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Abstract

A framed knot with an integral coefficient determines a simply-connected 4-manifold
by 2-handle attachment. Its boundary is a 3-manifold obtained by Dehn surgery along
the framed knot. For a pair of such Dehn surgeries along distinct knots whose results
are homeomorphic, it is a natural problem: Determine the closed 4-manifold obtained by
pasting the 4-manifolds along their boundaries. We determine the complete list (set) of
pairs of integral surgeries along distinct torus knots whose resulting manifolds are orien-
tation preserving/reversing homeomorphic lens spaces, and study the closed 4-manifolds
constructed as above. The list consists of five sequences. All framed links and Kirby
calculus are indexed by integers. As a by-product, some sequences of embeddings of lens
spaces into the standard 4-manifolds are constructed.
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1 Introduction

A framed link (L; n) = (K1 ∪ K2 ∪ · · · ∪ Kr; n1, n2, . . . , nr) in the 3-sphere S3 (= ∂B4) is
a disjoint union of framed knots (Ki; ni), where Ki is a component of the link L and ni

is an integer, called a framing or a coefficient. By X(L;n), we denote a simply-connected
4-manifold obtained by attaching 2-handles to a 4-ball B4 (a 0-handle) along the knots Ki

with ni-framing. Its boundary ∂X(L; n) is a 3-manifold M(L; n) obtained by Dehn surgery
along the framed link (L; n). As a Dehn surgery description of 3-manifolds, the coefficient
ni can be a rational number or 1/0(= ∞), see Rolfsen [R]. They are visualized by the usual
link diagrams with labeling. They are called Kirby diagrams. The resulting manifold does
not depend on the orientation of the components. In this paper, when we regard a diagram
as a description of a 4-manifold, we call it a 4-dim diagram, when we regard the diagram
as a Dehn surgery description of a 3-manifold, we call it a 3-dim diagram. A method Kirby
calculus is known to prove a diffeomorphism between any pair of 4-manifolds or 3-manifolds
described by Kirby diagrams. Depending on which dimensional manifolds are described, we
call a calculus 4-dim calculus or 3-dim calculus. For Kirby diagrams and Kirby calculus, see
[K, K2, GS].

Suppose that two oriented 4-manifolds X1 and X2 have homeomorphic boundaries with
the same or the opposite orientations. If a homeomorphism φ between the boundaries is
an orientation-preserving (or an orientation-reversing, respectively), we choose −X2 (or X2),
where ∓X2 means X2 with the opposite (for −) or the same (for +) orientation. We can con-
struct an oriented 4-manifold X1 ∪φ (∓X2), where ∪φ means pasting X1 and ∓X2 along the
boundaries by the orientation-reversing homeomorphism φ. It is known that any homeomor-
phism over a closed 3-manifold is approximated by a diffeomorphism. Thus we can assume
that the constructed 4-manifold has a differential structure. It is a natural problem:

Problem 1.1 Is the 4-manifold X1∪φ(∓X2) a standard 4-manifold, for any homeomorphism
φ?
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This can be extended to

Problem 1.2 For a 4-manifold X that contains a copy of X1, is X ′ = (X\intX1)∪∂ (±X2)
(always) homeomorphic or diffeomorphic to the initial manifold X?

To define such an operation using simpler pair X1, X2 is one of our motivations.

We are concerned with the case where the common boundary is a lens space. Dehn
surgeries along knots (with integer coefficients) whose results are lens spaces are called lens
space surgery. Our purposes are

(I) (There are some overlap with Saito–Teragaito [ST]) Study pairs (K; n), (K ′; n′) of lens
space surgeries along distinct torus knots with integer coefficients whose results are
homeomorphic lens spaces M(K; n) ∼= ±M(K ′;n′), and

(II) Study Problem 1.1 on X(K; n) ∪φ (∓X(K ′; n′)) for each pair in (I).

Note that M(K;n) ∼= ±M(K ′; n′) implies n′ = ±n by the first homology. Since M(K!;−n) ∼=
−M(K;n) holds in general, we assume n′ = n, where K! means a mirror image of K.

In [Mo], Moser studied Dehn surgery along torus knots and proved that (AB ± 1)-surgery
along a torus knot T (A,B) is a lens space:

Lemma 1.3 (Moser’s lens space surgery [Mo])

M( T (A, B);AB ± 1) = −L(AB ± 1, A2).

Our convention about orientations of lens spaces is “p/q Dehn surgery along an unknot is
−L(p, q)”. Note that L(AB ± 1, A2) ∼= L(AB ± 1, B2), since A2B2 ≡ 1 mod (AB ± 1), see
Subsection 2.3. Here, we choose the same sign + (or −) in the double signs (±). It is also
proved that lens space surgeries along (non-trivial) torus knots with integer coefficients are
restricted to the surgeries above.

Torus knots have some symmetries: T (B,A) is equivalent to T (A,B), T (−A,−B) is
equivalent to T (A,B), and T (A,−B) = T (A,B)!. Since M(K!;−n) ∼= −M(K;n), we treat
with only positive torus knots, i.e., T (A,B) with A > 0 and B > 0. For a torus knot
K = T (A,B), we call (A,B) type of K, identifying (B, A) and (A,B).

Here we make a survey of our results: In the next three subsections, we will define five
sequences of pairs of pairs of coprime positive (with a few exception) integers:

(1) [ABCD] = ((A,B), (C, D)), indexed by two integers a and i.

(2) [STUV ] = ((S, T ), (U, V )) and [stuv] = ((s, t), (u, v)), both indexed by integers i.

(3) [KLMN ] = ((K,L), (M,N)) and [klmn] = ((k, l), (m,n)), both indexed by integers i.

We will use the notations [..] as a name of the sequence. The sequence (1) corresponds to
lens space surgeries along positive torus knots whose lens spaces (the result of the Dehn
surgery) are orientation-preservingly homeomorphic. The smallest nontrivial example is 21-
surgery along T (4, 5) and that along T (11, 2), whose resulting lens space is −L(21, 4). The
sequences (2) and (3) correspond to lens space surgeries along positive torus knots whose lens
spaces are orientation-reversingly homeomorphic. The smallest nontrivial example in (2) is
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13-surgery along T (4, 3) and that along T (2, 7), whose resulting lens space is ±L(13, 4). For
more concrete examples, see Tables at the end of this section. We call the set of the pairs of
pairs in the sequences in (1), (2) and (3) a list (of lens space surgeries along positive torus
knots whose lens spaces are homeomorphic).

Our results are summarized as follows:

Theorem 1.4 (Completeness of the list) The list is complete in the following sense: If
(K,K ′) is a pair of distinct positive torus knots satisfying that M(K; n) ∼= ±M(K ′; n) and it
is a lens space, then the types of (K, K ′) or that of (K ′,K) is included in the list.

Theorem 1.5 (4-dim problem) For every pair of lens space surgeries along positive torus
knots whose resulting lens spaces are homeomorphic, the corresponding 4-manifold in the
sense of Problem 1.1 is a standard 4-manifold, i.e., diffeomorphic to one of S2 × S2, S2×̃S2

(∼= CP 2♯CP 2) or CP 2♯CP 2.

Remark 1.6 For Problem 1.1, we have to study contribution of pasting maps between
the boundaries of the pieces. We will argue about it in Subsection 2.4. The diffeotopy
groups π0(Diff+(L(p, q))) of lens spaces L(p, q) are studied by Bonahon [Bon] and Hodgson–
Rubinstein [HR].

Remark 1.7 Saito–Teragaito [ST] have considered many families of pairs of lens space
surgery yielding homeomorphic lens spaces, along not only torus knots but also non-torus
(i.e., cable and hyperbolic) knots, mainly from the view point of existence of such pairs.
They only studied (wrote) the sequence [STUV ], but did not refer to the other sequences
[ABCD], [stuv], [KLMN ] and [klmn].

Remark 1.8 By Donaldson’s and Freedman’s theorems, the homeomorphisms (instead of
diffeomorphism) in Theorem 1.5 can be shown by 1-connectedness and intersection form of the
constructed 4-manifold (Any closed 1-connected smooth 4-manifold whose intersection form
is rank two and even is homeomorphic to S2 × S2. Any closed positive definite 1-connected
smooth 4-manifold is known to be homeomorphic to a connected sum of some copies of CP 2),
see Remark 1 in Ue [U]. We study whether the constructed 4-manifolds are diffeomorphic to
the standard one.

Remark 1.9 As a by-product of Theorem 1.5, we have some families of smooth embeddings
of lens spaces into the standard 4-manifolds, see Corollary 1.19. In Sasahira [Sa], a pair of
lens spaces L(P, Q) and L(P, Q′) (with the same P ) that satisfies the following condition is
constructed: One can not be smoothly embedded into CP 2♯CP 2 but the other can. Embed-
ding of L(P, Q′) is a motivation for the authors to update the present paper. Here the authors
thank to Prof. Sasahira [Sa] for his interest in our examples and for communication on lens
spaces embedded in 4-manifolds.

Now we introduce the definitions (constructions) and details on the sequences. They are
divided into three subsections.
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1.1 First sequence: Lens spaces with same orientations

We define a sequence of pairs that give lens space surgeries along positive torus knots whose
lens spaces are orientation-preservingly homeomorphic.

Definition 1.10 ([ABCD])
Let a, i be integers with i ≥ 0. We often fix a. We define a sequence of pairs (A(a, i), B(a, i))
and (C(a, i), D(a, i)) inductively with respect to i as below. They will be denoted by (Ai, Bi)
and (Ci, Di) for short, respectively.(

A0

B0

)
=

(
−1
1

)
,

(
C0

D0

)
=

(
1
1

)
,

and (
Ai+1

Bi+1

)
=

(
1 0

a − 2 1

)(
Ci

Di

)
,

(
Ci+1

Di+1

)
=

(
1 a + 2
0 1

)(
Ai

Bi

)
. (1.1)

We often assume a ≥ 3 and i ≥ 2 for nontriviality (see Subsection 3.3). In the next section,
we will show:

Lemma 1.11 The pairs (Ai, Bi) and (Ci, Di) satisfy the followings:

(1) Each pair (Ai, Bi) and (Ci, Di) is coprime.

(2) AiBi + 1 = CiDi − 1. We call this integer Pi.

(3) Bi
2 ≡ Di

2 mod Pi.

(4) If a ≥ 3 and i ≥ 2, then Ai
4 ̸≡ ±1 mod Pi.

By (1)–(3) in this lemma and Moser’s results, we have a sequence of pairs of lens space surgeries
along distinct torus knots whose lens spaces are orientation-preservingly homeomorphic:

M(T (Ai, Bi);AiBi + 1) ∼= M(T (Ci, Di); CiDi − 1) ∼= −L(Pi, Bi
2).

In other words, −L(Pi, Bi
2) bounds each 4-manifold below:

XAB(a, i) := X(T (Ai, Bi);AiBi + 1),
XCD(a, i) := X(T (Ci, Di);CiDi − 1).

We often call them XAB, XCD for short, respectively.
Boyer [Boy] proved that XAB is not homeomorphic to XCD by consideration on the ho-

mology long exact sequence, intersection forms and mapping class groups of the lens spaces.
The main theorem on the first sequence is:

Theorem 1.12 We assume a ≥ 3 and i ≥ 2. Let XAB = XAB(a, i) and XCD = XCD(a, i)
be the 4-manifolds as above. Then the smooth 4-manifold XAB ∪ (−XCD) obtained by pasting
XAB and −XCD by any orientation-reversing homeomorphism between their boundaries is
diffeomorphic to S2 ×S2, or S2×̃S2 according to whether a is even or odd (independent of i):

XAB ∪ (−XCD) ∼=

{
S2 × S2 if a is even
S2 ×̃S2 if a is odd

.

This is the first division of Theorem 1.5. By [K2, Lemma 4.5], it is easy to see that the identity
double XAB ∪ (−XAB) (and also XCD ∪ (−XCD)) is S2×S2 or S2×̃S2, depending on whether
Pi is even or odd. In such a sense, this theorem is the starting case of Problem 1.2.

5



1.2 Second sequences: Lens spaces with opposite orientations I

Next, we recall a sequence [STUV ] of pairs from Saito–Teragaito [ST], and define another
(but similar) pairs [stuv], which give pairs of lens space surgeries along positive torus knots
whose lens spaces are orientation-reversingly homeomorphic.

Definition 1.13 ([STUV ] from [ST] and [stuv])
We define a sequence of pairs (Si, Ti) and (Ui, Vi) indexed by i ≥ 0 as below.(

S0

T0

)
=

(
0
1

)
,

(
U0

V0

)
=

(
2
1

)
,

and (
Si+1

Ti+1

)
=

(
Ti

Si + Vi

)
,

(
Ui+1

Vi+1

)
=

(
Vi

Ti + Ui

)
, (1.2)

inductively.
We define another sequence of pairs (si, ti) and (ui, vi) indexed by i ≥ 0 as below.(

s0

t0

)
=

(
0
1

)
,

(
u0

v0

)
=

(
1
2

)
,

and (
si+1

ti+1

)
=

(
ti

si + 2vi

)
,

(
ui+1

vi+1

)
=

(
vi

2ti + ui

)
, (1.3)

inductively.

From now on in this subsection, for each statement on ((Si, Ti), (Ui, Vi)) and Pi, it also holds
on the other of pairs ((si, ti), (ui, vi)) and pi.

Lemma 1.14 (See [ST] for [STUV ]) The pairs (Si, Ti) and (Ui, Vi) satisfy the followings:

(1) Each pair (Si, Ti) and (Ui, Vi) is coprime.

(2) SiTi + 1 = UiVi − 1. We call this integer Pi.

(3) It holds that S2
i + V 2

i ≡ T 2
i + U2

i ≡ 0 mod Pi.

(4) If i ≥ 3, then Si
4 ̸≡ ±1 mod Pi.

This lemma looks like Lemma 1.11 on [ABCD] but differs at (3). By Lemma 1.14 (1)–
(3) and Moser’s results, we have two sequences (from [STUV ] and from [stuv]) of pairs of
lens space surgeries along distinct torus knots whose lens spaces are orientation-reversingly
homeomorphic:

M(T (Si, Ti); Pi) ∼= −L(Pi, Si
2),

M(T (Ui, Vi); Pi) ∼= L(Pi, Si
2).

Thus we have a pair of 4-manifolds whose boundaries are orientation-reversingly homeomor-
phic:

XST (i) := X(T (Si, Ti);Pi), XUV (i) := X(T (Ui, Vi);Pi).
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We often call them XST , XUV for short, respectively. We also define Xst = Xst(i) and
Xuv = Xuv(i), by using the other sequence of pairs (si, ti) and (ui, vi).

We postpone the 4-dim problem on XST ∪ XUV and Xst ∪ Xuv to the end of the next
subsection, since the statement is almost same.

1.3 Third sequences: Lens spaces with opposite orientations II

We define two more sequences of pairs [KLMN ] satisfying KL = MN and its similar one
[klmn], which give pairs of lens space surgeries along positive torus knots whose lens spaces
are orientation-reversingly homeomorphic.

Definition 1.15 ([KLMN ] and [klmn])
We define a sequence of pairs (Ki, Li) and (Mi, Ni) indexed by i ≥ 0 as below.(

K0

L0

)
=

(
1
3

)
,

(
M0

N0

)
=

(
1
3

)
and (

Ki+1

Li+1

)
=

(
1 0
9 −1

)(
Mi

Ni

)
,

(
Mi+1

Ni+1

)
=

(
−1 1
0 1

)(
Ki

Li

)
. (1.4)

We define a pair of the sequence (ki, li) and (mi, ni) indexed by i ≥ 0 as below.(
k0

l0

)
=

(
1
2

)
,

(
m0

n0

)
=

(
1
2

)
and (

ki+1

li+1

)
=

(
1 0
8 −1

)(
mi

ni

)
,

(
mi+1

ni+1

)
=

(
−1 2
0 1

) (
ki

li

)
. (1.5)

We give an alternative definition, which looks a peculiarity of the third sequences.

Definition 1.16 (Alternative definitions of [KLMN ] and [klmn])
Using a sequence {bi} defined by

b0 = b1 = 1, bi+1 = 3bi − bi−1 (i ≥ 1),

we define a pair ((Ki, Li), (Mi, Ni)) by

((Ki, Li), (Mi, Ni)) = ((bi, 3bi+1), (bi+1, 3bi)). (1.6)

Using a sequence {di} defined by

d0 = d1 = 1, di+1 = 4di − di−1 (i ≥ 1),

we define a pair ((ki, li), (mi, ni)) by

((ki, li), (mi, ni)) = ((di, 2di+1), (di+1, 2di)). (1.7)
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Note that two definitions are equivalent. For [KLMN ], we have(
1 0
9 −1

)(
Mi

Ni

)
=

(
1 0
9 −1

)(
bi+1

3bi

)
=

(
bi+1

9bi+1 − 3bi

)
=

(
bi+1

3bi+2

)
=

(
Ki+1

Li+1

)
,(

−1 1
0 1

)(
Ki

Li

)
=

(
−1 1
0 1

)(
bi

3bi+1

)
=

(
3bi+1 − bi

3bi+1

)
=

(
bi+2

3bi+1

)
=

(
Mi+1

Ni+1

)
.

We can check the equivalence for [klmn] in the similar way.
From now on in this subsection, for each statement on (Ki, Li), (Mi, Ni) and Pi, it also

holds on the other sequence of pairs (ki, li), (mi, ni) and pi.

Lemma 1.17 The pairs (Ki, Li) and (Mi, Ni) satisfy the followings:

(1) Each pair (Ki, Li) and (Mi, Ni) is coprime.

(2) KiLi − 1 = MiNi − 1. We call this integer Pi.

(3) It holds that K2
i + M2

i ≡ L2
i + N2

i ≡ 0 mod Pi.

(4) If i ≥ 2, then Ki
4 ̸≡ ±1 mod Pi.

This lemma differs from Lemma 1.14 on [STUV ] at the sign in (2). By Lemma 1.17 (1)–(3)
and Moser’s results, we have two sequences (from [KLMN ] and from [klmn]) of pairs of
lens space surgeries along distinct torus knots whose lens spaces are orientation-reversingly
homeomorphic:

M(T (Ki, Li); Pi) ∼= −L(Pi,Ki
2),

M(T (Mi, Ni); Pi) ∼= L(Pi,Ki
2).

We have a pair of 4-manifolds whose boundaries are orientation-reversingly homeomorphic:

XKL(i) := X(T (Ki, Li);Pi), XMN (i) := X(T (Mi, Ni);Pi).

We often call them XKL, XMN for short, respectively. We also define Xkl = Xkl(i) and
Xmn = Xmn(i), by using the other sequence ((ki, li), (mi, ni)) and pi.

The main theorem on the 4-dim problem on XST ∪XUV and Xst ∪Xuv defined in the last
subsection and those on XKL ∪ XMN and Xkl ∪ Xmn:

Theorem 1.18 Let [XYZW] = ((Xi, Yi), (Zi, Wi)) be one of the sequences

[STUV ], [stuv], [KLMN ], [klmn]

of pairs of pairs of integers. Let XXY = XXY(i) and XZW = XZW(i) be the 4-manifolds defined
in the last and this subsection. For any i ≥ 1, the smooth oriented 4-manifold XXY ∪ XZW
obtained by pasting XXY and XZW by any orientation-reversing homeomorphism between their
boundaries is diffeomorphic to CP 2♯CP 2:

XXY ∪ XZW ∼= CP 2♯CP 2.

This is the second division of Theorem 1.5.
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[ABCD] (a = 3) [ABCD] (a = 4)
i A B P C D

1 1 2 3 4 1
2 4 5 21 11 2
3 11 13 144 29 5
4 29 34 378 76 13
5 76 89 3117 199 34
...

...

i A B P C D

1 1 3 4 5 1
2 5 11 56 19 3
3 19 41 780 71 11
4 71 153 10864 265 41
5 265 571 151316 989 153
...

...

Table 1: Sequence ((A,B), (C, D)), indexed by integers a and i

Corollary 1.19 We have four sequences of smooth embeddings of lens spaces into CP 2♯CP 2:
Let (Z,W) be one of the sequences (U, V ), (u, v), (M, N) and (m,n) of pairs of integers defined
in the last and this subsection. Let Pi = ZiWi − 1 for any choice. For any i, lens spaces
L(Pi, Zi

2) can be embedded smoothly in CP 2♯CP 2.

Recently, Sasahira [Sa] proved that some lens spaces can not be embedded into CP 2♯CP 2 as
an application of his variation of instanton Floer homology. The authors (in an old version)
of the present paper did know some examples of smooth embeddings of lens spaces into
CP 2♯CP 2 as above. Proving the embedding of L(P, Q′) (P = 28657, Q′ = 7921, related to
the pair ((S11, T11), (U11, V11)) = ((199, 144), (89, 322))) referred in [Sa] is one of the purposes
of the present paper.

This paper is organized as follows. In the next section, we define some notations and a cer-
tain two-component framed link (T ((pz, qz), (pw, qw)); rz, rw). We also review on description
of lens spaces and torus knots by chain framed links. In Section 3, we study the details on the
sequences of the pairs of lens space surgeries along torus knots. This is a number-theoretic
part. In Section 4, we do 3-dim calculus on chain framed links to get the 4-dim diagrams of
the constructed 4-manifolds. They depend on the choice of the sequences and the indices. In
Section 5, we will prove the diffeomorphism in Theorem 1.5 from the constructed manifolds
to the standard manifolds by 4-dim calculus. All process (diagrams and calculus) depend on
the indices i. In Section 6, we will prove Theorem 1.4. This is a non-geometric part. The
five sequences are mutually similar but different. The proofs are divided into two or three
subsections (cases) depending the similarity.
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[STUV ] [stuv]
i S T P U V

1 1 1 2 1 3
2 1 4 5 3 2
3 4 3 13 2 7
4 3 11 34 7 5
5 11 8 89 5 18
6 8 29 233 18 13
...

...

i s t p u v

1 1 4 5 2 3
2 4 7 29 3 10
3 7 24 169 10 17
4 24 41 985 17 58
5 41 140 5741 58 99
6 140 239 33461 99 338
...

...

Table 2: Sequences ((S, T ), (U, V )) and ((s, t), (u, v)), indexed by integers i

[KLMN ] [klmn]
i K L P M N

1 1 6 5 2 3
2 2 15 29 5 6
3 5 39 194 13 15
4 13 102 1325 34 39
5 34 267 9077 89 102
...

...

i k l p m n

1 1 6 5 3 2
2 3 22 65 11 6
3 11 82 901 41 22
4 41 306 12545 153 82
5 153 1142 174725 571 306
...

...

Table 3: Sequences ((K, L), (M, N)) and ((k, l), (m,n)), indexed by integers i

2 Preliminaries

2.1 Strategy of the proof

Our strategy of the proof of Theorem 1.5 is (1) turning upside down and (2) describing dual
knots of lens space surgery. Here, we consider a 4-manifold X1 ∪φ (−X2) in the case where
X1 = X(K1; n), X2 = X(K2;n) whose boundaries are orientation-preservingly homeomorphic:
M(K1; n) ∼= M(K2; n).

(1) The method turn upside down is explained in Gompf–Stipsicz’s graduate text [GS,
p.130 and §5.5] as an application of taking the identity double of a manifold in Kirby [K2,
Lemma 4.5]. For recent use, see Akbulut’s [A] and so on. Each 4-manifold X1 and X2 admits
a handle decomposition consisting of a 0-handle and a 2-handle:

X1 = h0
1 ∪ h2

1, X2 = h0
2 ∪ h2

2,

where hr means an r-handle. The 2-handle h2
i is attached to h0

i along Ki with n-framing
(i = 1, 2). To construct X1 ∪φ (−X2), we turn X2 upside down (reverse the orientation)
and glue it along the common boundary by an orientation-reversing homeomorphism. By
turning upside down, the attaching part (∂Dr ×D4−r) and the boundary part (Dr × ∂D4−r)
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of an r-handle hr are interchanged. We denote the latter (4 − r)-handle by (hr)⊥ and call it
dualized handle of hr. The manifold X1 ∪φ (−X2) admits a handle decomposition consisting
of a 0-handle, two 2-handles and a 4-handle:

X1 ∪φ (−X2) = h0
1 ∪ h2

1 ∪ (h2
2)

⊥ ∪ (h0
2)

⊥.

We realize the homeomorphism φ by 3-dim calculus from (K2; n) to (K1; n). The second
2-handle (h2

2)
⊥ is attached along the result of 0-framed meridian of K2 under the realization

of φ.

(2) To show 4-dim diagram description of X1 ∪φ (−X2), we search dual knots of the lens
space surgeries from the view point of 3-dim topology. Let M(K; n) = E(K)∪V = L(p, q) be
a lens space surgery, where E(K) is the exterior of K in S3 and V is a solid torus attached
to E(K) such that a meridian in ∂V maps to the n-framing of K in ∂E(K). Considering its
reversed surgery, i.e., cutting V back from L(p, q) and gluing it to construct the initial S3, we
call the core curve of V in L(p, q) dual knot of the lens space surgery. Instead of framings, a
dual knot has a surgery slope, i.e., an isotopy class of a simple closed curve in ∂(L(p, q)\intV )
is specified. Suppose that L(p, q) is a result of a lens space surgery and is described by a
diagram in S3. Then the dual knot with a surgery slope is described in the diagram as a
framed knot. For a pair of the lens space surgeries along distinct knots, we will describe both
dual knots in a diagram of the common resulting lens space.

2.2 Notations

Kirby calculus consists of (K-I) handle-slides, and (K-II) blow-ups, blow-downs and their
orientation-reversed versions. A handle-slide (K-I) keeps the 4-manifold and its boundary. A
Kirby move in (K-II) keeps the boundary, but changes the 4-manifold. Thus, when we prove a
diffeomorphism between 4-manifolds, we use only (K-I). We call such a calculus 4-dim calculus
and use a simple arrow, see Figure 26. On the other hand, when we are concerned with the
boundary (for example, when we search attaching circles), we can use both (K-I) and (K-II).
We call such a calculus 3-dim calculus and use arrow with a symbol “∂”, see Figure 1.

Most 3-dim diagrams in this paper are framed chain links. We use the usual labeled
graph description of chained framed links and its basic formulas in Figure 1, where x, y, n are
integers, and r can be a rational number. We often use (nontrivial) diagrams of S3. When a
labeled graph describes S3, we use a dotted line (see Figure 5). We also use another formula,

Figure 1: Basic formulas in 3-dim calculus

11



Figure 2: (−2)s formula (n ≥ 1)

which we call (−2)-formula, in Figure 2.

Next, we define some notations of two-component links of special type. We start with
the positively linking Hopf link. We call its two components z and w, see the left picture
in Figure 3. We take their regular neighborhoods and call their boundaries Tz and Tw,
respectively. In the torus Tz (and Tw, respectively), we take an oriented meridian-longitude
system (mz, lz) (and (mw, lw)) as in the right figure in Figure 3. Note that mz is isotopic to
lw, and that lz is isotopic to mw, in the complement of z ∪ w in S3.

Figure 3: Hopf Link and T ((pz, qz), (pw, qw))

Definition 2.1 By T ((pz, qz), (pw, qw)), we denote a two-component link

T ((pz, qz), (pw, qw)) := Tz(pz, qz) ∪ Tw(qw, pw),

where Tz(pz, qz) is a knot in Tz whose homology class is pz[lz] + qz[mz], and Tw(pw, qw) is
a knot in Tw whose homology class is qw[lw] + pw[mw]. See an example T ((5, 11), (1, 3)) in
Figure 25. In particular, each component is a torus knot. Their linking number is pzqw.

Lemma 2.2 There is a symmetry T ((qw, pw), (qz, pz)) = T ((pz, qz), (pw, qw)), i.e., there ex-
ists a self diffeomorphism Φ of S3 that changes T ((pz, qz), (pw, qw)) to T ((qw, pw), (qz, pz)).
It extends to an equivalence of the framed links between (T ((pz, qz), (pw, qw)); rz, rw) and
(T ((qw, pw), (qz, pz)); rw, rz).

12



2.3 Framed chain links, Lens spaces and Torus knots

Moser’s proof in [Mo] of lens space surgeries along torus knots (Lemma 1.3) is from the view
point of Seifert fibered structure. Here we reprove Lemma 1.3 by using framed chain links
using the algorithm defined in [Y1, Y2], to search dual knots better.

Framed chain link description of a lens space L(p, q) using continued fraction expansion
is well-known: If p/q = [x1, x2, · · · , xn], L(p, q) is described by the framed chain link whose

[x1, x2, x3, · · · , xn] = x1 −
1

x2 −
1

x3 −
. . . −

1
xN

.

Figure 4: Lens space (p/q = [x1, x2, · · · , xn])

coefficients are −x1,−x2, · · · ,−xn. This is our notation and orientation of lens spaces. Note
that if p > q > 0, the continued fraction expansion p/q = [x1, x2, · · · , xn] with all xi > 1
is unique. Let q̄ be the unique integer satisfying qq̄ mod p and 0 < q̄ < p, then p/q̄ =
[xn, · · · , x2, x1] (i.e., the reversed order). Lens spaces L(p, q) and L(p, q′) are orientation-
preservingly homeomorphic to each other if and only if “q′ ≡ q or q′ ≡ q̄ mod p”. As a
construction of lens space by a rational Dehn surgery along the Hopf link, the following is
also known:

Proposition 2.3 Dehn surgery along the Hopf link with coefficients α1/β1, α2/β2 is L(P,Q)
with P = α1α2−β1β2, Q = α1γ2−β1δ2, where γ2, δ2 are the integers satisfying α2δ2−β2γ2 = 1.

Next, we study description of torus knots by framed chain links. For a coprime pair (p, q)
of positive integers with p, q > 1, we take another unique coprime pair (r, s) of positive integers
satisfying

ps − qr = 1 (2.1)

and 0 < r < p, 0 < s < q (thus p̄ = s mod q and q̄ = p − r mod p). Then, the torus knot
T (p, q) and Moser’s lens space surgeries (Lemma 1.3) can be described as follows: See the
framed chain link in Figure 5 (a component z will be referred later in Lemma 2.7), where the
coefficients ci are determined by Algorithm below, and satisfy the equalities:

q

q − s
= [c−1, c−2, · · · , c−nR ],

p

r
= [c1, c2, · · · , cnL ]. (2.2)

Algorithm ([Y1, Y2])
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Figure 5: Torus knot T (p, q) is presented by Diagram D(p, q) (ps − qr = 1)

(1) Euclidean algorithm: From the pair (p, q), we construct a word w(p, q) = w1w2 · · ·wN of
two letters L(left) and R(right) inductively by the rule below:
Start with (p0, q0) := (p, q).

[LR Rule]
If pi > qi, then wi+1 := L and (pi+1, qi+1) := (pi − qi, qi).
If pi < qi, then wi+1 := R and (pi+1, qi+1) := (pi, qi − pi).

By coprimeness of (p, q), after some N steps, the pair (pN , qN ) becomes to (1, 1), which is the
end of this step. We define nL (and nR, respectively) as the number of L (and R) in the word
w(p, q). Thus nL + nR = N .

(2) Next, starting with a single (−1)-labeled vertex ((−1)-vertex, for short) in a horizontal
short edge, we iterate blow-ups N times guided by the words in w(p, q). In the i-th step (the
i-th blow-up), we do the operation L (or R, respectively) on the diagram near the (−1)-vertex
according to wi = L (or R) as in Figure 6, see also the example in Figure 7. We have a diagram
of a framed chain link. We call it long diagram D(p, q), where we use a dotted line, since it
describes S3.

(3) We define ci (with −nR ≤ i ≤ nL) as the absolute value of the label of the i-th vertex
(the framing of the i-th component) from the left in the resulting framed chain link, where
we regard the finally appeared (−1)-vertex as the 0-th vertex. The coefficients cis satisfy the
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Figure 6: Operation L and R

(4, 5) →R (4, 1) →L (3, 1) →L (2, 1) →L (1, 1)

Figure 7: Example T (4, 5) (w(4, 5) = RLLL)

equation (2.2). By the basic formulas in Figure 1, we can shorten the diagram D(p, q) as in
Figure 5. In the final deformations, we used equalities[

−1,− q

q − s

]
= −1 +

1
q

q − s

= −s

q
=

[
0,

q

s

]
,

[
−1,−p

r

]
=

r − p

p
=

[
0,

p

p − r

]
.

The second deformation is related to a switch from (p, q) to (q, p). Note that q(p−r)−p(q−s) =
1 by the equation (2.1).

The second step (2) consists of only blow-ups. It is a 3-dim calculus, thus D(p, q) (ignoring
K) in Figure 5 describes S3. By the second author’s method [Y1, Y2], we can prove the integral
lens space surgery along a torus knot by framed chain links. This is an alternative proof of
(a part of) the Moser’s results [Mo].

Lemma 2.4 Let (p, q) be a coprime pair of positive integers. We take another pair (r, s)
satisfying ps − rq = 1, 0 < r < p, 0 < s < q. As description of 3-manifolds, the followings
hold.

(1) Diagram D(p, q) in Figure 5 describes S3.

(2) In the resulting S3 in (1) above, the component K is the torus knot T (p, q).

(3) Furthermore, n-framing of K in (1) becomes (pq + n)-framing of T (p, q) in S3.

(4) Considering the total components D(p, q) ∪ (K;±1), we have the lens space surgery
M(T (p, q); pq ± 1) ∼= −L(pq ± 1, p2), see Figure 9 (ignoring K∗).

Proof. (1) has been already proved. For (2) and (3), see [Y2]. (4) follows from a 3-dim
calculus in Figure 8 and by Proposition 2.3. �
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Figure 8: Lens space surgery along T (p, q) (ps − qr = 1)

From the viewpoint of 4-dim topology, D(p, q) ∪ (K;±1) can be regarded as a relative
Kirby diagram of the (4, 3)-dim cobordism (X, ∂−X ∪ ∂+X) from ∂−X = S3 described by
D(p, q) to ∂+X = −L(pq ± 1, p2) obtained by 2-handle attaching along K. By L(p, q), we
denote the diagram describing −L(pq ± 1, p2) at the center of Figure 8. Using this, we can
find the dual knot of the lens space surgery. For any Dehn surgery along a component k, its
0-framed meridian cancels the surgery, which is the reversed surgery. Figure 9 is obtained
from the first half of Figure 8 by giving the reversed surgery to K in D(p, q)∪ (K;±1). Thus
we have:

Lemma 2.5 The dual knot of the lens space surgery in Lemma 2.4(4) is the component K∗

in Figure 9, whose framings are written in the parenthesis.

Figure 9: Diagram L(p, q) with K∗

Definition 2.6 We call the operation from D(p, q) ∪ (K;±1) (boxed one in Figure 5) to
L(p, q) ∪ (K∗;∓1) (Figure 9) dualization of K. We also call the reversed operation from
L(p, q) ∪ (K∗;∓1) to D(p, q) ∪ (K;±1), dualization of K∗, in the sense (K∗)∗ = K.

It corresponds to turning upside down (X, ∂−X∪∂+X) of a relative Kirby diagram (X, ∂−X∪
∂+X) (in the sense of [GS, §5.5]), where X is the orientation-reversed X with ∂±X = −∂∓X.

Finally, we study Heegaard torus in lens spaces (or S1 × S2, S3). Heegaard torus of such
a manifold is known to be unique up to ambient isotopy. See diagram in Figure 10, which
consists of an n-component framed chain link K1 ∪ K2 ∪ . . . ∪ Kn in S3 and the sequence of
solid tori V1 ⊂ V2 ⊂ · · · ⊂ Vn. The solid torus Vi satisfies that Kj ⊂ intVi if j ≤ i and that
Kj ∩ Vi = ∅ if j > i. By Ti, we denote the boundary of the solid torus Vi. Then we have:

Lemma 2.7 In the resulting lens space (or S1 × S2, S3), each Ti is a Heegaard torus. Thus
all Tis are mutually parallel. Suppose that the resulting manifold is S3. Then, we have

(1) Each meridian mi of Ki is a torus knot in the resulting S3.
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Figure 10: Solid tori

(2) (Precise version of Lemma 2.4(2)) In the special case D(p, q) in Figure 5, K is the
torus knot T (p, q) in the torus Tz (It is equivalent to T (q, p) in Tw).

(3) A union mi ∪mj of a pair of meridians of Ki ∪Kj is a link of type T ((pz, qz), (pw, qw))
in the resulting S3. Types (pz, qz) and (pw, qw) are calculated by deforming the diagram
and applying (2) above.

See Definition 2.1 for the notations Tz, Tw and T ((pz, qz), (pw, qw)).

2.4 Contribution of pasting maps

For Problem 1.1, we have to study the contribution of the pasting maps between the bound-
aries of the pieces. The diffeotopy groups π0(Diff+(L(p, q))) of lens spaces L(p, q) are studied
by Bonahon [Bon] and Hodgson–Rubinstein [HR]:

Proposition 2.8 ([Bon, p.307], [HR, p.89])
If q2 ̸≡ ±1 or q ≡ ±1 mod p, π0(Diff+(L(p, q))) ∼= Z/2Z. The generator is the π-rotation
map in Figure 11, derived from ρ(z, w) = (z, w). In the other case, π0(Diff+(L(p, q))) ∼= Z/4Z
(p ̸= 2 and q2 ≡ −1 mod p), or ∼= (Z/2Z)2 (q ̸≡ ±1 and q2 ≡ 1 mod p).

For any sequences [XYZW] in

[ABCD], [STUV ], [stuv], [KLMN ], [klmn],

it holds that the resulting lens space −L(P, X2) satisfies X4 ̸≡ ±1 (mod P ), in the properties
(4) in Lemma 1.11, 1.14 or 1.17, which will be proved in Section 3. Thus, by Proposition 2.8,
we have only two choices on the pasting map: the identity map or the involution generator.
In Section 4, we will prove that the pair of dual knots can be taken as a union of a pair of
meridians of a framed chain link of the lens space, as in Figure 12, where c ∈ Z, δ1, δ2 ∈ {±1}
and r1, r2 ∈ Q. Each meridian is kept either by the identity map or by the involution. Thus,
the choice of the pasting maps does not contribute the resulting closed 4-manifold.

3 Formulas on the sequences

We prove Lemma 1.11, Lemma 1.14 and Lemma 1.17. They are on the pairs of pairs of
integers in the sequences.
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Figure 11: An involution on L(p, q)

Figure 12: Pair of dual knots in the lens space

3.1 Formulas on the first sequence

First, for a fixed a, we write down the pairs in the case i = 1, 2, 3:(
A1

B1

)
=

(
1

a − 1

)
,

(
C1

D1

)
=

(
a + 1

1

)
,

(
A2

B2

)
=

(
a + 1

a2 − a − 1

)
,

(
C2

D2

)
=

(
a2 + a − 1

a − 1

)
,(

A3

B3

)
=

(
a2 + a − 1

a3 − a2 − 2a + 1

)
,

(
C3

D3

)
=

(
a3 + a2 − 2a − 1

a2 − a − 1

)
.

They also satisfy(
Ai+2

Bi+2

)
=

(
1 a + 2

a − 2 a2 − 3

)(
Ai

Bi

)
,

(
Ci+2

Di+2

)
=

(
a2 − 3 a + 2
a − 2 1

)(
Ci

Di

)
.

The proof of Lemma 1.11 is started with another set of formulas on the sequences (Ai, Bi)
and (Ci, Di):

Lemma 3.1 The pairs (Ai, Bi) and (Ci, Di) satisfy the followings:

(1) Ai + Bi − Ci + Di = 0.

(2) (a − 1)Ai − Bi − Ci + (a + 1)Di = 0.

(3) Each of Ai, Bi, Ci and Di satisfies the same recursive formula:

Xi+2 = aXi+1 − Xi, for X = A,B, C, or D.

(4) It holds that Ai ≡ Di (=: ai) and Bi ≡ Ci (=: bi) mod 2. Furthermore, if a is even then
ai ≡ bi ≡ 1 for every i. Otherwise, (ai, bi) ≡ (1, 1), (1, 0), (0, 1) according to i ≡ 0, 1, 2
mod 3, respectively.
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(5) For any pair (X,Y) in {A,B,C, D}, Xi+1Yi − Yi+1Xi is constant, i.e., does not depend
on i. For example, Ai+1Bi − Bi+1Ai = a and Ai+1Di − Di+1Ai = 2.

Proof of Lemma 3.1(1) and (2). In the case i = 1, we can check it directly. By the inductive
definitions in (1.1), we have

Ai+1 + Bi+1 − Ci+1 + Di+1

= Ci + (a − 2)Ci + Di − Ai − (a + 2)Bi + Bi

= −a(Ai + Bi − Ci + Di)
+(a − 1)Ai − Bi − Ci + (a + 1)Di,

and

(a − 1)Ai+1 − Bi+1 − Ci+1 + (a + 1)Di+1

= (a − 1)Ci − (a − 2)Ci − Di − Ai − (a + 2)Bi + (a + 1)Bi

= −(Ai + Bi − Ci + Di).

Lemma 3.1(1) and (2) are proved simultaneously by induction with the formulas above.

Proof of Lemma 3.1(3), (4) and (5).

Ai+2 = Ci+1 = Ai + aBi + 2Bi

= Ai + a(−Ai + Ci − Di) + 2Bi

= aCi − {(a − 1)Ai + (a + 1)Di} + Di + 2Bi

= aCi − (Bi + Ci) + Di + 2Bi

= aCi + Bi − Ci + Di

= aAi+1 − Ai,

where we used Lemma 3.1(1) twice and (2) once. Since Di = Ai+1, the sequence Di has the
same recursive formula as that for Ai. By Lemma 3.1(1) and (2), both Bi and Ci are linear
combination of Ai and Di. Thus, they also have the same recursive formula. Lemma 3.1(4),(5)
follow from (3). For (5), we take the determinants of(

Xi+2 Xi+1

Yi+2 Yi+1

)
=

(
Xi+1 Xi

Yi+1 Yi

)(
a 1
−1 0

)
.

�
Now we prove Lemma 1.11 in Section 1.

Proof of Lemma 1.11(1). It follows from that(
1 0

a − 2 1

)
,

(
1 a + 2
0 1

)
∈ SL(2; Z).

Proof of Lemma 1.11(2). It follows from the equation Ai+1Di−Di+1Ai = 2 in Lemma 3.1(5)
and Ai+1 = Ci, Di+1 = Bi in the recursive definition (1.1) in Section 1.

Proof of Lemma 1.11(3). We start with

19



Claim 1. Pi+1 = Pi + (a − 2)C2
i + 2.

Proof.

Pi+1 = Ai+1Bi+1 + 1
= Ci((a − 2)Ci + Di) + 1
= (a − 2)C2

i + CiDi + 1
= Pi + (a − 2)C2

i + 2,

where we used Pi = CiDi − 1 in Lemma 1.11(2).

Claim 2. For any i ≥ 1, it holds that

Bi
2 − Di

2 = (a − 2)Pi

Proof. In the case i = 1, we can check it directly. By the inductive definitions of Bi and Ci,
we have

Bi+1 + Di+1 = (a − 2)Ci + Di + Bi,

Bi+1 − Di+1 = (a − 2)Ci + Di − Bi.

Thus, under the assertion Bi
2 − Di

2 = (a − 2)Pi of induction, we have

B2
i+1 − D2

i+1 = (Bi+1 + Di+1)(Bi+1 − Di+1)
= (a − 2)2C2

i + 2(a − 2)CiDi + (Di + Bi)(Di − Bi)
= (a − 2){(a − 2)C2

i + 2CiDi − Pi}
= (a − 2){(a − 2)C2

i + Pi + 2}
= (a − 2)Pi+1.

where we used CiDi = Pi + 1 in Lemma 1.11(2) and Claim 1. Lemma 1.11(3) follows from
Claim 2. �

We postpone the proof of Lemma 1.11(4) until Subsection 3.6.

3.2 Extension to matrices and symmetry

For the later use (in Section 4), we extend the sequences of the pairs (A,B) and (C, D) to
those of matrices whose determinants are ±1:

Definition 3.2 We define(
A0 E0

B0 F0

)
=

(
−1 1
1 0

)
,

(
C0 G0

D0 H0

)
=

(
1 0
1 1

)
and (

Ai+1 Ei+1

Bi+1 Fi+1

)
=

(
1 0

a − 2 1

)(
Ci Gi

Di Hi

)
, (3.1)(

Ci+1 Gi+1

Di+1 Hi+1

)
=

(
1 a + 2
0 1

)(
Ai Ei

Bi Fi

)
,
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inductively. Thus we have(
A1 E1

B1 F1

)
=

(
1 0

a − 1 1

)
,

(
C1 G1

D1 H1

)
=

(
a + 1 1

1 0

)
,

(
A2 E2

B2 F2

)
=

(
a + 1 1

a2 − a − 1 a − 2

)
,

(
C2 G2

D2 H2

)
=

(
a2 + a − 1 a + 2

a − 1 1

)
,(

A3 E3

B3 F3

)
=

(
a2 + a − 1 a + 2

a3 − a2 − 2a + 1 a2 − 3

)
,

(
C3 G3

D3 H3

)
=

(
a3 + a2 − 2a − 1 a2 − 3

a2 − a − 1 a − 2

)
.

Lemma 3.3 AiFi − BiEi = −(−1)i, CiHi − DiGi = (−1)i.

Lemma 3.4

(1) For any i ≥ 0, it holds that(
Ai

Bi

)
=

(
Ei+1

Fi+1

)
− (−1)i

(
Ei

Fi

)
,

(
Ci

Di

)
=

(
Gi+1

Hi+1

)
+ (−1)i

(
Gi

Hi

)
.

(2) For any i ≥ 1, it holds that

a

(
Ei

Fi

)
=

(
Ai

Bi

)
− (−1)i

(
Ai−1

Bi−1

)
, a

(
Gi

Hi

)
=

(
Ci

Di

)
+ (−1)i

(
Ci−1

Di−1

)
.

(3) For any i ≥ 0, it holds that(
Bi

Fi

)
=

(
a(Di − (−1)iHi) + (−1)iDi

Di − (−1)iHi

)
,

(
Ci

Gi

)
=

(
a(Ai + (−1)iEi) − (−1)iAi

Ai + (−1)iEi

)
.

Proof. First we prove (1) and (2). In the initial cases, we can check them directly. The higher
cases are proved by induction, using column decomposition of the inductive definition of the
matrices in Definition 3.2.

Next we prove (3). In the case i = 0, we can check them directly. Suppose i ≥ 1. First,
we show the second entry. The second equality in (1) includes Di − (−1)iHi = Hi+1. We
also have Hi+1 = Fi in Definition 3.2. Next, we show the first entry. The first equality in (2)
includes Bi − aFi = (−1)iBi−1. We also have Bi−1 = Di in Definition 3.2. We have the first
equality of (3). The second equality can be proved similarly. �

Considering the values X(−a, i)s for X = A, B, · · · and H, we have a symmetry:

Lemma 3.5
A(−a, i) = −(−1)iD(a, i), E(−a, i) = (−1)iH(a, i),
B(−a, i) = (−1)iC(a, i), F (−a, i) = −(−1)iG(a, i).

Relating this lemma, on the 4-manifolds in Theorem 1.12, we have:

Corollary 3.6 The 4-manifold XAB(−a, i) is diffeomorphic to XCD(a, i) by an orientation-
reversing diffeomorphism, i.e.,

XAB(−a, i) = −XCD(a, i).

Thus it is sufficient to prove the theorem only in the positive case a ≥ 0.
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3.3 Trivial cases

There are some trivial cases in Theorem 1.12, i.e., the cases that both T (Ai, Bi), T (Ci, Di)
are unknotted. In such cases, both pieces XAB and XCD are diffeomorphic to the total space
of a disk bundle over S2. It is well-known that a union of such manifolds is diffeomorphic to
the required 4-manifold, see Kirby [K2, Lemma 4.4]. Here, we list such cases.

First, in the case a = 0, the sequence of the matrices has period 4. They are equal to(
Ai Ci

Bi Di

)
=

(
−1 1
1 1

)
,

(
1 1
−1 1

)
,

(
1 −1
−1 −1

)
,

(
−1 −1
1 −1

)
,

according to i ≡ 0, 1, 2, 3 mod 4, respectively.
Next, in the case a = ±1, the sequence of the matrices (with respect to i) has period 6

(or 3). If a = 1, the matrices are equal to(
−1 1
1 1

)
,

(
1 2
0 1

)
,

(
2 1
−1 0

)
,

(
1 −1
−1 −1

)
,

(
−1 −2
0 −1

)
,

(
−2 −1
1 0

)
,

according to i ≡ 0, 1, 2, 3, 4, 5 mod 6, respectively. If a = −1,(
−1 1
1 1

)
,

(
1 0
−2 1

)
,

(
0 −1
1 −2

)
,

according to i ≡ 0, 1, 2 mod 3, respectively.
In the case a = 2 or a = −2, it satisfies(

Ai Ci

Bi Di

)
=

(
2i − 1 2i + 1

1 1

)
or (−1)i

(
−1 1

2i + 1 −(2i − 1)

)
,

respectively.
On the other hand, even if |a| ≥ 3, the cases of i = 1 are trivial.(

A1 C1

B1 D1

)
=

(
1 a + 1

a − 1 1

)
.

This is the reason why we often assume that a ≥ 3 and i ≥ 2. In such cases, the following
inequalities are easy to show.

Lemma 3.7 In the cases a ≥ 3 and i ≥ 2, we have

C(a, i) > B(a, i) > A(a, i) > D(a, i) > 1,
B(a, i) > A(a, i) > F (a, i) > E(a, i) > 0,
C(a, i) > G(a, i) > D(a, i) > H(a, i) > 0.

Finally, we study trivial cases in Theorem 1.18, for the other sequences. They are cases
i = 0 and one more pair ((S1, T1), (U1, V1)):(

S0 U0

T0 V0

)
=

(
0 2
1 1

)
,

(
s0 u0

t0 v0

)
=

(
0 1
1 2

)
,

(
K0 M0

L0 N0

)
=

(
1 1
3 3

)
,

(
k0 m0

l0 n0

)
=

(
1 1
2 2

)
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and (
S1 U1

T1 V1

)
=

(
1 1
1 3

)
.

We also point out that the following four cases are the same pair of lens space surgeries:

((S2, T2), (U2, V2)), ((s1, t1), (u1, v1)), ((K1, L1), (M1, N1)), ((k1, l1), (m1, n1)).

They are the pair (U ; 5) = −L(5, 1) and (T (2, 3); 5) = L(5, 1), where U is the unknot.

3.4 Formulas on the second sequences

First, we study the sequence [STUV ]. Definition 1.13 is reformulated as
Si+1

Ti+1

Ui+1

Vi+1

 =


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0




Si

Ti

Ui

Vi

 .

The 4 × 4 matrix has four eigenvalues σ,−σ, τ and −τ , where

σ =
√

5 + 1
2

, τ =
1
σ

=
√

5 − 1
2

. (3.2)

Thus, for X = S, T, U or V , Xi is a linear combination of σi, (−σ)i, τ i and (−τ)i:

Xi = c1σ
i + c2(−σ)i + c3τ

i + c4(−τ)i.

One can check that

Si = Ti−1 =
1√
5

(
σi+1 + (−σ)i−1 − τ i−1 − (−τ)i+1

)
,

Ui = Vi−1 =
1√
5

(
σi+1 − (−σ)i−1 + τ i−1 − (−τ)i+1

)
.

Using relations

στ = 1, σ2 = σ + 1, τ2 = −τ + 1, σ2 + 1 =
√

5σ, τ2 + 1 =
√

5τ (3.3)

and so on, we also have an explicit expression

S2j = T2j−1 =
σ2j − τ2j

√
5

, U2j = V2j−1 = σ2j + τ2j ,

T2j = S2j+1 = σ2j+1 − τ2j+1, V2j = U2j+1 =
σ2j+1 + τ2j+1

√
5

.

Using relations (3.3) again, it is not hard to show the following lemma. We leave the details
to the readers.

Lemma 3.8 ([ST]) The pairs (Si, Ti) and (Ui, Vi) satisfy the followings:

(1) UiTi−1 − ViSi−1 = 1, UiTi+1 − ViSi+1 = 1 and SiVi−1 − TiUi−1 = −1.
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(2) SiTi + 1 = UiVi − 1. We call this integer Pi.

(3) If i is even, then S2
i + V 2

i = Pi and T 2
i + U2

i = 5Pi. Otherwise, S2
i + V 2

i = 5Pi and
T 2

i + U2
i = Pi.

(4) It holds the following recursive formulas:(
Si+1

Ti+1

)
=

(
Ui

Vi

)
+

(
Si−1

Ti−1

)
,

(
Ui+1

Vi+1

)
=

(
Si

Ti

)
+

(
Ui−1

Vi−1

)
.

(5) Si = Ti−1, Ui = Vi−1.

The following proposition follows from the inductive definition and Lemma 3.8(4).

Proposition 3.9 ([ST]) For even i ≥ 2, we have Si < Vi < Ui < Ti. For odd i ≥ 3, we
have Ui < Ti < Si < Vi.

Next, we study the sequence [stuv]. The method is similar to the sequence [STUV ].
Definition of the pairs (si, ti) and (ui, vi) in Definition 1.13 is reformulated as

si+1

ti+1

ui+1

vi+1

 =


0 1 0 0
1 0 0 2
0 0 0 1
0 2 1 0




si

ti
ui

vi

 .

The 4 × 4 matrix has four eigenvalues σ′,−σ′, τ ′ and −τ ′, where

σ′ =
√

2 + 1, τ ′ =
√

2 − 1.

Thus, for X = s, t, u or v, Xi is a linear combination of σ′i, (−σ′)i, τ ′i and (−τ ′)i. We have an
explicit expression

s2j = t2j−1 =
σ′2j − τ ′2j

√
2

, u2j = v2j−1 =
σ′2j + τ ′2j

2
,

t2j = s2j+1 =
σ′2j+1 − τ ′2j+1

2
, v2j = u2j+1 =

σ′2j+1 + τ ′2j+1

√
2

.

Using relations

σ′τ ′ = 1, σ′2 = 2σ′ + 1, δ2 = −2τ ′ + 1, σ′2 + 1 = 2
√

2σ′, τ ′2 + 1 = 2
√

2τ ′ (3.4)

and so on, it is not hard to show the following lemma. We leave the details to the readers.

Lemma 3.10 The pairs (si, ti) and (ui, vi) satisfy the followings:

(1) uiti−1 − visi−1 = 2, uiti+1 − visi+1 = 2 and sivi−1 − tiui−1 = −2.

(2) siti + 1 = uivi − 1. We call this integer pi.

(3) If i is even, then s2
i + v2

i = 4pi and t2i + u2
i = 2pi. Otherwise, s2

i + v2
i = 2pi and

t2i + u2
i = 4pi.
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(4) It holds the following recursive formulas:(
si+1

ti+1

)
= 2

(
ui

vi

)
+

(
si−1

ti−1

)
,

(
ui+1

vi+1

)
= 2

(
si

ti

)
+

(
ui−1

vi−1

)
.

(5) si + ti ≡ 1, ui + vi ≡ 1 mod 2. Thus every pi is odd.

(6) ui−1 + si, vi−1 + ti (= ui + si+1), si−1 + ui and si + vi (= ti−1 + ui+1) are always even.
We define their halves:

ei = (ui−1 + si)/2, gi = (si−1 + ui)/2,
fi = (vi−1 + ti)/2, hi = (si + vi)/2

Then it holds that sifi − tiei = −1, uihi − vigi = 1.

(7) si = ti−1, ui = vi−1 and fi = ei−1, hi = gi−1.

The following proposition follows from the inductive definition and Lemma 3.10(4).

Proposition 3.11 For even i ≥ 1, we have ui < si < ti < vi. For odd i ≥ 1, we have
si < ui < vi < ti.

Proof of Lemma 1.14(1)(2)(3). They follow from Lemma 3.8(1)(2)(3) for [STUV ], and from
Lemma 3.10(6)(2)(3) for [stuv], respectively. �

3.5 Formulas on the third sequences

First, we study the sequence [KLMN ]. We extend the sequences of pairs (Ki, Li) and
(Mi, Ni) in Definition 1.15 to those of matrices whose determinants are ±1:

Definition 3.12 We define(
K1 E1

L1 F1

)
=

(
1 0
6 1

)
,

(
M1 G1

N1 H1

)
=

(
2 1
3 2

)
and (

Ki+1 Ei+1

Li+1 Fi+1

)
=

(
1 0
9 −1

)(
Mi Gi

Ni Hi

)
, (3.5)(

Mi+1 Gi+1

Ni+1 Hi+1

)
=

(
−1 1
0 1

)(
Ki Ei

Li Fi

)
,

inductively.

Then we have:

Lemma 3.13 KiFi − LiEi = −(−1)i, MiHi − NiGi = −(−1)i.

Lemma 3.14
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(1) For any i ≥ 2, it holds that

3
(

Ei

Fi

)
=

(
Ki

Li

)
+ (−1)i

(
Ki−1

Li−1

)
, 3

(
Gi

Hi

)
=

(
Mi

Ni

)
− (−1)i

(
Mi−1

Ni−1

)
.

(2) For any i ≥ 1, it holds that

3Fi = Li + (−1)iNi, 3Gi = Mi − (−1)iKi.

(3) For any i ≥ 1, it holds that(
Ei+1

Fi+1

)
+ (−1)i

(
Ei

Fi

)
=

(
Ki

Li

)
,

(
Gi+1

Hi+1

)
− (−1)i

(
Gi

Hi

)
=

(
Mi

Ni

)
.

(4) For any i ≥ 1, it holds that

Gi + (−1)iEi = Ki, Fi − (−1)iHi = Ni.

Proof. (1) In the initial case, we can check it directly. The higher cases are proved by
induction, using column decomposition of the inductive definition in Definition 3.12.

(2) The first (and the second, respectively) equality follows from the second (and the first)
row of the equality (1) and Ni = Li−1 (and Ki = Mi−1) in Definition 3.12.

(3), (4) By using the first equality in (1) twice,

3
(

Ei+1

Fi+1

)
=

(
Ki+1

Li+1

)
+ (−1)i+1

(
Ki

Li

)
, 3

(
Ei

Fi

)
=

(
Ki

Li

)
+ (−1)i

(
Ki−1

Li−1

)
,

we have (
Ei+1

Fi+1

)
+ (−1)i

(
Ei

Fi

)
=

1
3

{(
Ki+1

Li+1

)
+

(
Ki−1

Li−1

)}
=

(
Ki

Li

)
.

By the first row of (3), since Ei+1 = Gi, we have the first equality of (4). The second halves
of (3) and (4) can be proved similarly by the second equality in (1). �

Next, we study the sequence [klmn]. We extend the sequences of pairs (ki, li) and (mi, ni)
in Definition 1.15 to those of matrices whose determinants are ±1:

Definition 3.15 We define(
k1 e1

l1 f1

)
=

(
1 0
6 1

)
,

(
m1 g1

n1 h1

)
=

(
3 1
2 1

)
and (

ki+1 ei+1

li+1 fi+1

)
=

(
1 0
8 −1

)(
mi gi

ni hi

)
, (3.6)(

mi+1 gi+1

ni+1 hi+1

)
=

(
−1 2
0 1

)(
ki ei

li fi

)
,

inductively.
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Lemma 3.16 kifi − liei = −(−1)i, mihi − nigi = −(−1)i.

Lemma 3.17

(1) For any i ≥ 2, it holds that

4
(

ei

fi

)
=

(
ki

li

)
+ (−1)i

(
ki−1

li−1

)
, 4

(
gi

hi

)
=

(
mi

ni

)
− (−1)i

(
mi−1

ni−1

)
.

(2) For any i ≥ 1, it holds that

4fi = li + (−1)ini, 4gi = mi − (−1)iki.

(3) For any i ≥ 1, it holds that(
ei+1

fi+1

)
+ (−1)i

(
ei

fi

)
=

(
ki

li

)
,

(
gi+1

hi+1

)
− (−1)i

(
gi

hi

)
=

(
mi

ni

)
.

(4) For any i ≥ 1, it holds that

gi + (−1)iei = ki, fi − (−1)ihi = ni.

The proof is similar to that of Lemma 3.14, thus we omit it.

Finally, we study the explicit expression of the sequences {bi}, {di} in Definition 1.16. We
recall σ, τ from (3.2) and define κ, λ by

σ =
√

5 + 1
2

, τ =
√

5 − 1
2

, κ =
√

3 + 1√
2

, λ =
√

3 − 1√
2

.

They satisfy σ2 + τ2 = 3, κ2 + λ2 = 4, στ = κλ = 1 and

σ2 − 1 = σ, τ2 − 1 = −τ, κ2 − 1 =
√

2κ, λ2 − 1 = −
√

2λ.

It is easy to see

bi =
(σ2i − τ2i) − (σ2(i−1) − τ2(i−1))

σ2 − τ2
=

σ2i−1 + τ2i−1

√
5

,

di =
(κ2i − λ2i) − (κ2(i−1) − λ2(i−1))

κ2 − λ2
=

κ2i−1 + λ2i−1

√
6

.

Using these expressions, we have:

Lemma 3.18

(1) Ki
2 + Mi

2 = Pi and Li
2 + Ni

2 = 9Pi.

(2) ki
2 + mi

2 = 2pi and li
2 + ni

2 = 8pi.

Proof of Lemma 1.17(1)(2)(3). Lemma 1.17(1) follows from Lemma 3.13 and Lemma 3.16.
Lemma 1.17(2) is easier than the other sequences. Lemma 1.17(3) follows from Lemma 3.18.
�
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3.6 Proof of the properties (4) in Lemmas

Let [XYZW] be one of the sequences [ABCD], [STUV ], [stuv], [KLMN ] and [klmn]. Then,
Lemma 1.11(4), Lemma 1.14(4) and Lemma 1.17(4) are commonly rewritten as

X4
i ̸≡ ±1 mod Pi.

Note that Pi (= XiYi − 1 or XiYi + 1) depends on the choice of sequences. A congruence
X4

i ≡ ±1 is equivalent to X2
i ∓ Y2

i ≡ 0, since Xi
2 ≡ Yi

2. We focus on the ratios Xi/Yi and its
inverse Yi/Xi and their limits, since

lim
i→∞

Xi

Yi
= lim

i→∞

Xi
2

XiYi
= lim

i→∞

Xi
2

Pi
, lim

i→∞

Yi

Xi
= lim

i→∞

Yi
2

XiYi
= lim

i→∞

Yi
2

Pi
.

We also study

lim
i→∞

(
Xi

Yi
+

Yi

Xi

)
= lim

i→∞

Xi
2 + Yi

2

XiYi
= lim

i→∞

Xi
2 + Yi

2

Pi
.

We start with the first sequence [ABCD]. The limits of the ratio depends on the index a.

Proof of Lemma 1.11(4). Suppose Ai
4 ≡ 1 mod Pi. It implies Ai

2 ≡ Ai
2 ≡ Bi

2 ≡ Di
2

mod Pi, where Ai is the inverse of Ai in (Z/PiZ)∗. Here, we used Lemma 1.11(3) in the third
equivalence. It contradicts 1 < Di

2 < Ai
2 < Pi, see Lemma 3.7.

Next, suppose Ai
4 ≡ −1 mod Pi. It implies Ai

2 + Di
2 ≡ 0 mod Pi by the similar

argument as above. We prove that it implies a contradiction by estimation of the ratios
Ai/Bi and Ci/Di (they increase and converge), but the proof is a little harder, divided into two
cases. We omit the detail of the estimation. In the case a ≥ 4, 2Ai < Bi and 2Di < Ci. Since
Pi = AiBi +1 = CiDi − 1, they imply 2A2

i < Pi and 2D2
i < Pi, thus Ai

2 +Di
2 < Pi. We have

a contradiction. On the other hand, in the case a = 3, we can estimate 6Ai > 5Bi except the
case i = 2, and 6Di > Ci. They implies 6A2

i > 5Pi and 6D2
i > Pi, thus 2Pi > Ai

2 + Di
2 > Pi.

We have a contradiction. The proof is complete. �
For the other sequences, the limits of the ratios Xi/Yi (or X2i/Y2i, X2i−1/Y2i−1 for [STUV ]

and [stuv]) are non-zero and irrational numbers, see Table 4. Thus the required non-congruences

Sequence X2i/Y2i Y2i/X2i (X2i
2 + Y2i

2)/P2i

(Si, Ti)
5 −

√
5

10
= 0.27639... 3.61803...

15 + 2
√

5
5

= 3.89442...

(si, ti) 2 −
√

2 = 0.58578... 1.70710...
6 −

√
2

2
= 2.29289...

Sequence Xi/Yi Yi/Xi (Xi
2 + Yi

2)/Pi

(Ki, Li)
3 −

√
5

6
= 0.12732... 7.85410...

15 + 4
√

5
3

= 7.98142...

(ki, li)
2 −

√
3

2
= 0.13397... 7.46410...

10 + 3
√

3
2

= 7.59807...

Table 4: Limits of ratios

hold for sufficiently large i. For a complete proof for all i, we use some evaluations. To evaluate
Xi/Yi, we mainly use XI/YI and YI/XI for some I.
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Proof of Lemma 1.14(4) for [STUV ]. Note that

lim
j→∞

S2j
2

P2j
= lim

j→∞

S2j

T2j
= lim

j→∞

U2j−1
2

P2j−1
= lim

j→∞

U2j−1

V2j−1
=

1√
5σ

=
5 −

√
5

10
,

and
3
11

<
5 −

√
5

10
= 0.276393... <

2
7
.

Claim 1. For any integer j ≥ 3, it holds that

3
11

<
S2j

T2j
<

2
7

and
3
11

<
U2j−1

V2j−1
<

2
7
.

This claim is proved by Lemma 3.8(4) and induction.

Claim 2. For j ≥ 3, we have the following inequalities:

S2j
2 <

2
7
P2j ,

7
2
P2j < T2j

2 <
11
3

P2j ,

U2j−1
2 <

2
7
P2j−1,

7
2
P2j−1 < V2j−1

2 <
11
3

P2j−1.

Proof. By Claim 1, we have 7S2j < 2T2j and 3T2j < 11S2j . Thus

7S2j
2 < 2S2jT2j < 2(S2jT2j + 1) = 2P2j , 3T2j

2 < 11S2jT2j < 11(S2jT2j + 1) = 11P2j .

We also have 2V2j−1 > 7U2j , thus

2V2j−1
2 > 7U2j−1V2j−1 > 7(U2j−1V2j−1 − 1) = 7P2j−1.

The other inequalities are a little troublesome. By Claim 1, we have 2T2j > 7S2j , thus
2T2j

2 > 7S2jT2j . Here, since the difference 2T2j − 7S2j is an integer and T2j is sufficiently
large, we can show 2T2j

2 > 7S2jT2j + 7 = 7P2j . We can show the other inequalities similarly.
�
Claim 3. For j ≥ 3, we have the following inequalities:

(−,ev)
S2j

2

P2j
<

2
7
,

7
2

<
T2j

2

P2j
− 1 <

2
3
, (−,od)

U2j−1
2

P2j−1
<

2
7
,

7
2

<
V2j−1

2

P2j−1
− 3 <

2
3

(+,ev)
7
2
P2j < S2j

2 + T2j
2 <

83
21

P2j , (+,od)
7
2
P2j−1 < U2j−1

2 + V2j−1
2 <

83
21

P2j−1.

These inequalities are proved by Claim 2.

We go back to the proof of Lemma 1.14(4). The cases i = 3, 4 can be shown directly.
Suppose i ≥ 5 and Si

4 ≡ 1 mod Pi. It implies both Si
2 ≡ Ti

2 mod Pi and Ui
2 ≡ Vi

2

mod Pi. In the case where i is even (i = 2j) (and i is odd (i = 2j − 1), respectively), the first
congruence (and the second congruence) contradicts (−,ev) (and (−,od)) in Claim 3.

Next, suppose i ≥ 5 and Si
4 ≡ −1 mod Pi. It implies both Si

2 + Ti
2 ≡ 0 mod Pi and

Ui
2 + Vi

2 ≡ 0 mod Pi. In the case i is even (and i is odd, respectively), the first congruence
(and the second congruence) contradicts (+,ev) (and (+,od)) in Claim 3. �
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Proof of Lemma 1.14(4) for [stuv]. The proof is similar to the case of [STUV ], except the
final step. We use

2 −
√

2 = 0.5878... <
10
17

.

Claim 4. For any integer j ≥ 2, it holds that
s2j

t2j
<

10
17

and
u2j+1

v2j+1
<

10
17

.

This claim is proved by Lemma 3.10(4) and induction. By applying the same method for the
case [STUV ] (we omit “Claim 2”), we can show the following claim:

Claim 5. For j ≥ 3, we have the following inequalities:

(−,ev)
s2j

2

p2j
<

10
17

,
7
10

<
t2j

2

p2j
− 1 < 1, (−,od)

u2j−1
2

p2j−1
<

10
17

,
7
10

<
v2j−1

2

p2j−1
− 1 < 1

(+,ev)
17
10

p2j < s2j
2 + t2j

2 <
44
17

p2j , (+,od)
17
10

p2j−1 < u2j−1
2 + v2j−1

2 <
44
17

p2j−1.

We go back to the proof of Lemma 1.14(4). The cases i = 2, 3 can be shown directly. Sup-
pose i ≥ 5 and si

4 ≡ 1 mod pi. It implies both si
2 ≡ ti

2 mod pi and ui
2 ≡ vi

2 mod pi. In
the case i is even (and i is odd, respectively), the first congruence (and the second congruence)
contradicts (−,ev) (and (−,od)) in Claim 5.

Next, suppose i ≥ 5 and si
4 ≡ −1 mod pi. It implies both si

2 + ti
2 ≡ 0 mod pi and

ui
2 + vi

2 ≡ 0 mod pi. But, in the case where i is even (i = 2j), s2j
2 + t2j

2 = 2pi (by (+,ev)
in Claim 5) contradicts si + ti ≡ 1 mod 2 in Lemma 3.10(1). In the case i is odd, we have
also a contradiction similarly. The proof of Lemma 1.14 is completed. �
Proof of Lemma 1.17(4) for [KLMN ] and [klmn]. The proof is similar to the case of [stuv].
We use an inequality

3 −
√

5
6

<
2 −

√
3

2
<

1
6

Claim 6. For any integer i ≥ 3, it holds that
Ki

Li
,
ki

li
<

1
6

and
22
3

<
Li

Ki
,
li
ki

< 8.

This claim is proved by Definition 1.16. By the method similar to the previous cases, we can
show:

Claim 7. For i ≥ 3, we have the following inequalities:

(−)
Ki

2

Pi
<

1
6
,

1
3

<
Li

2

Pi
− 7 < 1,

ki
2

pi
<

1
6
,

1
3

<
li

2

pi
− 7 < 1

(+)
22
3

Pi < Ki
2 + Li

2 <
49
6

Pi,
22
3

pi < ki
2 + li

2 <
49
6

pi.

We go back to the proof of Lemma 1.14(4). The cases i = 2 can be shown directly. Suppose
i ≥ 3 and Ki

4 ≡ 1 mod pi. It implies Ki
2 ≡ Li

2 mod Pi, which contradicts (−) in Claim 7.
Next, suppose i ≥ 3 and Ki

4 ≡ −1 mod Pi. It implies Ki
2 + Li

2 ≡ 0 mod Pi. But, by (+)
in Claim 7, Ki

2 +Li
2 = 8Pi contradicts Li

2 +Ni
2 = 9Pi in Lemma 3.18, since Ni

2 −Ki
2 = Pi

implies 8bi
2 = 3bibi+1 − 1 thus bi = 1. Here we used bi in Subsection 3.5. The proof for

the case [klmn] can be done in the way similar to [KLMN ]. The proof of Lemma 1.17 is
completed. �
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4 3-dim calculus

For the pairs of lens space surgeries defined in Section 1, we search both dual knots in the com-
mon resulting lens spaces by 3-dim calculus, and describe the constructed 4-manifolds XXY ∪
(∓XZW) by 4-dim diagrams. All diagrams are framed links of type (T ((pz, qz), (pw, qw)); rz, rw)
defined in Definition 2.1, and the parameters depend on the choice of the sequence [XYZW] =
((Xi,Yi), (Zi,Wi)). The goal of this section is the following theorem:

Theorem 4.1

(1) The 4-manifold XAB ∪ (−XCD) is described by the framed link

(T ((Ai, Bi), (Ai−1, Bi−1));Pi, Pi−1).

(2) The 4-manifolds XST ∪ XUV , Xst ∪ Xuv are described by the framed links

(T ((Si, Ti), (Ui−1, Vi−1));Pi, Pi−1), (T ((si, ti), (ui−1, vi−1)); pi, pi−1),

respectively.

(3) The 4-manifolds XKL ∪ XMN and Xkl ∪ Xmn are described by the framed links

(T ((Ki, Li), (Ki−1, Li−1));Pi, Pi−1), (T ((ki, li), (ki−1, li−1)); pi, pi−1),

respectively.

In other words, in each framed link, the second component is the attaching circle of the dualized
2-handle of the second piece. Here, Pi, pi (= ZiWi − 1) depend on the choice of the sequence.

See an example XAB ∪ (−XCD) with i = 2 in Figure 26.

4.1 For the first sequence

We assume a ≥ 3 and i ≥ 2. In Subsection 2.3, we reviewed Moser’s lens space surgeries
(Lemma 1.3) along any positive torus knots T (p, q) and defined a convenient diagram D(p, q)
in Lemma 2.4. Almost all diagrams are divided into two cases according to whether i is even
or odd. We often synthesize them by using a notation εi = (−1)i. We start with the long
diagram D(Ai, Bi):

Lemma 4.2 For the pair (Ai, Bi), the diagram D(Ai, Bi) is as in Figure 13. In each diagram,
the notation [· · · ]j−1 means (j − 1) times iteration of the block [· · · ] (The horizontal line is
cut at the terminal vertices).

Proof. We can verify the theorem in the case i = 2, 3 directly. The higher i cases are shown
by induction as below. In the first steps in Algorithm (1), the words w(Ai, Bi), w(Ci, Di)
satisfy

(Ai+1, Bi+1) = (Ci, (a − 2)Ci + Di) →Ra−2 (Ci, Di) →L · · · ,

(Ci+1, Di+1) = (Ai + (a + 2)Bi, Bi) →La+2 (Ai, Bi) →R · · · .
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Case i = 2j is even

Case i = 2j + 1 is odd

Figure 13: Diagram D(Ai, Bi), where AiFi − BiEi = −(−1)i

Thus we have

w(Ai+2, Bi+2) = Ra−2La+2w(Ai, Bi), (4.1)
w(Ci+2, Di+2) = La+2Ra−2w(Ci, Di).

These relations contribute as that the case i + 2 is obtained from the case i by adding one
more copy of the block to both hand-sides.

To shorten the diagram D(Ai, Bi), we use the parameters Ei, Fi satisfying AiFi −BiEi =
−εi, where εi = (−1)i, defined in Subsection 3.2, see also Lemma 3.7. �

The diagram D(Ci, Di) is obtained by the same method, using Gi,Hi satisfying CiHi −
DiGi = εi, see the top picture of Figure 14. Here we find a strange symmetry over the
sequence [ABCD], which we call J-symmetry:

Definition 4.3 (Operation J) For chain framed links whose coefficients are parametrized
by an integer a (ex., D(Ai, Bi), D(Ci, Di) and related ones), we define an operation J as

changing the sign of a (from ±a to ∓a), and after that, take the mirror image.

Lemma 4.4 The operation J interchanges D(Ai, Bi) and D(Ci, Di), and also interchanges
the knots (kAB; +1) and (kCD;−1). Thus J keeps the diagram of the common lens space of
the lens space surgeries.

32



Figure 14: Diagram L(i) of the common lens space, where εi = (−1)i

This lemma is proved by the relations in Lemma 3.5 (B(−a, i) = εiC(a, i), F (−a, i) =
−εiG(a, i) and so on). Dualizing D(Ai, Bi) ∪ (kAB; +1) and D(Ci, Di) ∪ (kCD;−1) respec-
tively by Lemma 2.5, we have a chain framed link of the common resulting lens space, see the
middle picture of Figure 14. Caring J-symmetry, we modify the diagram by basic formulas
and amalgamate them to search both dual knots in the common lens space. Here, we used
Lemma 3.4(3) in the form[

−εia, +1, εi
Di

Hi

]
= −εi

[
a,−εi,−

Di

Hi

]
,

[
−εia,−1, εi

Ai

Ei

]
= −εi

[
a, εi,−

Ai

Ei

]
and [

a,−εi,−
Di

Hi

]
= a − 1

−εi +
Hi

Di

=
a(Di − εiHi) + εiDi

Di − εiHi
=

Bi

Fi
,

[
a, εi,

Ai

Ei

]
= a − 1

εi +
Ei

Ai

=
a(Ai + εiEi) − εiAi

Ai + εiEi
=

Ci

Gi
.

By the results in Subsection 2.3, we summarize the arguments above as follows:

Lemma 4.5 See the 3-dim diagram in the bottom picture in Figure 14.

(1) The diagram L(i) presents the common lens space of both lens space surgeries

M(T (Ai, Bi);AiBi + 1) ∼= M(T (Ci, Di);CiDi − 1) ∼= −L(Pi, Bi
2).

(2) In the diagram L(i) of the lens space, (−1)-framed k∗
AB (and (+1)-framed k∗

CD, respec-
tively) is the dual knot of the lens space surgery along T (Ai, Bi) (and along T (Ci, Di)).
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(3) Operation J keeps the diagram L(i) itself, and interchanges the dual knots (k∗
AB;−1)

and (k∗
CD; +1) in L(i).

Proof (of Theorem 4.1(1)). We dualize k∗
AB by Definition 2.6, see the top picture in Figure 15.

We have a non-trivial diagram D(Ai, Bi) of S3. By the duality, the ((+1)-framed) component
kAB becomes Pi-framed T (Ai, Bi) in the resulting S3. In the complement, we have the other
dual knot k∗

CD. We chase the link kAB ∪ k∗
CD under the 3-dim calculus from D(Ai, Bi) to the

empty diagram. By Lemma 2.7(2) and (3), the resulting link is of type T ((pz, qz), (pw, qw))
with (pz, qz) = (Ai, Bi) in S3, where we took T (Ai, Bi) in the torus Tz. The final task is

Figure 15: Check that k∗
CD is Tw(Bi−1, Ai−1).

to verify (pw, qw) = (Ai−1, Bi−1). By 3-dim calculus (ignoring kAB) as in Figure 15 and an
equality[

1,−εia, 0, εi
Ai

Ei

]
=

[
1,−εi

(
a − Ai

Ei

)]
=

[
1,

Ai−1

Ei

]
=

[
0,

Ai−1

Ei − Ai−1

]
=

[
0, εi−1

Ai−1

Ei−1

]
,

where we used Lemma 3.4(2) and (1), we can deform the diagram to D(Ai−1, Bi−1). Thus
the component k∗

CD is a torus knot Tw(Bi−1, Ai−1) in the torus Tw. �

4.2 For the second and the third sequences

For the second and the third sequences, the method is similar to the last subsection except
taking a mirror image at the beginning.

Proof (of Theorem 4.1(2)). First, we study the case [STUV ]. We take a “mirror image” of
the lens space surgery M(T (Ui, Vi);UiVi − 1) = L(Pi, Ti

2):

−M(T (Ui, Vi);UiVi − 1) = M(T (Ui, Vi)!;−(UiVi − 1)) = −L(Pi, Ti
2),

where “mirror image” means a mirror image of the diagram of a surgery description of a lens
space. We study the pair
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M(T (Ui, Vi)!;−(UiVi − 1)) = −L(Pi, Ti
2) and M(T (Si, Ti); (SiTi + 1)) = −L(Pi, Ti

2).

Modifying and amalgamating two diagrams of lens spaces as in Figure 16, we get both dual
knots in a diagram of the common lens space. Here we used Lemma 3.8(3) and (4) as[

−1,
Si

Ui−1

]
= − Vi

Ti−1
,

[
−1,

Ui

Si−1

]
= − Ti

Vi−1
.

Dualizing the dual knot k∗
ST of the lens space surgery M(T (Si, Ti); (SiTi + 1)), we have the

Figure 16: Diagram of the lens space (Case [STUV ])

first diagram in Figure 17. It is a non-trivial diagram of S3 containing the required link. By

Figure 17: Check that k∗
UV ! is Tw(Vi−1, Ui−1)

3-dim calculus (ignoring kST ) in Figure 17, using an equality[
−1, 0,

Si

Ui−1

]
=

Si − Ui−1

Ui−1
=

Si−2

Ui−1
=

[
0,−Ui−1

Si−2

]
by Lemma 3.8(4) and (5), we can deform the diagram to D(Ui−1, Vi−1). Thus the component
k∗

UV ! is a torus knot Tw(Ui−1, Vi−1) in the torus Tw.

Second, we study the case [stuv]. Since the method is completely same as the case [STUV ],
we only draw diagrams and equalities. We leave the detail to the reader. In Figure 18, we use[

−2,−1,
ui

gi

]
= −2gi + ui

gi + ui
,

[
−2,−1,

si

ei

]
= −2ei + si

ei + si

and
2gi + ui = si−1 + 2ui = si+1 = ti, 2ei + si = ui−1 + 2si = ui+1 = vi,
2(gi + ui) = si+1 + ui = 2fi, 2(ei + si) = ui+1 + si = 2hi,
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Figure 18: Diagram of the lens space (Case [stuv])

Figure 19: Check that k∗
uv! is Tw(vi−1, ui−1)

where we used Lemma 3.10(4) and (6). In Figure 19, we use[
−1,−2, 0,

si

ei

]
=

[
−1,−2 +

si

ei

]
=

[
−1,

si − 2ei

ei

]
=

[
−1,−ui−1

ei

]
=

ei − ui−1

ui−1
=

[
0,− ui−1

ei − ui−1

]
and ei − ui−1 = gi−1. The last equality is shown by

2(ei − gi−1) = (ui−1 + si) − (si−2 + ui−1) = si − si−2 = 2ui−1.

�

Next, we study the case of the third sequences. The method is similar.

Proof (of Theorem 4.1(3)). First, we study the case [KLMN ]. We study the pair

M(T (Mi, Ni)!;−(MiNi − 1)) = −L(Pi, Ki
2) and M(T (Ki, Li); (KiLi + 1)) = −L(Pi,Ki

2).

Modifying and amalgamating two diagrams of lens spaces in Figure 20, we get both dual knots
in a diagram of the common lens space. Here we use Lemma 3.14(4) and (2) as[

−3εi, 1, εi
Ki

Ei

]
=

[
−3εi, 1 − εi

Ei

Ki

]
=

[
−3εi,

Gi

Ki

]
= −εi

[
3,−εi

Gi

Ki

]
,

[
−3εi,−1, εi

Ni

Hi

]
=

[
−3εi,−1 − εi

Hi

Ni

]
=

[
−3εi,−

Fi

Ni

]
= −εi

[
3, εi

Fi

Ni

]
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Figure 20: Diagram of the lens space (Case [KLMN ])

and [
3,−εi

Gi

Ki

]
=

3Gi + εiKi

Gi
=

Mi

Gi
,

[
3, εi

Fi

Ni

]
=

3Fi − εiNi

Fi
=

Li

Fi
.

Dualizing the dual knot k∗
KL, we have the first diagram in Figure 21. It is a non-trivial

diagram of S3 containing the required link. By 3-dim calculus (ignoring kKL) in Figure 21

Figure 21: Check that k∗
MN ! is Tw(Li−1,Ki−1)

using an equality[
−1,−3εi, 0, εi

Ki

Ei

]
=

[
−1, εi

(
Ki − 3Ei

Ei

)]
=

[
−1,−Ki−1

Gi−1

]
=

Gi−1 − Ki−1

Ki−1
= −εi−1Ei−1

Ki−1
=

[
0, εi−1

Ki−1

Ei−1

]
by Lemma 3.14(1),(5),(4) and Definition 3.12, we can deform the diagram to D(Ki−1, Li−1).
Thus the component k∗

MN ! is a torus knot Tw(Li−1,Ki−1) in the torus Tw.

Finally, we study the case [klmn]. Outline of the proof is the same as [KLMN ]. We must
replace K, L, .., H, −3εi by k, l, .., h, −4εi and use Lemma 3.17 instead of Lemma 3.14. We
leave the details to the readers. �

Here we point out that a recursive formula of words in Algorithm in Subsection 2.3. For
i ≥ 2,

w(Si+2, Ti+2) = w(Si, Ti) LR, w(si+2, ti+2) = w(si, ti) L2R2,

w(Ui+2, Vi+2) = w(Ui, Vi) RL, w(ui+2, vi+2) = w(ui, vi) R2L2.
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w(Ki+1, Li+1) =

{
w(Ki, Li) R3 (i is even)
w(Ki, Li) R2L (i is odd)

, w(ki+1, li+1) =

{
w(ki, li) R4 (i is even)
w(ki, li) R2L2 (i is odd)

,

w(Mi+1, Ni+1) =

{
w(Mi, Ni) L2R (i is even)
w(Mi, Ni) L3 (i is odd)

, w(mi+1, ni+1) =

{
w(mi, ni) L2R2 (i is even)
w(mi, ni) L4 (i is odd)

.

They are contrast to the words (4.1) of w(Ai, Bi) and w(Ci, Di).

5 4-dim calculus

5.1 Key lemma: Handle-slides in a thickened torus

We study framed links and handle-slides in a thickened torus T 2 × I, and apply it to 4-dim
calculus in S3, where we regard T 2 as R2/Z2 and I an open interval in R. Every manifold is
regarded as an oriented manifold. For a coprime pair (p, q) of integers, by l(p, q), we denote
a simple closed curve in T 2 derived from the line {(pt, qt + ϵ)|t ∈ R} ⊂ R2. By l(p, q)[τ ] with
τ ∈ I, we mean a knot in T 2 × I:

l(p, q)[τ ] := l(p, q) × {τ} ⊂ T 2 × {τ} ⊂ T 2 × I.

A framing (an isotopy class of a parallel shift) of l(p, q)[τ ] is called 0-framing or a torus framing
if the parallel shift is taken in T 2 × {τ}, and is called r-framing if it is right-handed r full
twists from 0-framing. For a framed link, orientation of the components are not needed, but
we take one choice here.

From now on, we fix I = (−1.5, 1.5). We are concerned with a framed link (K0; r0)∪(K, r)
in T 2 × I with

(K; r) = (l(p, q)[−1]; r), (K0; r0) = (l(p0, q0)[0];±1).

We slide the handle (K; r) over (K0; r0). The assumption r0 = ±1 is important. On the
handle-slides of the component K over K0, we have:

Lemma 5.1 Let (K0; δ)∪ (K; r) be the framed link in T 2 × I as above (δ = +1 or −1). We
set ∆ := p0q − q0p. There exists a sequence of handle-slides of K over K0 whose result is
(K0; δ) ∪ (K ′; r′) with

(K ′; r′) = (l(p − δ∆p0, q − δ∆q0)[+1]; r).

Note that |∆| is the geometric intersection number of the curves l(p0, q0) and l(p, q) in the
torus, and that, if δ = +1 (or −1, respectively) l(p − δ∆p0, q − δ∆q0) is obtained by a right-
handed (or a left-handed) Dehn twist along l(p0, q0) from l(p, q). Note that, even if we change
the orientation of the component l(p0, q0) (to l(−p0,−q0)), the result of the Dehn twist does
not change, because ∆ = p0q − q0p also changes the sign.

Proof. We only prove the lemma in the case δ = +1. Otherwise, we take a mirror image.
See the handle-slides in Figure 22, where each square denotes the fundamental domain of T 2.
First, we fix (p0, q0) = (±1, 0). They are in the cases of (p, q) = (1, 1), (1,−1) and (2, 3),
respectively. The other cases are similar: If p0q > 0 (or p0q < 0, respectively), we slide the
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handle as in the (1, 1) case (or as (1,−1) case) |q| times at each intersection point. General
(p0, q0) cases are proved from them by the self diffeomorphism on T 2 defined by the matrix(

p0 r0

q0 s0

)
∈ SL(2; Z).

�

Figure 22: Handle-slides in T 2 × I

We regard this handle-slide as “When K pass through the level t = 0, K0 acts on K as a
Dehn twist”.

5.2 4-dim calculus for each sequence

We “map” the handle-slides in Lemma 5.1 into S3. There exists an embedding Ψ of T 2 × I
into S3 that maps the following subsets homeomorphically.

Ψ(T 2[−1]) = Tz, Ψ(l(1, 0)[−1]) = mz, Ψ(l(0, 1)[−1]) = lz,
Ψ(T 2[0]) = Tw, Ψ(l(1, 0)[0]) = lw, Ψ(l(0, 1)[0]) = mw,

see Definition 2.1 for the notations of tori Tz, Tw and so on. Note that l(p, q) with the torus
framing corresponds to the torus knot T (p, q) with pq-framing.

Lemma 5.2 Let δ = +1 or −1. We study the framed link

(T ((pz, qz), (pw, qw));Rz, rw) = (Tz(pz, qz);Rz) ∪ (Tw(qw, pw); rw),
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with Rz = pzqz + r and rw = pwqw + δ. We set ∆ := pzqw − pwqz. Then, there exists a
sequence of handle-slides Tz(pz, qz) over Tw(qw, pw) whose result is

(T ((pw, qw), (p′, q′)); rw, R′) = (Tz(pw, qw); rw) ∪ (Tw(q′, p′);R′),

with (p′, q′) = (pz − δ∆pw, qz − δ∆qw) and R′ = Rz − pzqz + p′q′ = p′q′ + r.

Proof. The starting diagram is pulled back by Ψ as

(K; r) = (l(qz, pz)[−1]; r) and (K0; r0) = (l(qw, pw)[0]; δ)

in T 2 × I. We apply the handle-slides (K; r) over (K0; r0) in Lemma 5.1. The result is the
union of

(K0; δ) = (l(qw, pw)[0]; δ) and (K ′; r′) = (l(qz − δ∆qw, pz − δ∆pw)[+1]; r).

Let ι be a self diffeomorphism of I (isotopic to idI) satisfying ι(τ) = τ − 1 for 0 ≤ τ ≤ 1.
Using the embedding Ψ ◦ (idT 2 × ι) : T 2 × I → S3, we have the required framed link in S3. �

We apply Lemma 5.2 to reduce 4-dim diagrams constructed in Theorem 4.1, which depends
on the sequence. By

(T ((pz, qz), (pw, qw)); Rz, rw) → (T ((pw, qw), (p′, q′)); rw, R′),

we denote that there exists a sequence of only handle-slides from the left hand-side diagram to
the right hand-side one. In other words, they describe the same 4-manifold as 4-dim diagrams.

Lemma 5.3 (4-dim calculus) We can reduce the 4-dim diagrams as follows:

(1) (T ((Ai, Bi), (Ai−1, Bi−1));Pi, Pi−1) → (T ((Ai−1, Bi−1), (Ai−2, Bi−2));Pi−1, Pi−2).

(2) (T ((Si, Ti), (Ui−1, Vi−1)); Pi, Pi−1) → (T ((Ui−1, Vi−1), (Si−2, Ti−2));Pi−1, Pi−2) and
(T ((Ui, Vi), (Si−1, Ti−1)); Pi, Pi−1) → (T ((Si−1, Ti−1), (Ui−2, Vi−2));Pi−1, Pi−2).

It also holds for the pairs in the sequence [stuv].

(3) (T ((Ki, Li), (Ki−1, Li−1));Pi, Pi−1) → (T ((Ki−1, Li−1), (Ki−2, Li−2));Pi−1, Pi−2).

It also holds for the pairs in the sequence [klmn].

Proof. We go into the detail for the proof in the case (1). Since ∆ = AiBi−1 − BiAi−1 = a
and the recursive formula Xi+1 = aXi − Xi−1 in Lemma 3.1(5) and (3), we can deform the
diagram into T ((Ai−1, Bi), (Ai−2, Bi−2)) by Lemma 5.2, as unoriented link. In this case (and
case (3)), orientation of the second component is changed, but it does not matter as a framed
link. The framings are equal to the required ones.

In the other cases (2) and (3), the method of the proof is the same as that of (1). Only
signs δ, values ∆ and recursive formulas are replaced with Table 5. We have the lemma. �
Proof (of Theorem 1.5, i.e, Theorem 1.12 and Theorem 1.18) Our main theorem follows from
the result of 3-dim calculus in Theorem 4.1 by 4-dim calculus in Lemma 5.3 inductively. In
the case of the sequence [ABCD], the diagram becomes a framed Hopf link (H; 0, a + 2),
where H means a Hopf link. We use Lemma 4.4 of Kirby [K2]. In the case [STUV ] or
[stuv], after the reduction, the diagram becomes a framed Hopf link (H; 1, 2). It is easy
to see X(H; 1, 2) ∼= CP 2♯CP 2. In the case [KLMN ] or [klmn], after the reduction, the
diagram becomes a framed link (T ((1, 6), (1, 3)); 5, 2) or (T ((1, 6), (1, 2)); 5, 1). In either case,
the 4-manifold is diffeomorphic to CP 2♯CP 2, see Figure 23. �
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Case Sequence δ ∆ see
(1) [ABCD] −1 AiBi−1 − BiAi−1 = a Lemma 3.1

(2) [STUV ]
−1
+1

SiVi−1 − TiUi−1 = −1
UiTi−1 − ViSi−1 = 1

Lemma 3.8

(2) [stuv]
−1
+1

sivi−1 − tiui−1 = −2
uiti−1 − visi−1 = 2

Lemma 3.10

(3) [KLMN ] −1 KiLi−1 − LiKi−1 = −3 Definition 1.16
(3) [klmn] −1 kili−1 − liki−1 = −4 Definition 1.16

Table 5: Diagram Reduce

Figure 23: X(T ((1, 6), (1, 3)); 5, 2) ∼= CP 2♯CP 2

5.3 Demonstration in the case i = 2

Here, as a demonstration, we prove Theorem 4.1 and Theorem 1.12 in the case i = 2 by
concrete Kirby calculus. This was our starting example. Figures are just after the reference
list.

Demonstration of Theorem 4.1(1) in the case i = 2. We start with dualizing k∗
AB in the

diagram L(2), see the left top figure in Figure 25. We use an extended version of (−2)-formula
(Subsection 2.2) in the form in Figure 24, where the gray band contains some components of
the link, and the box with (n+1) means (n+1) full twists. The framing of each component in
the gray band changes by +(n+1)(lk)2, where lk is the linking number of the component and
the 0-framed component. Next, we blow-down the (+1)-curve. Finally, we use the formula

Figure 24: A formula

again. We have the required framed link (T ((A2, B2), (A1, B1));P2, P1) = (T ((a + 1, a2 − a−
1), (1, a − 1)); a3 − 2a, a). �
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Proof. (of Theorem 1.12 in the case i = 2) We have to do Kirby calculus from the diagram
in Figure 25 to that of the required manifold, only by handle-slides (K-I). See Kirby calculus
in Figure 26. Handle-slides are indicated by thin dotted arrows. Finally, we use Lemma 4.4
of Kirby [K2]. �

6 Completeness of the list

Proof of Theorem 1.4 is divided into three cases. We look for pairs of lens space surgeries
along torus knots

M(T (X,Y );XY ± 1) ∼= −L(XY ± 1, X2),

whose lens spaces are homeomorphic. We consider positive torus knots X, Y > 0 (and Z,W >
0 below). The cases are

(1) M(T (X, Y ); XY + ϵ) ∼= M(T (Z,W );ZW + δ), where ϵ, δ = ±1,

(2) M(T (X, Y ); XY + 1) ∼= −M(T (Z, W );ZW − 1),

(3) M(T (X, Y ); XY + ϵ) ∼= −M(T (Z, W );ZW + ϵ), where ϵ = ±1.

They correspond to the classification (1),(2),(3) in Section 1, and they are discussed in Sub-
sections 6.1, 6.2, 6.3, respectively.

In this section, a notation ((A,B), (C, D)) (or (A,B, C,D) for short) means a given pair
of pairs (under consideration), does not mean a pair in the sequence [ABCD].

Definition 6.1 According to symmetry of torus knots, we may change ((X, Y ), (Z, W )) to
(itself or) one among

((Y, X), (Z,W )), ((X, Y ), (W,Z)), ((Y, X), (Z, W )),

mainly for uniqueness. When we do it, we say “we retake ((X,Y ), (Z, W ))”.
In the cases where we XY + ϵ = ZW + ϵ (= P ), we say that a pair ((X, Y ), (Z,W )) is a

trivial pair, if (X, Y ) = (Z,W ) or (X, Y ) = (W,Z). We are concerned with non-trivial pairs.

Remark 6.2 Theorem 1.4 includes that there exist no pair in (1) with δ = ϵ (i.e., P =
XY + ϵ = ZW + ϵ with ϵ = ±1), and that there exist no non-trivial pair in (3) with ϵ = 1
(i.e., P = XY + 1 = ZW + 1).

Structures of the subsections are roughly sketched as follows:

1. Define a Condition C on a pair of pairs ((X,Y ), (Z, W )).

2. Define an operation Reduction R, which gives a smaller pair from a given pair.

3. Make a list of the smallest pairs satisfying (some of) Condition C. They are Goals of
reductions R.

4. Study some invariants (x, y, a, b, c) kept by reductions, and prove that reduced pairs
also satisfy (some of) conditions.
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5. Prove that any given pair is reduced to a special pair in the list of Goals of reductions
R, by iteration of reductions.

6. Prove that the inverse operation from the goal back to the given pair agrees with the
inductive definition of one five sequences.

The details of definitions and the orders (around 2,3,4) of the steps depend on the cases a
little. For the cases (2) and (3), coprimeness will be considered at the end. The invariants
decide the index a of the sequence [ABCD] in the case (1), decide the sequence [STUV ] or
[stuv] ([KLMN ] or [klmn], respectively) in the case (2) (or (3)).

For a real number α, by ⌊α⌋ and ⌈α⌉, we denote the maximal integer that is not greater
than α, and the minimal integer that is not less than α, respectively.

Definition 6.3 For positive integers, “x < y implies x2 < xy + 1” always holds. On the
other hand, “x < y implies x2 < xy − 1” holds for almost all positive integers, but has a few
exceptions: (x, y) = (1, 1), (1, 2) and (r, r) with r > 1. We call these pairs exceptions.

6.1 First case: Lens spaces with same orientations

Suppose that positive torus knots T (A,B) and T (C, D) admit lens space surgeries whose lens
spaces are orientation-preservingly homeomorphic: M(T (A,B);AB + ϵ) ∼= M(T (C, D);CD+
δ). Then the pair ((A, B), (C, D)) satisfies the following condition C1. Here, we may retake
the pair if necessary.

Definition 6.4 Let ϵ = ±1, δ = ±1. We say that a pair ((A,B), (C, D)) satisfies Condi-
tion C1 with (ϵ, δ) if it satisfies the followings:

(0) (A,B) and (C,D) are pairs of coprime positive integers.

(1) AB + ϵ = CD + δ. We call this number P .

(2) 0 < A < B and 0 < D < C.

(3) B2 − D2 ≡ 0 mod P and C2 − A2 ≡ 0 mod P .

We have some remarks: When δ = ϵ, the pair ((A,B), (C, D)) can be a trivial pair. We should
retake ((A,B), (C,D)) at (2), before (3). On (3), under (1), the second half of (3) follows
from the first half. By (2), it holds that A2, D2 < P thus A2 ̸≡ D2 mod P for non-trivial
pairs.

Definition 6.5 (Reduction R1) For any pair ((A,B), (C, D)) satisfying Condition C1 with
(ϵ, δ), we define a pair ((A′, B′), (C ′, D′)) as below: By using x = ⌊B/A⌋, y = ⌊C/D⌋,

A′ = C − yD
B′ = D
C ′ = A
D′ = B − xA

, whose inverse is


A = C ′

B = xC ′ + D′

C = yB′ + A′

D = B′

.

From the definition of x and y, we have 0 ≤ A′ < D = B′ and 0 ≤ D′ < A = C ′. We call this
operation from ((A,B), (C, D)) to ((A′, B′), (C ′, D′)) reduction. By reduction, the minimum
of the four integers decreases strictly: min{A,B, C, D} > min{A′, B′, C ′, D′} ≥ 0.
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Lemma 6.6 (Goals of Reduction R1) Suppose that ((A,B), (C, D)) is reduced to ((A′, B′), (C ′, D′)).
The following four conditions are mutually equivlent:

(i) A′ = 0, (ii) D′ = 0, (iii) A = 1, (iv) D = 1.

Proof. It is easy to see that (iii) implies (ii) and that (iv) implies (i). We show that
(i) implies (iv) and (iii). Since (i) means that C is divisible by D. By coprimeness and
D < C in Condition C1 (0) and (2), respectively, we have (iv) D = 1. Hence C2 ≡ D2 = 1
mod P = CD ± 1. By A2 ≡ C2 ≡ 1 mod P in Condition C1 (3) and A2 < AB − 1 ≤ P , we
have A2 = 1, as an integer. We have (iii) A = 1. Similarly, we can show that (ii) implies (iii)
and (iv). �

Let ((A, B), (C,D)) be a pair satisfying Condition C1 with (ϵ, δ) and reduced to ((A′, B′), (C ′, D′)).
For a while (until Lemma 6.10), we assume that 1 < A and 1 < D. Hence we have x < xA < B
and y < yD < C. We have 0 < A′ and 0 < D′ also. Since gcd(A′, B′) = gcd(C − yD, D) =
gcd(C, D) = 1 and gcd(C ′, D′) = gcd(A, B − xA) = gcd(A,B) = 1, (A′, B′) and (C ′, D′) are
pairs of coprime positive integers. It means that the reduced pair ((A′, B′), (C ′, D′)) satisfies
(0) and (2) in Condition C1 without retaking.

Lemma 6.7 {
B2 − D2 = xP
C2 − A2 = yP

,

where x = ⌊B/A⌋, y = ⌊C/D⌋. Thus we have D < B and A < C.

Proof.

B2 − D2 = B(xA + D′) − D2 = x(AB + ϵ) + BD′ − D2 − ϵx

= xP + (BD′ − D2 − ϵx).

On B2 − D2 − xP = BD′ − D2 − ϵx, we can show the following inequalities:

(BD′ − D2 − ϵx) ≤ B(A − 1) − D2 − ϵx = AB − D2 − (B + ϵx) < P,

−(BD′ − D2 − ϵx) < D2 − xAD′ + ϵx = D2 − (AD′ + ϵ)x < D2 < P.

They mean
−P < BD′ − D2 − ϵx < P.

By the congruence in Condition C1 (3), we have B2 − D2 − xP ≡ 0 mod P . Thus we have
B2 − D2 − xP = 0.

Similarly, we can show C2 − A2 = yP by

C2 − A2 = C(yD + A′) − A2 = y(CD − δ) + CA′ − A2 + δy

= yP + (CA′ − A2 + δy),

(CA′ − A2 + δy) ≤ C(D − 1) − A2 + δy = CD − A2 − (C − δy) < P,

and
−(CA′ − A2 + δy) < A2 − yDA′ − δy = A2 − (DA′ + δ)y < D2 < P.

�
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Lemma 6.8

(i) yD2 − xA2 = 2(ϵ − δ).

(ii) A′B′ − δ = C ′D′ − ϵ. We call this number P ′.

(iii) P ′ = P − 2δ − yD2 = P − 2ϵ − xA2.

Proof.

A2D2 − 1 = (C2 − yP )D2 − 1 = C2D2 − yPD2 − 1 = (P − δ)2 − 1 − yPD2

= P (P − 2δ − yD2),

A2D2 − 1 = A2(B2 − xP ) − 1 = A2B2 − xPA2 − 1 = (P − ϵ)2 − 1 − xPA2

= P (P − 2ϵ − xA2).

Thus (i) −2δ − yD2 = −2ϵ − xA2 holds.

A′B′ − δ = (C − yD)D − δ = CD − yD2 − δ = P − yD2 − 2δ = P ′,

C ′D′ − ϵ = A(B − xA) − ϵ = AB − xA2 − ϵ = P − xA2 − 2ϵ = P ′.

Thus we have (ii) and (iii). �

Lemma 6.9 {
(B′)2 − (D′)2 = xP ′

(C ′)2 − (A′)2 = yP ′ ,

where x = ⌊B/A⌋, y = ⌊C/D⌋. Thus we have D′ < B′ and A′ < C ′.

Proof.

(B′)2 − (D′)2 = D2 − (B − xA)2 = D2 − B2 + 2xAB − x2A2

= −xP + 2x(P − ϵ) − x2A2

= x(P − 2ϵ − xA2) = xP ′,

(C ′)2 − (A′)2 = A2 − (C − yD)2 = A2 − C2 + 2yCD − y2D2

= −yP + 2y(P − δ) − y2D2

= y(P − 2δ − yD2) = yP ′

�

Lemma 6.10 Let ((A,B), (C,D)) be a pair satisfying Condition C1 with (ϵ, δ) and reduced
to ((A′, B′), (C ′, D′)). Then either (A) or (B) holds:

(A) It is a goal of reductions with A′ = D′ = 0.

(B) ((A′, B′), (C ′, D′)) satisfies Condition C1 with (−δ,−ϵ) without retaking. Furthermore,
x′ = ⌊B′/A′⌋, y′ = ⌊C ′/D′⌋ for the next reduction is equal to x = ⌊B/A⌋, y = ⌊C/D⌋ in
the reduction, respectively.
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Proof. If A′ = 0 or D′ = 0, then it is in the case (A) by Lemma 6.6. Otherwise, we have
already shown that the reduced pair ((A′, B′), (C ′, D′)) satisfies Condition C1 (0) and (2) with
(−δ,−ϵ), just before Lemma 6.7. The remaining conditions (1), (3) follow from Lemma 6.8
(ii), Lemma 6.9, respectively. By Lemma 6.7 (applied to ((A′, B′), (C ′, D′))) and Lemma 6.9,
we have x′ = {(B′)2 − (D′)2}/P ′ = x and y′ = {(C ′)2 − (A′)2}/P ′ = y. �

Theorem 6.11 Suppose that a pair ((A,B), (C, D)) satisfies Condition C1 with (ϵ, δ). If
ϵ = δ, then the pair is a trivial pair. For the case ϵ ̸= δ, we may assume (ϵ, δ) = (1,−1), by
considering ((D, C), (A, B)) instead of ((A,B), (C, D)) if necessary. Then, ((A, B), (C, D)) is
in the sequence [ABCD] (see Definition 1.10), i.e., there exist positive integers a and i such
that

A = A(a, i), B = B(a, i), C = C(a, i), D = D(a, i).

Proof. We iterate reductions on the given pair ((A,B), (C, D)) = ((A(0), B(0)), (C(0), D(0))).
By ((A(k), B(k)), (C(k), D(k))), we denote the result of the k-th reduction. Note that we do not
retake the pairs, and that x and y are constant in the iteration, by Lemma 6.10 (B). Since
min{A(k), B(k), C(k), D(k)} are non-negative and decrease strictly with respect to k, after finite
number of reductions, say at the (n+1)-th reduction, Case (A) occurs: A(n+1) = D(n+1) = 0.
By Lemma 6.6, we have A(n) = D(n) = 1.

Case ϵ = δ. By Lemma 6.8 (i), we have y = x. Thus, by the inverse of Reduction R1, all
pairs in the process are trivial pairs.

Case (ϵ, δ) = (1,−1). Note that (−δ,−ϵ) = (ϵ, δ) = (1,−1). By Lemma 6.8 (i), we have
y − x = 4. We define a = y − 2 = x + 2. It holds that B(n) + 1 = C(n) − 1 = P(n) (from
A(n)B(n) + 1 = C(n)D(n) − 1 = P(n)). By Lemma 6.9, (B(n))2 − 1 = xP(n). Thus B(n) − 1 =
x = a−2 and C(n) = a+1. We have ((A(n), B(n)), (C(n), D(n))) = ((1, a−1), (a+1, 1)), which
is in the sequence [ABCD] with i = 1. The inverse of Reduction R1 with x = a− 2, y = a+2
agrees with the construction of the sequence [ABCD]: ((A(k), B(k)), (C(k), D(k))) is in the
sequence [ABCD] with i = n − k + 1 (k = 0, 1, ..., n). We have the lemma. �

6.2 Second case: Lens spaces with opposite orientations I

Suppose that positive torus knots T (S, T ) and T (U, V ) admit lens space surgeries whose lens
spaces are orientation-preservingly homeomorphic as M(T (S, T );ST+1) ∼= −M(T (U, V );UV −
1). Then the pair ((S, T ), (U, V )) satisfies the following condition C2. Here, we may retake
the pair if necessary.

Definition 6.12 We say that a pair ((S, T ), (U, V )) satisfies Condition C2 if it satisfies the
followings:

(0) (S, T ) and (U, V ) are coprime pairs of positive integers.

(1) ST + 1 = UV − 1. We call this number P .

(2) S2 + V 2 ≡ 0 mod P and T 2 + U2 ≡ 0 mod P .

(3) min{S, T, U, V } = S or min{S, T, U, V } = U . Possibly both (and S = U) hold.
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We have some remarks: On (2), under (1), the second half of (2) follows from the first
half. We can retake a given pair ((S, T ), (U, V )) to one satisfying (2) and (3) uniquely, see
Definition 6.1. For example, ((S, T ), (U, V )) = ((3, 4), (7, 2)) is retaken to ((4, 3), (2, 7)). We
postpone considering coprimeness in (0) untill Lemma 6.22, as “Condition C2 (1)-(3)”.

By Condition C2 (2), we can define positive integers a, b by

S2 + V 2 = aP, T 2 + U2 = bP. (6.1)

We often use a logic “S < T implies S2 < P and V < U implies V 2 < P thus S2 +V 2 ≡ 0
mod P implies S2 + V 2 = P (i.e., a = 1) as integers (since S2 + V 2 < 2P )”. But, there exist
exceptions: (U, V ) = (1, 1), (1, 2) or (r, r) with r > 1, see Definition 6.3. Here, we list some
small cases.

Lemma 6.13 (Goals of Reduction R2) Pairs ((S, T ), (U, V )) satisfying Condition C2 (1)-(3)
with min{S, U} ≤ 2 are listed as follows:

(S, T, U, V ) = (1, 1, 1, 3), (1, 1, 3, 1), (1, 4, 2, 3), (1, 4, 3, 2), (4, 3, 2, 7),
(2, 2, 6, 1), (2, 14, 6, 5),
(r, r, 1, r2 + 2), (r, 4r, 2, 2r2 + 1), (r > 1).

Here, only pairs in the first line satisfy coprimeness condition (0) in Condition C2.

Proof. It is easy to see that there is no integer solution in the cases of exceptions (U, V ) =
(1, 1), (1, 2), (2, 1) and U = V (> 1). Thus we assume U ̸= V . The proof is divided into four
cases, eight subcases.

Case S = 1: Then P = ST + 1 = T + 1 = UV − 1.
[Subcase V < U ] We have S2 + V 2 = 1 + V 2 = P . Here we used that S2 + V 2 ≡ 0 mod

P and S2 + V 2 < 2P . By UV − 1 = V 2 + 1, we have U = V + 2/V , thus V = 1 or V = 2.
Hence (S, T, U, V ) = (1, 1, 3, 1), (1, 4, 3, 2), respectively.

[Subcase U < V ] We have U2 < UV − 1 = P = T + 1. By (T − 1)P < T 2 < TP , we have
(T − 1)P < T 2 + U2 < (T + 1)P . Thus T 2 + U2 ≡ 0 mod P implies T 2 + U2 = TP , thus
U2 = T . By UV − 1 = T + 1 = U2 + 1, we have V = U + 2/U , thus U = 1 or U = 2. Hence
(S, T, U, V ) = (1, 1, 1, 3), (1, 4, 2, 3), respectively.

Case S = 2: Then P = 2T + 1 = UV − 1.
[Subcase V < U ] We have 4+V 2 = P . By UV − 1 = 4+V 2, we have U = V +5/V , thus

V = 1 or V = 5. Hence (S, T, U, V ) = (2, 2, 6, 1), (2, 14, 6, 5), respectively.
[Subcase U < V ] We have U2 < UV − 1 = P = 2T + 1. By (2T − 1)P < 4T 2 <

2TP , we have (2T − 1)P < 4(T 2 + U2) < (2T + 4)P . Thus T 2 + U2 ≡ 0 mod P implies
either 2(T 2 + U2) = PT or 2(T 2 + U2) = (T + 1)P . In the first case, 2U2 = T , thus
UV − 1 = 2T + 1 = 4U2 + 1. We have V = 4U + 2/U , thus U = 1 or U = 2. Hence
(S, T, U, V ) = (2, 2, 1, 6), (2, 8, 2, 9). They are (r, r, 1, r2 + 2), (r, 4r, 2, 2r2 + 1) with r = 2. In
the second case, 2U2 = 3T + 1, thus 3(UV − 1) = 3(2T + 1) = 4U2 + 1. This has no integer
solution.

Case U = 1: Then P = UV − 1 = V − 1 = ST + 1.
[Subcase T ≤ S] We have T 2 + 1 = P . By ST + 1 = T 2 + 1, we have S = T = 1. We go

back to the case S = 1.
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[Subcase S ≤ T ] We have S2 < ST + 1 = P = V − 1. By (V + 1)P < V 2 < (V + 2)P , we
have (V +1)P < S2 +V 2 < (V +3)P . Thus S2 +V 2 ≡ 0 mod P implies S2 +V 2 = (V +2)P ,
thus S2 = V − 2, ST + 1 = V − 1 = S2 + 1. We have T = S and (S, T, U, V ) = (r, r, 1, r2 + 2)
for any positive integer r.

Case U = 2: Then P = 2V − 1 = ST + 1.
[Subcase T ≤ S] We have T 2 + 4 = P . By ST + 1 = T 2 + 4, S = T + 3/T , thus T = 1 or

T = 3. Thus (S, T, U, V ) = (4, 1, 2, 3), (4, 3, 2, 7), respectively. (4, 1, 2, 3) does not satisfy (3).
[Subcase S ≤ T ] We have S2 < ST +1 = P = 2V −1. By (2V +1)P < 4V 2 < 2(V +1)P ,

we have (2V + 1)P < 4(S2 + V 2) < (2V + 6)P . Thus S2 + V 2 ≡ 0 mod P implies either
2(S2 +V 2) = (V +1)P or 2(S2 +V 2) = (V +2)P . In the first case, we have 2S2 = V −1, thus
ST + 1 = 2V − 1 = 4S2 + 1. Hence (S, T, U, V ) = (r, 4r, 2, 2r2 + 1) for any positive integer r.
In the second case, we have 2S2 = 3V − 2, thus 3(ST + 1) = 3(2V − 1) = 4S2 + 1. This has
no integer solution. �

Now, we assume that min{S, T, U, V } > 2. Then Condition C2 (1) can be regarded as “ST
is nearly equal to UV ”. By Condition C2 (3), the order of S, T, U, V is one of the followings
(see Proposition 3.9 and Proposition 3.11). In accordance with the order of them, we classify
pairs into four types:

(Type S) S ≤ V < U ≤ T , (Type U) U ≤ T < S ≤ V ,

(Type s) S ≤ U < V ≤ T , (Type u) U ≤ S < T ≤ V ,

If integers k, l,m and n satisfy min{k, l, m, n} > 2 and |mn − kl| ≤ 2, then k = m implies
l = n. Thus, if ((S, T ), (U, V )) is a non-trivial pair, we can replace every “≤” by “<” above.

Lemma 6.14 Let ϵ = ±1, δ = ±1. Let (k, l), (m,n) be pairs of coprime positive integers
with l, n > 2. If kl + ϵ = mn + δ, then ⌊m/l⌋ = ⌊k/n⌋.

Proof. In the case ϵ = δ, it is trivial. By the symmetry, we only have to consider the case
ϵ = 1, δ = −1, i.e., mn − kl = 2. Then

m

l
− k

n
=

mn − kl

ln
=

2
ln

<
1
n

, thus
k + 1

n
>

m

l
>

k

n
.

There exists no integer N satisfying (k + 1)/n < N < k/n. If either (k + 1)/n or k/n is an
integer, then ⌊m/l⌋ = ⌊k/n⌋. We have the lemma. �

Corollary 6.15 Let ((S, T ), (U, V )) be any pair satisfying Condition C2 (1)-(3) and min{S, T, U, V } >
2. Then we have ⌊V/S⌋ = ⌊T/U⌋.

Definition 6.16 (Reduction R2) For any pair ((S, T ), (U, V )) satisfying Condition C2 (1)-
(3) and min{S, T, U, V } > 2, we define a pair ((S′, T ′), (U ′, V ′)) as below: By using x =
⌊V/S⌋ = ⌊T/U⌋ (see Corollary 6.15),

S′ = T − xU
T ′ = S
U ′ = V − xS
V ′ = U

, whose inverse is


S = T ′

T = S′ + xV ′

U = V ′

V = xT ′ + U ′

.

We call this operation from ((S, T ), (U, V )) to ((S′, T ′), (U ′, V ′)) reduction. By reduction, the
minimum of four integers decreases strictly: min{S,U} > min{S′, U ′} ≥ 0.
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Lemma 6.17 For any pair ((S, T ), (U, V )) satisfying Condition C2 (1)-(3) and min{S, T, U, V } >
2, its reduction ((S′, T ′), (U ′, V ′)) satisfies Condition C2 (1) and (3) without retaking.

Proof. In Definition 6.16, we defined x = ⌊T/U⌋ = ⌊V/S⌋. Thus 0 ≤ S′ < U = V ′, 0 ≤ U ′ <
S = T ′, and we have Condition C2 (3):

min{S′, T ′, U ′, V ′} = S′ or min{S′, T ′, U ′, V ′} = U ′

Condition C2 (1) on ((S′, T ′), (U ′, V ′)) is verified by

S′T ′ = (T − xU)S = ST − xSU, U ′V ′ = (V − xS)U = UV − xSU

and ST + 1 = UV − 1 = P . We set P ′ = P − xSU . �
Next, we use an identity

(S2 + V 2)(T 2 + U2) = (TV − SU)2 + (ST + UV )2 (6.2)

By Condition C2 (1), we have ST + UV = 2P . By Condition C2 (2) and (6.1), (TV −SU)/P
is also a positive integer. We let c denote this integer:

TV − SU = cP. (6.3)

Using this, we have(
S V
V −S

)(
T
U

)
=

(
2P
cP

)
,

(
U T
T −U

) (
V
S

)
=

(
2P
cP

)
. (6.4)

Lemma 6.18

(1) c = x, where x = ⌊V/S⌋ = ⌊T/U⌋.

(2) ab = x2 + 4.

(3)
aT = 2S + xV, bV = 2U + xT,
aU = −xS + 2V, bS = −xU + 2T.

Proof. (1) The following equalities holds:

TV

P
=

2TV

ST + UV
<

1
2

(
V

S
+

T

U

)
< x + 1,

2TV − 2xP = 2TV − x(ST + UV ) = T (V − xS) + V (T − xU) > 0.

Thus we have xP < TV < (x + 1)P . Since 0 < SU < P , we have (1).
(2) By the identitiy (6.2) and the definitions (6.1), (6.3) of a, b, c, we have ab = c2 + 4 =

x2 + 4. The linear relations (3) follow from (6.1), (6.4) and (1), by multiplying the inverse
matrices. �
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Lemma 6.19 For any pair ((S, T ), (U, V )) satisfying Condition C2 (1)-(3) and min{S, T, U, V } >
2, its reduction ((S′, T ′), (U ′, V ′)) satisfies Condition C2 (2). More precisely,

(S′)2 + (V ′)2 = bP ′, (T ′)2 + (U ′)2 = aP ′.

Proof. By (6.4),

(S′)2 + (V ′)2 = (T − xU)2 + U2 = T 2 + U2 − xU(2T − xU)
= T 2 + U2 − xU(2T − cU) = b(P − xSU)
= bP ′.

(T ′)2 + (U ′)2 = S2 + (V − xS)2 = S2 + V 2 − xS(2V − xS)
= S2 + V 2 − xS(2V − cS) = a(P − xSU)
= aP ′.

�
We can summarize the argument above:

Lemma 6.20 Let ((S, T ), (U, V )) be a pair satisfying Condition C2 (1)-(3) and min{S, T, U, V } >
2. We let ((S′, T ′), (U ′, V ′)) denote its reduction. Then either (A) or (B) holds:

(A) It is one of Goals of Reduction R2, i.e., min{S′, T ′, U ′, V ′} ≤ 2.

(B) ((S′, T ′), (U ′, V ′)) satisfies Condition C2 (1)-(3) without retaking. Furthermore, integers
a′, b′, x′ defined by

x′ = ⌊V ′/S′⌋ = ⌊T ′/U ′⌋, (S′)2 + (V ′)2 = a′P ′, (T ′)2 + (U ′)2 = b′P ′

for the next reduction of ((S′, T ′), (U ′, V ′)) and integers a, b, x defined by

x = ⌊V/S⌋ = ⌊T/U⌋, S2 + V 2 = aP, T 2 + U2 = bP

of ((S, T ), (U, V )) satisfy
x′ = x, a′ = b, b′ = a.

Proof. Suppose that it is not the case (A), i.e., min{S′, T ′, U ′, V ′} > 2. Almost all have been
proved in Lemma 6.17 and Lemma 6.19. The integers a′, b′ are defined by Definition 6.16 and
(6.1) (applying to ((S′, T ′), (U ′, V ′))). They are equal to b, a of ((S, T ), (U, V )) by Lemma 6.19,
respectively. The equality x′ = x follows from (x′)2 + 4 = a′b′ = ba = x2 + 4 by Lemma 6.18.
�

We focus on coprimeness Condition C2 (0).

Lemma 6.21 Suppose that ((S, T ), (U, V )) is a pair satisfying Condition C2 (1)-(3) and
min{S, T, U, V } > 2, and ((S′, T ′), (U ′, V ′)) is a reduction of ((S, T ), (U, V )). If gcd(S′, T ′, x) >
1, then gcd(S, T, x) > 1, where x = ⌊V/S⌋ = ⌊T/U⌋.

Proof. It is easy to see by the inverse of Reduction R2 in Definition 6.16. �
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Lemma 6.22 Let ((S, T ), (U, V )) be a pair satisfying Condition C2 (including (0)) and
min{S, T, U, V } > 2. If its reduction ((S′, T ′), (U ′, V ′)) satisfies min{S′, T ′, U ′, V ′} ≤ 2, then
either (i) or (ii) holds:

(i) ((S′, T ′), (U ′, V ′)) = ((4, 3), (2, 7)) and x = 1.

(ii) ((S′, T ′), (U ′, V ′)) = ((1, 4), (2, 3)) and x = 2.

Proof. Note that ((S′, T ′), (U ′, V ′)) satisfies Condition C2 (1)-(3) by Lemma 6.17 and the
equalities in Lemma 6.19. Thus x′ = x also holds. We go back to the list in Lemma 6.22.

Claim 1. min{T ′, V ′} > 2.
Since S = T ′, U = V ′ in the reduction, min{T ′, V ′} ≤ 2 contradicts to the assumption

min{S, T, U, V } > 2. �
Hence neither (S′, T ′, U ′, V ′) = (1, 4, 3, 2) nor (2, 2, 1, 6) (as (r, r, 1, r2 + 2) with r = 2)

occur.

Claim 2. S′T ′ ̸= 0. (It means that neither T/U nor V/S is an integer.)
If S′T ′ = 0, then U ′V ′ = 2 thus U = V ′ ≤ 2, which contradicts to the previous claim. �
By the claims, only five cases are left in the list in Lemma 6.22. We study the integers

a′, b′ and x′ one by one.
Case 1. (S′, T ′, U ′, V ′) = (1, 4, 2, 3) with a′ = 2, b′ = 4, x′ = 2.
Case 2. (S′, T ′, U ′, V ′) = (4, 3, 2, 7) with a′ = 5, b′ = 1, x′ = 1.

Case 3. (S′, T ′, U ′, V ′) = (2, 14, 6, 5) with a′ = 1, b′ = 8, x′ = 2.
Case 4. (S′, T ′, U ′, V ′) = (r, r, 1, r2 + 2) with a′ = r2 + 4, b′ = 1, thus x′ = r.
Case 5. (S′, T ′, U ′, V ′) = (r, 4r, 2, 2r2 + 1) with a′ = r2 + 1, b′ = 4, thus x′ = 2r.
The last three cases contradict coprimeness Condition C2 (0) on ((S, T ), (U, V )) by Lemma 6.21.

�

Theorem 6.23 Any pair ((S, T ), (U, V )) that satisfies Condition C2 is in the sequence
[STUV ] or [stuv] (see Definition 1.13). In other words, ((S, T ), (U, V )) = ((Si, Ti), (Ui, Vi))
in the sequence [STUV ], or ((S, T ), (U, V )) = ((si, ti), (ui, vi)) in the sequence [stuv], for a
positive integer i.

Proof. We iterate reductions on the given pair ((S, T ), (U, V )) = ((S(0), T(0)), (U(0), V(0))).
By ((S(k), T(k)), (U(k), V(k))), we denote the result of the k-th reduction. Note that we do
not retake the pairs, and that x is constant in the iteration, by Lemma 6.20 (B). Since
min{S(k), T(k), U(k), V(k)} are non-negative and decrease strictly with respect to k, after finite
number of reductions, say at the n-th reduction, Case (A) occurs.

The goal ((S(n), T(n)), (U(n), V(n))) is ((4, 3), (2, 7)) (with x = 1) or ((1, 4), (2, 3)) (with
x = 2), otherwise all pairs in the reductions are not coprime, by an extension of Lemma 6.22.
Note that ((4, 3), (2, 7)) = ((S3, T3), (U3, V3)) in [STUV ] and ((1, 4), (2, 3)) = ((s1, t1), (u1, v1))
in [stuv]. The inverse of Reduction R2 with x = 1 or 2 agrees with the construction of the
sequence [STUV ] or [stuv], respectively.

In the first case, the pair ((S(k), T(k)), (U(k), V(k))) = ((Si, Ti), (Ui, Vi)) with i = n − k + 3
in [STUV ]. In the second case, ((S(k), T(k)), (U(k), V(k))) = ((si, ti), (ui, vi)) with i = n− k +1
in [stuv]. We have the lemma. �
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6.3 Third case: Lens spaces with opposite orientations II

Suppose that positive torus knots T (K, L) and T (M, N) admit lens space surgeries whose lens
spaces are orientation-reversingly homeomorphic as M(T (K, L);KL+ϵ) ∼= −M(T (M, N);MN+
ϵ). Then the pair ((K,L), (M,N)) satisfies the following condition C3. Here, we may retake
the pair if necessary.

Definition 6.24 Let ϵ = ±1. We say that a pair ((K,L), (M,N)) satisfies Condition C3
with ϵ, if it satisfies the followings:

(0) (K, L) and (M, N) are pairs of coprime positive integers.

(1) KL + ϵ = MN + ϵ. We call this number P .

(2) K2 + M2 ≡ 0 mod P and L2 + N2 ≡ 0 mod P .

(3) min{K, L} ≤ min{M,N} and K ≤ L. (Thus K = min{K,L, M, N})

We have some remarks: On (2), under (1), the second half follows from the first half. If a
given pair ((S, T ), (U, V )) is non-trivial, we can retake it to one satisfying (2) and (3) uniquely,
see Definition 6.1. We postpone considering coprimeness in (0) untill Lemma 6.32.

By Condition C3 (2), we can define positive integers a, b by

K2 + M2 = aP, L2 + N2 = bP. (6.5)

Here, we list the smallest cases.

Lemma 6.25 (Goals of Reduction R3) Pairs ((K, L), (M, N)) satisfying Condition C3 (1)-
(3) with K ≤ 2 are listed as follows:

(1) Case ϵ = +1:

(K, L, M, N) = (1, 1, 1, 1), (2, 6, 3, 4),
(1,m2,m, m), (2, 2n2, 4n, n), (m > 1, n > 1).

(2) Case ϵ = −1:

(K, L, M, N) = (1, 6, 2, 3), (1, 6, 3, 2), (2, 15, 5, 6)
(1, 1, 1, 1), (1, 2, 1, 2), (1, 3, 1, 3), (1, 2, 2, 1), (1, 3, 3, 1), (2, 9, 9, 2),
(2, 2, 2, 2).

Proof. (1) ϵ = +1:

Case K = 1: Then P = KL + 1 = L + 1 = MN + 1.
[Subcase M ≤ N ] We have K2+M2 = 1+M2 = P . Here we used that K2+M2 ≡ 0 mod P

and K2+M2 < 2P . By MN +1 = 1+M2, we have M = N . Hence (K, L, M, N) = (1, 1, 1, 1)
or (1,m2,m, m) with m > 1.

[Subcase N ≤ M ] We have N2 < MN + 1 = P = L + 1. By (L − 1)P < L2 < LP , we
have (L − 1)P < L2 + N2 < (L + 1)P . Thus L2 + N2 ≡ 0 mod P implies L2 + N2 = LP ,

52



thus N2 = L. By MN + 1 = L + 1 = N2 + 1, we have M = N . We go back to the previous
subcase.

Case K = 2: Then P = KL + 1 = 2L + 1 = MN + 1.
[Subcase M ≤ N ] We have K2 + M2 = 4 + M2 = P . By MN + 1 = 4 + M2, we have

N = M + 3/M . Hence (K, L, M, N) = (2, 2, 1, 4), (2, 6, 3, 4). The former does not satisfy
Condition C3 (3).

[Subcase N ≤ M ] We have N2 < MN + 1 = P = 2L + 1. By (2L − 1)P < 4L2 < 2LP ,
we have (2L − 1)P < 4(L2 + N2) < (2L + 4)P . Thus L2 + N2 ≡ 0 mod P implies either
2(L2 + N2) = LP or 2(L2 + N2) = (L + 1)P . In the first case, 2N2 = L, thus MN + 1 =
2L + 1 = 4N2 + 1. We have M = 4N . Hence (K, L,M, N) = (2, 2n2, 4n, n) with n > 1,
since (2, 2, 4, 1) does not satisfy Condition C3 (3). In the second case, 2N2 = 3L + 1, thus
3(MN + 1) = 3(2L + 1) = 4N2 + 1. This has no integer solution.

(2) ϵ = −1: First, we study the cases where KL = MN ≤ 2. It is easy to see that
the solutions are (K, L, M, N) = (1, 1, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1), where we care that (K, L) =
(2, 1) does not satisfy Condition C3 (3). Second, we study the cases where (M, N) = (m,m)
with m > 1. The solution satisfying K ≤ 2 is only (K,L, M, N) = (2, 2, 2, 2). The cases
where (M, N) is an exception (i.e., (1, 1), (1, 2), (2, 1) or (m,m) with m > 1) are included in
the first two cases above. Third, (K, L) = (2, 2) implies (K, L, M, N) = (2, 2, 1, 4), (2, 2, 4, 1)
or (2, 2, 2, 2), but the first two do not satisfy Condition C3 (3).

Now, we study the other cases: We assume that (M, N) is not an exception (thus M < N
implies M2 < MN − 1 = P , N < M implies N2 < MN − 1 = P ) and that L ≥ 3.

Case K = 1: Then P = KL − 1 = L − 1 = MN − 1.
[Subcase M < N ] We have K2 + M2 = 1 + M2 = P . By MN − 1 = 1 + M2, we have

N = M + 2/M . Hence (K, L, M, N) = (1, 3, 1, 3), (1, 6, 2, 3).
[Subcase N > M ] We have N2 < MN −1 = P = L−1. By (L+1)P < L2 < (L+2)P , we

have (L+1)P < L2 +N2 < (L+3)P . Thus L2 +N2 ≡ 0 mod P implies L2 +N2 = (L+2)P ,
thus N2 = L−2. If L2+N2 = (L+2)P , by MN−1 = L−1 = N2+1, we have M = N +2/N .
Hence (K, L,M, N) = (1, 3, 3, 1), (1, 6, 3, 2).

Case K = 2: Then P = KL − 1 = 2L − 1 = MN − 1.
[Subcase M < N ] We have K2 + M2 = 4 + M2 = P . By MN − 1 = 4 + M2, we have

N = M + 5/M . Hence (K, L, M, N) = (2, 3, 1, 6), (2, 15, 5, 6).
[Subcase N > M ] We have N2 < MN−1 = P = 2L−1. By (2L+1)P < 4L2 < (2L+2)P ,

we have (2L + 1)P < 4(L2 + N2) < (2L + 6)P . Thus L2 + N2 ≡ 0 mod P implies either
2(L2+N2) = (L+1)P or 2(L2+N2) = (L+2)P . In the first case, 2N2 = L−1, thus MN−1 =
2L − 1 = 4N2 + 1. We have M = 4N + 2/N . Hence (K,L, M,N) = (2, 3, 6, 1), (2, 9, 9, 2). In
the second case, 2N2 = 3L− 2, thus 3(MN − 1) = 3(2L− 1) = 4N2 + 1. This has no integer
solution.

Ignoring solutions that do not satisfy Condition C3 (3), we have the required list. �
By KL = MN in Condition C3 (1), if one of K = M, K = N,L = M, L = N holds, then

the pair is a trivial pair. We are mainly concerned with non-trivial pairs.

Suppose that ((K, L), (M, N)) satisfies Condition C3 and also assume K > 2. By (1)
KL = MN and coprimeness (0) of (K, L) and (M,N), pairs (K,M) and (L,N) have common
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divisors. We set

gcd(K,M) = d, K = dK−, M = dM−, gcd(K−,M−) = 1
gcd(L,N) = D, L = DL−, N = DN−, gcd(L−, N−) = 1

By K−L− = M−N− (from KL = MN) and gcd(K−,M−) = gcd(L−, N−) = 1, we have
K− = N− and L− = M−. Thus we have

(K,L, M, N) = (dK−, DL−, dL−, DK−), gcd(K−, L−) = 1. (6.6)

If (K,L) is coprime, then gcd(d,D) = 1. But we do not assume it until Lemma 6.30.

Next, we use an identity

(K2 + M2)(L2 + N2) = (KL − MN)2 + (KN + LM)2 = (KN + LM)2.

Here we used KL = MN . By (6.5), (KN +LM)/P is an integer. We set c = (KN +LM)/P .
Hence

aP = K2 + M2 = d2((K−)2 + (L−)2),
bP = L2 + N2 = D2((K−)2 + (L−)2),
cP = KN + LM = dD((K−)2 + (L−)2).

We have

c

a
=

b

c
=

D

d
. (6.7)

If K− = L− (= 1) or d = D = 1, then the pair is a trivial pair. Thus we assume that
K− ̸= L− and d < D. By Condition C3 (3), for a non-trivial pair ((K, L), (M, N)) with
K > 2, the order of K, L, M, N is one of the followings. In accordance with the order of them,
we classify pairs into two types:

(Type K) K < N < M < L, (Type k) K < M < N < L.

Definition 6.26 (Reduction R3) For any pair ((K, L), (M, N)) satisfying Condition C3
(1)-(3), we define a pair ((K ′, L′), (M ′, N ′)) as below: By using x = ⌈L/N⌉ = ⌈M/K⌉ =
⌈L−/K−⌉ ≥ 2, 

K ′ = xK − M
L′ = N
M ′ = K
N ′ = xN − L

, whose inverse is


K = M ′

L = xL′ − N ′

M = xM ′ − K ′

N = L′

.

Note that 0 ≤ K ′ < K = M ′, 0 ≤ N ′ < N = L′. We call this operation from ((K, L), (M, N))
to ((K ′, L′), (M ′, N ′)) reduction. By reduction, the minimum of the four integers decreases
strictly: K > K ′ ≥ 0.

Lemma 6.27 In either case ϵ = +1 or ϵ = −1, the following holds:

x = c,
x

a
=

b

x
=

D

d
.
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Proof. First, we show
Claim. L > x.

Since x = ⌈L/N⌉, we have L > (x − 1)N and

L − x > (x − 1)N − x = (x − 1)(N − 1) − 1.

By x ≥ 2 and N > K > 2, we have the claim. �

(x + 1 − c)P = (x + 1)P − (KN + LM)
≥ (x + 1)(KL − 1) − (KN + LM)
= (xK − M)L + K(L − N) − x − 1
> (xK − M)L + K(L − N) − L − K

= (xK − M − 1)L + K(L − N − 1) ≥ 0,

(c − x + 1)P = KN + LM − (x − 1)P
≥ KN + LM − (x − 1)(KL + 1)
= KN + {M − (x − 1)K}L − x + 1
> KN + {M − (x − 1)K}L − L + 1
= KN + {M − (x − 1)K − 1}L + 1 ≥ 0.

Thus we have x − 1 < c < x + 1. We have x = c as integers. The first equalities follows from
(6.7). �

Lemma 6.28 For any pair ((K, L), (M, N)) satisfying Condition C3 (1)-(3) with ϵ and
min{K, L,M, N} > 2, its reduction ((K ′, L′), (M ′, N ′)) without retaking satisfies Condition C3
(1)-(3) with ϵ, with P ′ = xKN − P + 2ϵ. More precisely,

(K ′)2 + (M ′)2 = aP ′, (L′)2 + (N ′)2 = bP ′,

where a, b are integers defined by K2 + M2 = aP, L2 + N2 = bP , respectively.

Proof. (1)

K ′L′ + ϵ = (xK − M)N + ϵ = xKN − MN + ϵ = xKN − P + 2ϵ,

M ′N ′ + ϵ = K(xN − L) + ϵ = xKN − KL + ϵ = xKN − P + 2ϵ.

(2) Since

x2K2 = x2(dK−)2 = x2d2(K−)2 = axdD(K−)2 = axKN,

xKM = x(dK−)(dL−) = xd2K−L− = adDK−L− = aKL,

x2N2 = x2(DK−)2 = x2D2(K−)2 = bxdD(K−)2 = bxKN,

xLN = x(DL−)(DK−) = xD2K−L− = bdDK−L− = bKL,
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we have

(K ′)2 + (M ′)2 = (xK − M)2 + K2 = K2 + M2 + x2K2 − 2xKM

= aP + axKN − 2aKL = aP + axKN − 2a(P − ϵ)
= a(xKN − P + 2ϵ)
= aP ′,

(L′)2 + (N ′)2 = N2 + (xN − L)2 = L2 + N2 + x2N2 − 2xLN

= bP + bxKN − 2bKL = bP + bxKN − 2b(P − ϵ)
= b(xKN − P + 2ϵ)
= bP ′.

(3) We have already shown K ′ < M ′. It it easy in the case where the pair ((K, L), (M, N))
is a trivial pair . For a non-trivial pair ((K, L), (M,N)) of either Type K or Type k, we have
K < N thus M ′ < L′. Since K ′L′ = M ′N ′ by (1), we have K ′ < N ′. Thus K ′ is minimal
among {K ′, L′, M ′, N ′}. We have the lemma �

We can summarize the argument above:

Lemma 6.29 Let ((K, L), (M, N)) be a pair satisfying Condition C3 (1)-(3) with ϵ and
min{K, L,M, N} > 2. We let ((K ′, L′), (M ′, N ′)) denote its reduction. Then either (A) or
(B) holds:

(A) It is one of Goals of Reduction R3, i.e., min{K ′, L′, M ′, N ′} ≤ 2.

(B) Without retaking, ((K ′, L′), (M ′, N ′)) satisfies Condition C3 (1)-(3) with ϵ. Further-
more, integers a′, b′, x′ defined by

x′ = ⌈M ′/K ′⌉ = ⌈N ′/L′⌉, (K ′)2 + (M ′)2 = a′P ′, (L′)2 + (N ′)2 = b′P ′

for the next reduction of ((K ′, L′), (M ′, N ′)) and integers a, b, x defined by

x = ⌈M/K⌉ = ⌈N/L⌉, K2 + M2 = aP, L2 + N2 = bP

of ((K,L), (M,N)) satisfy
x′ = x, a′ = a, b′ = b.

Proof. Suppose that it is not the case (A), i.e., min{K ′, L′,M ′, N ′} > 2. Almost all have
been proved in Lemma 6.28. By Definition 6.26 and (6.5) (applied to ((K ′, L′), (M ′, N ′))) and
the second half of Lemma 6.28, we have a′ = a and b′ = b. The equality x′ = x follows from
(x′)2 = (c′)2 = a′b′ = ab = c2 = x2 by Lemma 6.27. �

Next, we focus on coprimeness Condition C3 (0). Note that K ′ = 0 (and N ′ = 0) if and
only if M/K = L/N is an integer.

Lemma 6.30 Suppose that ((K,L), (M,N)) is a pair satisfying Condition C3 (1)-(3) and
min{K, L,M, N} > 2. Let (K, L,M,N) = (dK−, DL−, dL−, DK−) be the expression (6.6).
If ((K, L), (M, N)) satisfies coprimeness Condition C3 (0) in addition, then K− > 1.
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Proof. If K− = 1, then (K, L, M, N) = (d,Dx, dx,D) and P = dDx+ϵ, where x = ⌈M/K⌉ =
M/K is an integer with x ≥ 2.

By xP = cP = KN + LM = dD(x2 + 1), we have

x(dDx + ϵ) = dD(x2 + 1)
ϵx = dD

Thus L = dD2, gcd(K,L) = d. If d > 1, then it contradicts Condition C3 (0), otherwise
K = d = 1 contradicts min{K,L, M,N} > 2. We have the lemma. �

Lemma 6.31 Suppose that ((K,L), (M,N)) is a pair satisfying Condition C3 (1)-(3) and
min{K, L,M, N} > 2, and ((K ′, L′), (M ′, N ′)) is a reduction of ((K, L), (M, N)), with x =
⌈M/K⌉ = ⌈L/N⌉. If gcd(K ′, L′, x) > 1, then gcd(M, N, x) > 1. If gcd(M ′, N ′, x) > 1, then
gcd(K, L, x) > 1.

Proof. It is easy to see by the inverse of Reduction R3 in Definition 6.26. �

Lemma 6.32 Let ((K, L), (M, N)) be a pair satisfying Condition C3 (including (0)) with ϵ
and min{K, L, M, N} > 2. If its reduction ((K ′, L′), (M ′, N ′)) satisfies min{K ′, L′,M ′, N ′} ≤
2, then either (+) or (−) holds:

(+) Case ϵ = +1

((K, L), (M, N)) is a trivial pair.

(−) Case ϵ = −1

((K, L), (M, N)) is a trivial pair, or

(i) ((K ′, L′), (M ′, N ′)) = ((2, 15), (5, 6)) and (a, b) = (1, 9), x = 3.
(ii) ((K ′, L′), (M ′, N ′)) = ((1, 6), (3, 2)) and (a, b) = (2, 8), x = 4.

Proof. Suppose that ((K,L), (M,N)) is not a trivial pair. The reduction ((K ′, L′), (M ′, N ′))
satisfies Condition C3 (1)-(3) by Lemma 6.28, and the equalities a′ = a, b′ = b hold.

Claim 1. K ′ ̸= 0 and N ′ ̸= 0.
Since K ′ = 0 means that M/K (= L/N) is an integer, and K− = 1. It contradicts the

assumption that ((K, L), (M, N)) satisfies Condition C3 (0) by Lemma 6.30. �
Claim 2. In the list in Lemma 6.32, only in the case ϵ = −1, only three pairs

(1, 6, 3, 2), (1, 6, 2, 3), (2, 15, 5, 6)

are possible as ((K ′, L′), (M ′, N ′)), and the others contradict coprimeness Condition C3 (0)
or non-triviality on ((K, L), (M, N)).

This is verified one by one, by using inverse of Reduction R3 and Lemma 6.31. �
We study the integers a′, b′ and x′ for three cases.

Case 0. (K ′, L′,M ′, N ′) = (1, 6, 2, 3) with (a′, b′) = (1, 9), x′ = 3.
Case 1. (K ′, L′,M ′, N ′) = (1, 6, 3, 2) with (a′, b′) = (2, 8), x′ = 4.
Case 2. (K ′, L′,M ′, N ′) = (2, 15, 5, 6) with (a′, b′) = (1, 9), x′ = 3.

Case 0 contradicts the assumption, since ((K ′, L′), (M ′, N ′)) = ((1, 6), (2, 3)) only if ((K, L), (M, N)) =
((2, 15), (5, 6)), which does not satisfy min{K, L, M, N} > 2. We have the lemma. �
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Theorem 6.33 Any pair ((K, L), (M, N)) that satisfies Condition C3 is in the sequence
[KLMN ] or [klmn] (see Definition 1.15). In other words, ((K, L), (M, N)) = ((Ki, Li), (Mi, Ni))
in the sequence [KLMN ], or ((K, L), (M, N)) = ((ki, li), (mi, ni)) in the sequence [klmn], for
a positive integer i.

Proof. The method of the proof is similar to the proof of Theorem 6.23 in the cases [STUV ]
and [stuv].

By Lemma 6.29, we can iterate reductions on ((K, L), (M, N)), until Case (A) occurs. The
goal is ((2, 15), (5, 6)) (= ((K2, L2), (M2, N2)) with x = 3, or ((1, 6), (3, 2)) (= ((k1, l1), (m1, n1))
with x = 4. Since the inverse of Reduction R3 with x = 3 or 4 agrees with the construction
of the sequence [KLMN ] or [klmn], the pair ((K, L), (M, N)) is in [KLMN ], or in [klmn],
respectively. �
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Figure 25: Kirby Diagram of XAB ∪ (−XCD) (i = 2), (ex. a = 4)
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Figure 26: Kirby calculus to the required manifold (i = 2)
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