ(π
∗) = 1. These
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observations together with (A.1.8) and (A.1.9) then yield that

Pî(π
♯

î
, π\̂i)− Pî(π

∗)

=
∑

j∈N

[

Dj(π
∗
î

+ ∆− cîj)Iîj(π
♯

î
, π\̂i)−Dj(π

∗
î
− cîj)Iîj(π

∗)
]

=
∑

j∈N

[

Dj(π
∗
î

+ ∆− cîj)Iîj(π
∗)−Dj(π

∗
î
− cîj)Iîj(π

∗)

+Dj(π
∗
î

+ ∆− cîj){Iîj(π
♯

î
, π\̂i)− Iîj(π

∗)}
]

≥
∑

j∈N

Dj∆Iîj(π
∗) ≥ Dĵ∆Iîĵ(π

∗) > 0 ,

which contradicts to π∗ ∈ NE .

Case2: Jîj(π
∗) = 1 for some j ∈ N

Since π∗
î

> cîn for any customer n supplied by supplier î, and π∗
î

> π∗
m for any m ∈ LEî(π

∗),

one can choose ∆ > 0 sufficiently small so that π†

î
= π∗

î
−∆ satisfies

max

[

max
n∈{n :(I

în
(π∗)=1)∨(J

în
(π∗)=1)}

{cîn} , max
m∈LE

î
(π∗)
{π∗

m}

]

< π†

î
, (A.1.10)

where the second maximum in (A.1.10) is ignored if LEî(π
∗) = ø . One then sees that

LEî(π
†

î
, π∗

\̂i
) = LEî(π

∗), EQî(π
†

î
, π∗

\̂i
) = {̂i} and LAî(π

†

î
, π∗

\̂i
) = LAî(π

∗) ∪
(

EQî(π
∗) \ {̂i}

)

.

From (4.2.6) and (4.2.7), these observations imply that the following statements hold true

for all j ∈ N .

a) If Iîj(π
∗) = 1 then Iîj(π

†

î
, π∗

\̂i
) = 1 (A.1.11)

b) If Jîj(π
∗) = 1 then Iîj(π

†

î
, π∗

\̂i
) = 1 and Jîj(π

†

î
, π∗

\̂i
) = 0 (A.1.12)

c) If
[

Iîj(π
∗) = 0 ∧ Jîj(π

∗) = 0
]

, then
[

Iîj(π
†

î
, π∗

\̂i
) = 0 ∧ Jîj(π

†

î
, π∗

\̂i
) = 0

]

(A.1.13)
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From the definition of Pî(π) in (4.2.8) together with (A.1.11), (A.1.12) and (A.1.13), one

then sees that

Pî(π
†

î
, π∗

\̂i
)− Pî(π

∗) =
∑

j∈N

Dj(π
†

î
− cîj)Iîj(π

†

î
, π∗

\̂i
)−

∑

j∈N

Dj(π
†

î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

+
∑

j∈N

Dj(π
†

î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

−
∑

j∈N

Dj(π
∗
î
− cîj)

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

=
∑

j∈N

Dj(π
†

î
− cîj)

[

1−
1

|Wîj(π
∗)|

]

Jîj(π
∗)−∆

∑

j∈N

Dj

[

Iîj(π
∗) +

Jîj(π
∗)

|Wîj(π
∗)|

]

=
∑

j∈N

Dj(π
∗
î
− cîj)

[

1−
1

|Wîj(π
∗)|

]

Jîj(π
∗)−∆

∑

j∈N

Dj{Iîj(π
∗) + Jîj(π

∗)}

≥ Dĵ(π
∗
î
− cîĵ)

[

1−
1

|Wîĵ(π
∗)|

]

−∆
∑

j∈N

Dj{Iîj(π
∗) + Jîj(π

∗)} .

Since the first component in the last term is positive, one can choose ∆ sufficiently small so

that Pî(π
†

î
, π∗

\̂i
) > Pî(π

∗), which contradicts to π∗ ∈ NE , completing the proof for part 2).

We next prove “if part” of part 1). If |AVj(U)| ≤ 1 for all j ∈ N , then from Lemma

4.3.1, one has |Wij(π)| ≤ 1 for all π ∈ S and i ∈ M. Hence, for all π ∈ S and i ∈ M, one

has Pi(π) =
∑

j∈N Dj(πi − cij)Iij(π). It then follows that

Pi(U)− Pi(π) =
∑

j∈N

Dj(U − cij){Iij(U)− Iij(π)}+
∑

j∈N

Dj(U − πi)Iij(π) . (A.1.14)

If U ≤ cij then Wij(π) = ø, so that Iij(π) = 0 and hence Iij(π) = Iij(U) for all π ∈ S

. If U > cij (and hence AVj(U) = {i} and Iij(π) = 1) then, from Lemma 4.3.1, one has

AVj(π) = {i} so that Iij(π) = 1 for any price vector π with πi > cij . Hence Iij(U) = Iij(π)

for all π ∈ S. These observation then imply that the payoff difference in (A.1.14) is non-

negative for all π ∈ S. It then follows that U ∈ Bi(U \i) for all i ∈ M. Hence one has

U ∈ NE , proving “if part”.

For “only if part”, suppose NE 6= ø and |AVj(U)| ≥ 2 for some ĵ ∈ N . From part 2) of

this theorem one has NE = {U}. To emphasize this, we write π∗ = U . Let î, î′ ∈ AVĵ(π
∗).

Since LEî(π
∗) = ø from (4.2.3), the definition of Wij(π) in (4.2.5) implies î ∈Wîĵ(π

∗). Since
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πî = πî′ = U , it is clear that î′ ∈ EQî(π
∗) thus î′ ∈ Wîĵ(π

∗), so that Jîĵ(π
∗) = 1. Let

π†
i = π∗

i −∆ for sufficiently small ∆ as in (A.1.10). Similarly as in the proof of Case2 of part

2), statements (A.1.11), (A.1.12) and (A.1.13) hold true. These together with the definition

of Pi(π) in (4.2.8) imply that

Pî(π
†

î
, π∗

\̂i
)− Pî(π

∗)

≥ Dĵ(π
∗
î
− cîĵ)

[

1−
1

|Wîĵ(π
∗)|

]

Jîĵ(π
∗)−∆

∑

j∈N

Dj

[

Iîj(π
∗) + Jîj(π

∗)
]

. (A.1.15)

Since the first component in the last term in (A.1.15) is positive, one can choose ∆ sufficiently

small so that Pî(π
†

î
, π∗

\i) > Pî(π
∗), which contradicts π∗ ∈ NE , proving “only if part” of part

2) .



Appendix B

Structural Analysis of Two Person

Game

B.1 Proof of Theorem 5.3.2 and Theorem 5.3.3

Before the proof of Theorem 5.3.2 and 5.3.3, the following matrices are defined and several

preliminary lemmas are given. We note that δ{ST} = 1 if the statement ST holds and

δ{ST} = 0 else.

Definition B.1

I = [δ{m=n}]m,n∈L\{L} ∈ R
(L−1)×(L−1)

A
D

= [δ{m=n}am+1]m,n∈L\{L} ∈ R
(L−1)×(L−1)

L = [δ{m<n}]m,n∈L\{L} ∈ R(L−1)×(L−1)

L
1

= [δ{m+1=n}]m,n∈L\{L} ∈ R
(L−1)×(L−1)

B = I + L ∈ R(L−1)×(L−1)

C = I + 2L ∈ R(L−1)×(L−1)

Lemma B.2

a) B−1A−1

D
1L−1 = w(∆,

1

aL
) ; and

b) B−1C 1L−1 = w(2, 1) .

79
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Proof

We first note that L − L
1

= L
1
L so that (I − L

1
)B = I − L

1
+ L − L

1
L = I, and hence

B−1 = I − L
1
. From (5.3.6) and Defition B.1, one then sees that B−1A−1

D
1L−1 = (I −

L
1
)A−1

D
1L−1 = A−1

D
1L−1 − L

1
A−1

D
1L−1 = ∆1L−1 +

(

1
aL
− ∆

)

eL−1, where ∆ is as in (5.3.4),

proving a). For part b), since B−1 = I − L
1

and (I − L
1
)L = L

1
, it can be seen that

B−1C 1L−1 = (I − L
1
)(I + 2L)1L−1 = {(I − L

1
) + (2L − 2L

1
L)}1L−1 = I 1L−1 + L

1
1L−1 =

w(1, 1) + w(1, 0) = w(2, 1) where I 1L−1 = w(1, 1) and L
1
1L−1 = w(1, 0) are employed to

yield the last eauality, proving the lemma.

Lemma B.3

Let H be as in (5.3.9) and define vT
L = [v1, · · · , vL] as in (5.3.7). Then one has

a)[H]1,m = 2a1 for m ∈ L ;

b)[H]n,1 = a1 + an for n ∈ L \ {1} ;

c)[H]m,n = [A
D
C]m−1,n−1 for m,n ∈ L \ {1} ;

d)H =

[

2a1 2a11
T
L−1

(a1I + A
D
)1L−1 A

D
C

]

;

e)H

[

x
y1L−1

]

=

[

2a1

(yA
D
C + xa1I + xA

D
)1L−1

]

where 0 < x < 1, and y = (1− x)/(L− 1)r.

Proof

In what follows, since H = H
1

as in (5.3.9), any reference to (5.2.1) assumes i = 1. We

first note from (5.3.1) and (5.3.7) that v1 = a1

D
+ cmid =

chigh−clow

2
+

chigh+clow

2
= chigh. Hence

from (5.2.1) and (5.3.1), one has [H]1,m = h1(v1, vm) = h1(chigh, vm) = (chigh− clow)D = 2a1,

proving a). For part b), one sees from (5.2.1) that [H]n,1 = h1(vn, v1) = h1(vn, chigh) =

(vn − clow)D. Substituting vn = an

D
+ cmid from (5.3.7) into the last term and using (5.3.1),

we obtain (vn − clow)D = an +
chigh−clow

2
D = an + a1. In order to prove part c), we consider

the following three cases:
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Case1: 1 < m < n ≤ L

For this case, one has vm < vn from (5.3.6) and (5.3.7) so that it follows from (5.2.1) that

[H]m,n = h(vm, vn) = 2(vm − cmid)D = 2(am

D
+ cmid − cmid)D = 2am .

Case2: m = n ≤ L

Similarly, for m = n, one has [H]m,n = h(vm, vn) = (vm − cmid)D = am for m ∈ L \ {1}.

Case3: L ≥ m > n > 1

In this case, one has vm > vn and from (5.2.1) [H]m,n = 0.

These observations imply that that

A
D
C =















a2 2a2 2a2 · · · 2a2

a3 2a3 · · · 2a3

a4 · · · 2a4

0
. . .

...
aL















and part c) follows. Part d) is immediate from a), b), and c). Finally we prove part e). Using

the result of d), one sees that H

[

x
y1L−1

]

=

[

2a1 2a11
T
L−1

(a1I + A
D
)1L−1 A

D
C

] [

x
y1L−1

]

=

[

2a1{x + y(L− 1)}
{a1xI + xA

D
+ yA

D
C}1L−1

]

=

[

2a1

{yA
D
C + xa1I + xA

D
}1L−1

]

.

Lemma B.4:

a)α3 = a1(2− α3)
1

aL
; b)α4 = a1(2− α3)∆.

Proof

By the definition of α3, one sees that α3(1 + a1

aL
) = 2 a1

aL
, so that α3 = 2 a1

aL
− a1

aL
α3 =

a1(2− α3)
1

aL
, proving a). For part b), we first note that 2− α3 = 2−

2
a1
aL

1+
a1
aL

= 2
1+

a1
aL

. Hence

from Definition 5.3.1, one sees that α4 = a1
2

1+
a1
aL

∆ = a1(2− α3)∆ .

Lemma B.5

If L is even, then for any 0 < x < 1 and y = 2(1− x)/(L− 2), one has

H

[

x
yf

]

=

[

2a1

yA
D
C f + xa11 + xA

D
1

]

.
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Proof

From Lemma B.3 d), one sees H

[

x
yf

]

=

[

2a1 2a11
T
L−1

(a1I + A
D
)1L−1A

D
C

]

[

x
yf

]

=

[

2a1(x + y L−2
2

)
a1xI 1L−1 + xA

D
1L−1 + yA

D
C f

]

=

[

2a1

yA
D
C f + a1x1L−1 + xA

D
1L−1

]

.

Lemma B.6:

Let H, vL and w(x, y) be as in (5.3.9),(5.3.7) and Definition B.1 respectively. Then for any

0 < y < 1 and x = (1− y)/(L− 2), one has

H

[

0
w(x, y)

]

=

[

2a1

A
D
C w(x, y)

]

.

Proof

From Lemma B.3 d), one sees that H

[

0
w(x, y)

]

=

[

2a11
T
L−1w(x, y)

A
D
C w(x, y)

]

=

[

2a1

A
D
C w(x, y)

]

where

1T
L−1w(x, y) = (L− 2)x + y = 1 is employed to yield the last equality.

Lemma B.7:

Let f be as in Definition 5.3.1. If L is even, then one has a) B−1C f = w(1, 0) and b)

B−11 = w(0, 1).

Proof

We first note that (I − L
1
)L = L

1
and B−1 = I − L

1
so that B−1C f = (I − L

1
)(I +

2L)f = (I − L
1
+ 2L

1
)f = (I + L

1
)f = w(1, 0), proving part a). For part b), one sees that

B−11L−1 = (I − L
1
)1L−1 = 1L−1 − w(1, 0) = w(0, 1).

We are now in a position to prove Theorem 5.3.2 and 5.3.3.

Proof of Theorem 5.3.2:

Since L > 2, from the definition of q∗, it is clear q∗ ∈ DRV (vL). In order to prove (q∗, q∗) ∈

NE(vL), from (5.3.8), all we need to show is that V1(em, q∗) ≤ V1(q
∗, q∗) and V2(q

∗, em) ≤

V2(q
∗
1
, q∗) hold for all m ∈ L. From Definition B.1, one sees that w(x, y) is linear in (x, y).
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It is clear from Definition 5.3.1 that a) 2α2 + a1(α1 − 2)∆ = 0 and b) α2 + a1(α1 −

2) 1
aL

+ α1 = 0 . This then implies that α2w(2, 1) + a1(α1 − 2)w(∆, 1
aL

) + α1w(0, 1) =

w
[

2α2 + a1(α1 − 2)∆, α2 + a1(α1 − 2) 1
aL

+ α1

]

= w(0, 0) = 0. With w(2, 1) and w(∆, 1
aL

)

in the above equation substituted by Lemma B.2 a) and b) respectively, one sees that

α2B
−1C 1L−1 + a1(α1 − 2)B−1A−1

D
1L−1 + α1w(0, 1) = 0 . Multiplying A

D
B from left, this

then leads to α2AD
B B−1C 1L−1 + a1(α1 − 2)1L−1 + α1AD

B w(0, 1) = 0 i.e.

[

α2AD
C + a1α1I + α1AD

]

1L−1 = 2a11L−1, (B.1.1)

where B w(0, 1) = 1L−1 is employed to yield (B.1.1). On the other hand, from Lemma B.3

d), one sees that H q∗ =

[

2a1

(α2AD
C + α1a1I + α1AD

)1L−1

]

. It then follows from this and

(B.1.1) that H q∗ = 2a11L. This in turn implies that V1(em, q∗) = 2a1 = V1(q
∗, q∗) and

V2(q
∗, em) = 2a1 = V2(q

∗, q∗) hold for all m ∈ L, completing the proof.

Proof of Theorem 5.3.3:

Since L > aL

2a1
+1, from the definition of q♯ and q†, it is clear that q♯, q† ∈ DRV (vL). We next

show that V1(em, q†) ≤ V1(q
♯, q†) and V2(q

♯, em) ≤ V2(q
♯, q†) hold for all m ∈ L . From Lemma

B.7, one has α4B
−1C f + α3B

−11L−1 = α4w(1, 0) + α3w(0, 1) = w(α4, α3) . By Lemma B.4,

this then leads to α4B
−1C f + α3B

−11L−1 = a1(2 − α3)w(∆, 1
aL

) = a1(2 − α3)B
−1A−1

D
1L−1

where Lemma B.2 a) is employed to yield the last equality. By multiplying A
D
B from left

to the above equation, it follows that α4AD
C f + α3AD

1L−1 = a1(2− α3)1L−1, and one has

α4AD
C f + α3AD

1L−1+ α3a11L−1= 2a11L−1. (B.1.2)

Let x = 4α3

4−α4
and y = 4α4

4−α4
. One sees that (L − 2)(4 − α4)y = (L − 3

2
− 1

2
)4 2∆

1

a1
+ 1

aL

=

8−8
2

aL
1

a1
+ 1

aL

−2α4 = 8−8α3−2α4 = 2(4−α4)(1−x), so that y = 2(1−x)
L−2

. Since q♯T ∈ DRV (vL)

and the first component of q♯T is x, one has 0 < x < 1. Applying these x and y to Lemma

B.5 and using (B.1.2), one sees that H q♯ =

[

2a1
4

4−α4
2a11L−1

]

. This in turn implies that
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V2(q
♯, em) = em H q♯ ≤ 4

4−α4
2a1 = V2(q

♯, q†) for all m ∈ L .

We also need to show V1(em, q†) ≤ V1(q
♯, q†) for all m ∈ L. From Definition 5.3.1, one sees

that

α5w(2, 1) + w(0, 2(α6 − α5))

= w(2α5, 2α6 − α5) = 2a1w(∆,
1

aL
). (B.1.3)

Since B−1(C + I) = (I + L)−1(I + 2L + I) = 2I , Lemma B.2 a) b) and (B.1.3) lead to

α5B
−1C 1L−1 + B−1 (C + I)w(0, α6 − α5)

= 2a1B
−1A−1

D
1L−1 . (B.1.4)

Multiplying A
D
B from left in (B.1.4), one obtains α5 A

D
C 1L−1 + A

D
(C + I) w(0, α6 −

α5) = 2a11L−1 . From the linearity of w(x, y) and the definition of A
D

in Definition B.1,

this then leads to A
D
C w(α5, α6) + w(0, aL(α6 − α5)) = A

D
C w(α5, α5) + A

D
C w(0, α6 −

α5) + w(0, aL(α6 − α5)) = A
D

C w(α5, α5) + A
D

C w(0, α6 − α5) + A
D

w(0, (α6 − α5)) =

α5 A
D
C 1L−1 + A

D
(C + I) w(0, α6 − α5) = 2a11L−1, that is,

A
D

C w(α5, α6) = 2a11L−1− w(0, aL(α6− α5)). (B.1.5)

Let x = α5 and y = α6 so that x(L− 2) = a1∆(L− 2) = a1∆(L− 3
2
− 1

2
) = (1− a1

aL
)− a1

∆
2

=

1 − α6 = 1− y, and therefore x = (1 − y)/(L− 2). From the definition of α6 in Definition

5.3.1 a) and the condition L > 2, one has y = α6 = a1(
1

aL
+ ∆

2
) = a1

aL
+ a1

2
(1/a1)−(1/aL)

L−(3/2)
<

a1

aL
+ 1

2
1−(a1/aL)
2−(3/2)

= 1. Hence with x and y above, Lemma B.6 can be applied, yielding

H q† = H

[

0
w(α5, α6)

]

=

[

2a1

A
D
C w(α5, α6)

]

=

[

2a1

2a11L−1 − w(0, aL(α6 − α5))

]

. It should be noted that from the condition L > aL

2a1
+1,

one has α6 − α5 = a1

aL
− a1∆

2
= a1

aL
−

1−
a1
aL

2(L− 3
2
)

> a1

aL
−

1−
a1
aL

2(
aL
2a1

+1− 3
2
)

= a1

aL
−

1−
a1
aL

aL
a1

−1
= 0, so that

V1(em, q†) ≤ 2a1 = V1(q
♯, q†) for all m ∈ L, where (q♯)L = 0 if L is even is employed to yield
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the last equality.

Before the proof of Theorem 5.4.2, following lemma is needed.

Lemma C.8:

a)F ∗
∞(vL:m) < r∗L:m+1 , m = 1, · · · , L− 1

b)r∗L:m < F ∗
∞(vL:m) , m = 1, · · · , L− 1

c)F ∗
∞(vL:m) < r♯

L:m , m = 1, 3, 5, · · · , L− 1

d)r♯
L:m < F ∗

∞(vL:m+2) , m = 1, 3, 5, · · · , L− 3

e)F †
∞(vL:m) < r†L:m , m = 1, 2, 3, · · · , L− 1

f)r†L:m < F †
∞(vL:m+2) , m = 1, 2, 3, · · · , L− 3

Proof

From (5.3.7) and the definition of r∗L:m, q∗L:m and F ∗
∞(x), one has F ∗

∞(vL:m) − r∗L:m+1 =

{α1:∞ + 1−α1:∞

K
( 1

a1
− 1

am
)}−{α1 +mα2} = α1:∞−α1 + 1−α1:∞

K
( 1

a1
− 1

am
)−mα2 = ∆

2
K ′+K

K ′(K′−∆
2

)
+

∆
K ′ (m−

3
2
)− ∆

K ′−∆

2

m = ∆
2

1
K ′(K′−∆

2
)

1
L− 3

2

{K(L−m)− 2K ′(L− 3
2
)} = ∆

2
1

K ′(K′−∆

2
)

1
L− 3

2

{− 1
a1

(L +

m− 3)− 1
aL

(3L−m− 3)} < 0 for m = 1, · · · , L− 1, where K ′ def
= 1

a1
+ 1

aL
, proving a). One

also has F ∗
∞(vL:m)− r∗L:m = ∆

2
K ′+K

K ′(K′−∆
2

)
+ ∆

K ′ (m−
3
2
)− ∆

K ′−∆
2

(m− 1) = ∆
2

K
K ′(K′−∆

2
)

L−m
L− 2

3

> 0,

proving b) .

From (5.3.7) and the definition of r♯
L:m, q♯

L:m and F ∗
∞(x), one has, for m = 1, 3, 5, · · · , L− 1,

F ∗
∞(vL:m)−r♯

L:m = α1:∞+1−α1:∞

KD
( 1

chigh−cmid
− 1

vL:m−cmid
)− 4

4−α4
(α3+

m−1
2

α4) = α1:∞+1−α1:∞

K
( 1

a1
−

1
am

)− 4α3

4−α4
− 2(m−1)

4−α4
α4 = α1:∞−

4α3

4−α4
+ 1−α1:∞

K
( 1

a1
− 1

am
)− 2(m−1)

4−α4
α4 = K ′−K

K ′
−∆

2K′−∆
+ ∆

K ′ (m−
3
2
)−

2∆(m−1)
2K′−∆

= ∆
K ′(2K′−∆)

{−K ′+K+(2K ′−∆)(m− 3
2
)−2K ′(m−1)} = ∆

K ′(2K′−∆)
{K L−m

L− 3

2

−2K ′} <

∆
K ′(2K′−∆)

{2K − 2K ′} < 0, where K ′ def
= 1

a1
+ 1

aL
, proving c). For part d), one also has, for

m = 1, 3, 5, · · · , L− 3, F ∗
∞(vL:m+2)− r♯

L:m = α1:∞ + 1−α1:∞

K
( 1

a1
− 1

am+2
)− 4α3

4−α4
− 2(m−1)

4−α4
α4 =

K ′−K
K ′

−∆
2K′−∆

+ ∆
K ′ (m + 1

2
)− 2∆(m−1)

2K′−∆
= ∆

K ′(2K′−∆)
{K L−m−2

L− 3
2

+ 2K ′} ≥ ∆
K ′(2K′−∆)

{K L−(L−3)−2

L− 3
2

+

2K ′} > ∆
K ′(2K′−∆)

2K ′ > 0. Next we prove part e). From (5.3.7) and the definition of r†L:m,
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q†L:m and F †
∞(x), one has, for m = 1, 2, 3, · · · , L− 1, F †

∞(vL:m) − r†L:m = 1−α6:∞

KD
( 1

chigh−cmid
−

1
vL:m−cmid

) − (m − 1)α5 = 1−(a1/aL)
K

( 1
a1
− 1

am
) − (m − 1)∆a1 = a1(

1
a1
− 1

am
) − (m − 1)∆a1 =

a1{K − (L−m)∆− (m− 1)∆} = a1{(L−
3
2
)− (L− 1)∆} = −1

2
a1∆ < 0 . Finally we prove

part f). Similarly as in part e), one has, for m = 1, 2, 3, · · · , L − 3, F †
∞(vL:m+2) − r†L:m =

1−α6:∞

KD
( 1

chigh−cmid
− 1

vL:m+2−cmid
)− (m− 1)α5 = 1−(a1/aL)

K
( 1

a1
− 1

am+2
)− (m− 1)∆a1 = a1(

1
a1
−

1
am+2

)−(m−1)∆a1 = a1{K−(L−m−2)∆−(m−1)∆} = a1{(L−
3
2
)∆−(L−3)∆} = 3

2
a1∆ > 0.

Proof of Theorem 5.4.2

From the definition of X∗(ω), one has P [X∗(ω) ≤ x] = P [ω ∈ (0, α1:∞] ∨ (α1:∞ < ω ≤

F ∗
∞(x))] = P [0 < ω ≤ F ∗

∞(x)] . Since P is the one-dimensional uniform probability measure

on (Ω,F), one has P [0 < ω ≤ F ∗
∞(x)] = F ∗

∞(x). Similarly one has P [X†(ω) ≤ x] = F †
∞(x),

proving 1). For part 2), from the definition of X∗
L(ω), one has P [X∗

L(ω) = vL:m] = P [ω ∈

Ω∗
L:m] = P [r∗L:m−1 < ω ≤ r∗L:m] = q∗L:m . Similarly one has P [X♯

L(ω) = vL:m] = q♯
L:m and

P [X†
L(ω) = vL:m] = q†L:m. In order to prove part 3), we consider the following four cases:

Case1: ω ∈ Ω∗
L:1

From the definition of X∗
L(ω) one has X∗

L(ω) = vL:1 . From lemma B.8 b), one has r∗L:1 <

F ∗
∞(vL:1) = α1:∞ so that Ω∗

L:1 ⊂ (0, α1:∞] . Then from the definition of X∗(ω), it is clear that

X∗(ω) = vL:1 = X∗
L(ω) .

Case2: ω ∈ Ω∗
L:2

From the definition of X∗
L(ω) one has X∗

L(ω) = vL:2 . Since ω ∈ Ω∗
L:2, one has ω ≤ r∗L:2. It

then follows from the definition of X∗(ω) that vL:1 ≤ X∗(ω) ≤ F ∗−1
∞ (ω) ≤ F ∗−1

∞ (r∗L:2) , where

the last inequality is yielded since F ∗
∞(x) is monotonically increasing. From Lemma B.8 a),

one has F ∗−1
∞ (r∗L:2) < vL:3 . These observations imply that |X∗(ω)−X∗

L(ω)| < |vL:3 − vL:1|.

Case3: ω ∈ Ω∗
L:m, m = 3, · · · , L− 1

From the definition of X∗
L(ω) one has X∗

L(ω) = vL:m . We note from Lemma B.8 a) that
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α1:∞ = F ∗
∞(vL:1) < r∗L:2 and it is clear from the condition of this case that r∗L:2 < ω so that

α1:∞ < ω . It then follows from this and ω ∈ Ω∗
L:m together with the definition of X∗(ω) that

F ∗−1
∞ (r∗L:m−1) < X∗(ω) ≤ F ∗−1

∞ (r∗L:m) . Similarly as in Case2 we have vL:m−2 < F ∗−1
∞ (r∗L:m−1)

and F ∗−1
∞ (r∗L:m) < vL:m for m = 3, · · · , L − 1 . Then we obtain that |X∗(ω) − X∗

L(ω)| <

|vL:m − vL:m−2| for m = 3, · · · , L− 1 .

Case4: ω ∈ Ω∗
L:L

From the definition of X∗
L(ω), one has X∗

L(ω) = vL:L . Since ω ∈ Ω∗
L:L , it then follows from the

definition of X∗(ω) that F ∗−1
∞ (r∗L:L−1) < X∗(ω) ≤ F ∗−1

∞ (r∗L:L) = vL:L = U . From Lemma B.8

a) , we have vL:L−2 < F ∗−1
∞ (r∗L:L−1) . Then we obtain that |X∗(ω)−X∗

L(ω)| < |vL:L− vL:L−2|.

Since |vL:m+1−vL:m−1| < |vL:L−vL:L−2| for all m = 2, · · · , L−1 , one has that |X∗(ω)−

X∗
L(ω)| < |vL:L − vL:L−2| for all ω ∈ Ω. Since |vL:L − vL:L−2| → 0 as L̃→∞, it then follows

for all ω ∈ Ω that X∗
L(ω)→ X∗(ω) as L̃→∞ .

The other parts of this Lemma can also be shown in the similar way by using Lemma B.8

c) d) e) f).

Proof of Lemma 5.4.3:

We first prove limL→∞ V1(Y1,L, X†
2,L) = V1(Y1, X

†
2) of c) . The other cases can be shown

similarly. Let Zk, k = 1, · · · , 4 be defined by Z1 = δ{chigh<Y1<X†
2}

, Z2 = δ{chigh<Y1=X†
2}

,

Z3 = δ{Y1=chigh} and Z4 = δ{X†
2=chigh<Y1}

. Zk
L, k = 1, · · · , 4 can be defined similarly by

replacing Y1 by Y1,L and X†
2 by X†

2,L respectively. We next prove that Zk
L

a.e.
→ Zk, k = 1, · · · , 4 .

The following six cases, as depicted in Figure B.1.1, are considered.

Case1: (ω1, ω2) ∈ {(ω1, ω2)|[chigh < Y1(ω1)] ∧ [chigh < X†
2(ω2)] ∧ [Y1(ω1) > X†

2(ω2)]}

Let ǫ
def
= Y1−X†

2 > 0. Since Y1,L
a.e.
→ Y1 and X†

2,L

a.e.
→ X†

2 , one has, for sufficiently large N , that

|Y1 − Y1,L| <
ǫ
3

and |X†
2 −X†

2,L| <
ǫ
3

for L > N . It then follows that ǫ
3

= Y1 −
ǫ
3
−X†

2 −
ǫ
3

<

Y1 − (Y1 − Y1,L) − X†
2 − (X†

2,L − X†
2) = Y1,L − X†

2 for L > N . Finally, these observations
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Figure B.1.1: Image of the Cases

imply that

Z1
L = Z1 = 0 for L > N ; and (B.1.6)

Z2
L = Z2 = 0 for L > N . (B.1.7)

From the condition of the Case1, one sees chigh(= vL:1) < Y1. It then follows from the

definition of Y1,L that chigh < Y1,L for all L. Thus one has Z3 = Z3
L = 0 for all L. From

the condition of the Case1, one also sees chigh < X†
2. Since ω2 ∈ (0, 1], one has ω2 6= 0.

Hence, from the definition of X†
2,L, for sufficiently large N , chigh = vL:1 < X†

2,L, and therefore

Z4 = Z4
L = 0 for L > N .

Case2: (ω1, ω2) ∈ {(ω1, ω2)|[chigh < Y1(ω1)] ∧ [chigh < X†
2(ω2)] ∧ [Y1(ω1) < X†

2(ω2)]}

Let N be sufficiently large number. Then in a similar way as in Case1 it is clear that

Z1
L = Z1 = 1, Z2

L = Z2 = 0 for L > N ; and Z3 = Z3
L = 0,Z4 = Z4

L = 0 for all L

Case3: (ω1, ω2) ∈ {(ω1, ω2)|Y1(ω1) = X†
2(ω2) = U}

From the definition of Y1,L in Lemma 5.4.3, one sees Y1,L = U for all L. Since ∆ > 0 and

limL̃→∞ ∆ = 0, one has α6:∞ < q†L:L = α6 = a1(
1

aL
+ ∆

2
), and consequenly (1 − α6:∞, 1] ⊂
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(1 − q†L:L, 1] = (r†L:L−1, r
†
L:L]. Since X†

2(ω2) = U(= vL:L), from the definition of X†
2, one has

ω2 ∈ (1− α6:∞, 1] so that ω2 ∈ (r†L:L−1, r
†
L:L]. It then follows from the definition of X†

2,L that

X†
2,L = vL:L = U for all L. These observations imply that [Zk = Zk

L = 0, k = 1, 3, 4; and

Z2 = Z2
L = 1] for allL .

Case4: (ω1, ω2) ∈ {(ω1, ω2)|chigh < Y1(ω1) = X†
2(ω2) < U}

Since it is clear that P [chigh < Y1(ω1) = X†
2(ω2) < U ] = 0 we do not have to examin limiting

bahavior of Zk
L, k = 1, · · · , 4 .

Case5: (ω1, ω2) ∈ {(ω1, ω2)|Y1(ω1) = chigh}

From the definition of Y1,L one has Y1,L = chigh for all L. Hence it is clear that [Zk = Zk
L =

0, k = 1, 2, 4 ; and Z3 = Z3
L = 1] for all L

Case6: (ω1, ω2) ∈ {(ω1, ω2)|X
†
2 = chigh < Y1(ω1)}

From the definition of X†
2, it is clear P [chigh = X†

2(ω2)] = 0, hence we do not have to examine

limiting behavior of Zk
L, k = 1, · · · , 4. From the results of these Cases one obtain that

Zk
L

a.e.
→ Zk as L → ∞ for k = 1, 2, · · · , 4. From (5.2.1), one has h1(Y1, X

†
2) = D{2(Y1 −

cmid)Z
1+(Y1−cmid)Z

2+(chigh−clow)Z3+(Y1−clow)Z4} . It should be noted that h1(Y1, X
†
2)

can be written as the continuous function of Y1, X
†
2 and Zk, i = 1, · · · , 4. According to the

a) of this Lemma, Y1,L
a.e.
→ Y1, and Zk

L
a.e.
→ Zk, k = 1, · · · , 4, as we prove above. Hence

one concludes that limL→∞ V1(Y1,L, X∗
2,L) = limL→∞ E[h1(Y1,L, X∗

2,L)] = E[h1(Y1, X
∗
2 )] =

V1(Y1, X
∗
2 ). The other parts of this Lemma can also be shown in the similar way, completing

the proof.
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