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1. OVERALL VIEW

First of all, we would like to thank the Editor, Professor Mukhopadhyay, for inviting the ar-
ticle “Two-Stage Procedures for High-Dimensional Data” and for organizing the discussions.
We are very grateful to Professors Ahn, Chen, Ing, Lai, Lee, Mukhopadhyay, Panchapake-
san, Qin, Solanky and Takada for their inspiring and insightful contributions in discussing
the article. They have reflected upon deep theory and interesting applications.

In Section 2, we discuss assumptions (A-i) to (A-v) according to Prof. Solanky’s sug-
gestions. We address the robustness issues of the proposed two-stage procedures.

In Section 3, we consider a confidence region with a given diameter for high-dimensional
data according to Prof. Takada’s suggestions. We introduce a result obtained by Yata and
Aoshima (2011a).

In Section 4, we include a new result about two-sample test for high-dimensional data
according to Prof. Mukhopadhyay’s suggestions. We propose a modified two-sample test
procedure in order to improve the power of the original test procedure. We compare the
original test procedure with the modified test procedure in terms of accuracy and required
sample size.

In Section 5, we discuss the efficiency of the estimators of tr(Σ2
i ) according to Prof. Qin’s

suggestions. We emphasize that the estimator induced by the cross-data-matrix methodology
is quite robust, simple, and computationally efficient.

In Section 6, we explain about how to use the two-stage classification procedure accord-
ing to Profs. Ahn and Lee’s suggestions. We give practical guidelines concerning accuracy
and required sample size.

Finally, in Section 7, we discuss a high-dimensional variable selection problem according
to Profs. Chen and Panchapakesan’s and Profs. Ing and Lai’s suggestions.
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2. DISCUSSION ON THE ASSMUMPTIONS

Prof. Solanky made specific comments on assumptions (A-i) to (A-v):

(I) How to handle the issue of increasing number of unknown parameters in the asymp-
totics as p → ∞?

(II) How good are the asymptotic results when p is not too large? Say, when p = 50 in
the cases considered in the Table 1.

(III) How rigid are assumptions (A-i) to (A-v)? How would a practitioner verify whether
or not these assumptions are true in a particular case?

(IV) What would happen if some of these assumptions are not true?

(V) Would a fine-tuned purely sequential procedure along the lines of Mukhopadhyay
and Datta (1995), which does not rely on any such lower bounds, perform better?

As for (I), we used the cross-data-matrix methodology created by Yata and Aoshima (2010a,b).
With the help of this methodology, we could handle the issue effectively in high-dimensional
situations. Recently, Aoshima and Yata (2011) proposed a method called the generalized
cross-data-matrix methodology that is based on resampling and gave a variety of illustrations
using microarray data.

As for (II) and (III), we investigated the performance of the two-stage procedure when
p = 50 and 100. We set δ = 2.5 and α = 0.05. Along the lines of Section 2.3, independent
pseudorandom normal observations were generated for πi : Np(0,Σi), i = 1, 2, where
Σ1 = Σ2 = B(0.3|i−j|1/3

)B and B is defined by (2.9) in Section 2.3. Finally, we had
n̄1 = 19.05 (n̄1 − C1 = −0.98), n̄2 = 19.23 (n̄2 − C2 = −0.8) and P = 0.915 when
p = 50 (m = 7), and n̄1 = 28.51 (n̄1 − C1 = −0.18), n̄2 = 28.50 (n̄2 − C2 = −0.19) and
P = 0.942 when p = 100 (m = 10). We emphasize that the asymptotic results depend
not only on the magnitude of p and ni’s but also on the assumption that tr(Σ4

i )/p2 → 0
as p → ∞ in (A-iv). Note that one can verify whether (A-iv) is true or not very easily
by using the cross-data-matrix methodology (Yata and Aoshima, 2010a,b) or the noise-
reduction methodology (Yata and Aoshima, 2011b). See Remark 1.1 of Section 1 for the
verification of the assumptions.

As for (IV), let us consider the case that the assumptions are not true. For example, for
the inference in Section 2, we can handle the problem as follows: We simply change zα/2 to
1/

√
α in the sample size determination given by (2.4). Then, from Chebyshev’s inequality,

it holds as p → ∞ that

P„(|||T n − µ||2 − Σ̂n| ≥ δ) ≤ V ar„(||T n − µ||2 − Σ̂n)/δ2 ≤ α + o(1).

Thus we can claim Theorem 2.3 without (A-i) to (A-v). Similarly, by changing zα/2 to
1/

√
α in (2.7), we can claim Theorem 2.4 under mild assumptions that E(z2

ijlz
2
isl) = 1 and

E(zijlzislzitlziul) = 0, j 6= s, t, u for i = 1, ..., k, but without (A-i) to (A-v). We emphasize
that the results in the article are quite robust by introducing a slight modification in the
sample size determination for each inference.

Finally, as for (V), we emphasize that the proposed two-stage procedures are quite ro-
bust for the misidentification of lower bounds. See Remark 2.3 of Section 2 for the details.
In addition, if the experimenter is concerned with the cost of each sampling, the two-stage
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procedure would be the most likely candidate in a real world. We conclude this section by
quoting Profs. Ahn and Lee’s encouraging comment: “Based on the limited empirical study
on the classification that we carried out, at least their classification method turns out to be
quite robust to the choice of ∆?.”

3. CONFIDENCE REGION WITH A GIVEN DIAMETER FOR HIGH-
DIMENSIONAL DATA

Prof. Takada showed that the confidence region with a given diameter is also available for
high-dimensional data. For simplicity he assumed that xi’s are distributed as Np(µ, σ2Ip).
For given W (> 0), let

Rn = {µ ∈ Rp : ||xn − µ||2 ≤ W},

where xn =
∑n

i=1 xi/n. If the sample size n is determined by

n ≥
χ2

p(α)σ2

W
(= C, say), (3.1)

one has that P (µ ∈ Rn) ≥ 1 − α for given α ∈ (0, 1). Here, χ2
p(α) denotes the upper α

point of a chi-square distribution with p degrees of freedom. Then, he showed that if W is
chosen such that W = W (p) and W → ∞ as p → ∞, it holds that C = o(p) as p → ∞.

Recently, we have given a result related to Prof. Takada’s concern: Suppose there
are independent and p-variate populations, πi, i = 1, ..., k, having mean vector, µi, and
covariance matrix, Σi (> O), for each πi. Let µ =

∑k
i=1 biµi, where bi’s are known and

nonzero scalars. Let T n =
∑k

i=1 bixini , where n = (n1, ..., nk) and xini =
∑ni

j=1 xij/ni.
Define a confidence region for ||T n − µ||2 by

Rn,W = {µ ∈ Rp : ||T n − µ||2 ≤ W}.

Our goal is to construct Rn,W satisfying

Pθ(µ ∈ Rn,W ) ≥ 1 − α (3.2)

for given W (> 0) and α ∈ (0, 1/2). As we mentioned at the beginning of Section 2, Rn,W

satisfying (3.2) is not available for a given and fixed W (> 0) in the HDLSS context. Thus
we assume that W = W (p) → ∞ as p → ∞ and W/ min1≤i≤k tr(Σi) = o(1). We find the
sample size for each πi as

ni ≥
1
W

|bi|
√

tr(Σi)
k∑

j=1

|bj |
√

tr(Σj) +
zα

√
2

W
|bi|

√
tr(Σi)

k∑
j=1

|bj |

√
tr(Σ2

j )
tr(Σj)

(= C̃i, say), (3.3)

where zα is the upper α point of N(0, 1). Note that C̃i = W−1|bi|
√

tr(Σi)
∑k

j=1 |bj |
√

tr(Σj)+
o(p/W ) = o(p) under (A-iv). Then, we have the following theorem.

Theorem 3.1 (Yata and Aoshima, 2011a). Assume (A-iv) and either (A-ii) or (A-iii)
with (A-v). For ni’s satisfying (3.3), it holds as p → ∞ that

lim inf Pθ(µ ∈ Rn,W ) ≥ 1 − α.
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See Yata and Aoshima (2011a) for the details and further discussions. When k = 1, bi = 1
and Σi = σ2Ip, note that C̃i = (p + zα

√
2p)σ2/W from (3.3). Then, C̃i is asymptotically

equivalent to C, given by (3.1), when p → ∞.

4. TWO-SAMPLE TEST FOR HIGH-DIMENSIONAL DATA

Prof. Mukhopadhyay gave some comments on the accuracy of Tables 2 and 3:

(I) Why is it that we are seeing more than usual incidences of over/undershooting of the
set targets in Tables 2 and 3 compared with what we find in Table1?

(II) It may be possible to somehow fine-tune the associated procedures so that the asymp-
totics may possibly kick in earlier (that is, for smaller C). If this may be achieved
satisfactorily, then I believe that the proposed methodologies will become more apt
for practical implementations.

As for (I) about overshooting the target in Table 3, it is quite natural because the classifi-
cation procedure was given for ∆L(< ∆?) to claim the accuracy such that e(2|1) < α and
e(1|2) < β. In the simulation, we set a common ∆L for brevity that was much smaller than
some ∆?’s on the safe side. Thus it is reasonable to overshoot the targets in Table 3. As for
undershooting the target in Table 2, it occurs because p was not large enough to reach the
targets in simulations. However, as for (II), we can consider fine-tuning so that the target
is claimed for earlier p. We modify the sample size determination by (3.4) in Section 3.1 as
follows:

ni ≥
(zα + zβ)

√
2

∆L
tr(Σ2

i )
1/4

2∑
j=1

tr(Σ2
j )

1/4

+
2(zα + zβ)2

∆2
L

tr(Σ2
i )

1/4
2∑

j=1

(µ1 − µ2)TΣj(µ1 − µ2)
tr(Σ2

j )1/4
(= Ci, say). (4.1)

Note that Ci = O(p1/2/∆) = o(p) under (A-iv). Then, we can claim Theorem 3.2. It holds
from (3.3) in Section 3.1 that

V arθ(T̃n) =

(
2∑

i=1

2
ni(ni − 1)

tr(Σ2
i ) +

4
n1n2

tr(Σ1Σ2)

)
(1 + O(u2))

for ni’s satisfying (4.1), where u = maxi=1,2{ni(µ1 − µ2)TΣi(µ1 − µ2)/tr(Σ2
i )}. Since one

had for ni’s satisfying (3.4) in Section 3.1 that

V arθ(T̃n) =

(
2∑

i=1

2
ni(ni − 1)

tr(Σ2
i ) +

4
n1n2

tr(Σ1Σ2)

)
(1 + O(u)),

the power of the test procedure is possibly improved by the modified sample size determi-
nation. We proceed the following two steps:
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[Modified two-sample test procedure]
1. According to (3.7) in Section 3.2, take pilot samples of size m from each πi. Let

m1 = [m/2] + 1 and m2 = m − m1. Then, calculate xim1 , xim2 , xim, Sim(1), Sim(2) and
Sim for each πi according to (1.2) in Section 1. Let

Ui =
{
(xim1 − xjm)T Sim(2)(xim1 − xjm) + (xim2 − xjm)T Sim(1)(xim2 − xjm)

}
/2

−
tr(Sim(1)Sim(2))m

2m1m2
−

tr((Sim(1) + Sim(2))Sjm)
2m

(4.2)

with j( 6= i). Here, Ui was given by Yata and Aoshima (2011a) as an unbiased estimator
of (µ1 − µ2)TΣi(µ1 − µ2), i.e., E„(Ui) = (µ1 − µ2)TΣi(µ1 − µ2). Then, define the total
sample size for each πi by

Ni =max
{

m,
[(zα + zβ)

√
2

∆L
tr(Sim(1)Sim(2))

1/4
2∑

j=1

tr(Sjm(1)Sjm(2))
1/4

+ max
{2(zα + zβ)2

∆2
L

tr(Sim(1)Sim(2))
1/4

2∑
j=1

Uj

tr(Sjm(1)Sjm(2))1/4
, 0

}]
+ 1

}
. (4.3)

Let N = (N1, N2).
2. Take additional samples of size Ni−m from each πi. By combining the initial samples

and the additional samples, calculate T̃N according to (3.2) in Section 3.1. Then, test the
hypothesis H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 by

rejecting H0 ⇐⇒ T̃N >
∆Lzα

zα + zβ
. (4.4)

We have the following theorem.

Theorem 4.1. Assume either (A-ii) or (A-iii) with (A-v). Assume that max1≤i≤2{tr(Σ4
i )} =

O(p∆2
L). For the test given by (4.4) with (4.3), it holds as p → ∞ that

lim sup size ≤ α and lim inf poewer(∆L) ≥ 1 − β,

where power(∆L) is the power when ∆ = ∆L.

Proof. In a way similar to the proof of Theorem 3.3 in Yata and Aoshima (2011a), we
obtain the result. We omit the details for brevity. 2

Remark 4.1. Contrary to Theorem 3.4 in Section 3.2, we cannot claim the asymptotic
second-order efficiency for (4.3).

In order to compare the performance of the test procedure given by (4.4) with the
original one in Table 2, we conducted simulation studies for earlier p in the same setup as
in Section 3.3. Our goal was to construct a test with size α = 0.05 and power no less than
1 − β = 0.9 when ∆ ≥ 10. We obtained m=7, 19 and 27 from (3.7) in Section 3.2 for
p=100, 800 and 1600, respectively. In view of the following table, we observed that the test
procedure given by (4.4) improved performances about the targets, α and 1− β, for earlier
p. However, n − C was much larger than that for (3.8) in Section 3.2. In other words, the
original test procedure in Section 3.2 gives good performances not only about the targets,
α and 1 − β, for larger p but also about the asymptotic second-order efficiency, n − C.
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Table 1. Required sample size and the size and power by (4.4) with (4.3).

C n n − C V ar(n/C) α s(α) 1 − β s(β)

When p = 100: m=7 for ∆ = 0
26.51 45.36 18.85 1.565 0.033 0.00397
11.92 20.60 8.68 1.685
14.59 24.76 10.17 1.593

When p = 100: m=7 for ∆ = 10
38.94 52.37 13.44 0.955 0.891 0.00698
17.50 23.74 6.23 1.049
21.44 28.64 7.20 0.957

When p = 800: m=19 for ∆ = 0
75.89 101.78 25.89 0.305 0.030 0.00378
34.11 45.85 11.74 0.315
41.78 55.92 14.15 0.301

When p = 800: m=19 for ∆ = 10
87.25 110.64 23.38 0.293 0.917 0.00617
39.22 49.91 10.69 0.302
48.03 60.72 12.69 0.290

When p = 1600: m=27 for ∆ = 0
107.42 137.20 29.78 0.187 0.033 0.00399
48.28 61.75 13.47 0.191
59.14 75.45 16.31 0.186

When p = 1600: m=27 for ∆ = 10
118.71 145.82 27.12 0.199 0.916 0.00620
53.36 65.61 12.25 0.201
65.35 80.22 14.87 0.199
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5. ESTIMATION OF tr(Σ2
i )

Prof. Qin gave some comments on the estimators of tr(Σ2
i ). She compared two estimators:

(1) tr(Sini(1)Sini(2)) used in our paper, that was given by Yata (2010) as an application of

the cross-data-matrix methodology created by Yata and Aoshima (2010a,b); (2) tr(Σ̂2
i ) given

by Chen and Qin (2010), that was discussed in Remark 3.2 of Section 3.1. She claimed that

tr(Σ̂2
i ) outperformed tr(Sini(1)Sini(2)) under the assumption that ||µ2||2 = 0 or ||µ2||2 is

sufficiently small in her Monte Carlo simulation under ||µ1||2 = 0. We agree to that tr(Σ̂2
i )

slightly outperformed tr(Sini(1)Sini(2)) in the cases. However, it seems that there is not
much significant difference between them when we observe her simulation results.

Let us consider an easy example such as p = 1000 and ||µ1 − µ2||2 = 0 by setting
µi = (1, ..., 1)T , Σi = Ip and ni = 10 for i = 1, 2. Then, from Remark 3.2 of Section 3.1, we

have that E„(tr(Σ̂2
i )) = tr(Σ2

i )+µT
i Σiµi/(ni−2) = p+p/(ni−2) = 1125 > tr(Σ2

i ) = 1000.

It seems that the bias of tr(Σ̂2
i ) is not something that can be ignored.

In a real data analysis, it is quite possible to handle a situation such as ||µi||2 = O(p).
We emphasize that tr(Sini(1)Sini(2)) is always unbiased such that E„(tr(Sini(1)Sini(2))) =
tr(Σ2

i ) without the assumption that ||µi||2 = 0 or ||µi||2 is sufficiently small. Moreover,
tr(Sini(1)Sini(2)) is quite simple and computationally efficient as Prof. Qin kindly men-
tioned.

6. HOW TO USE THE TWO-STAGE CLASSIFICATION PROCEDURE

Profs. Ahn and Lee gave some comments on the two-stage classification procedure in Sec-
tion 4. They implemented the procedure for two microarray data sets: Leukemia (n = 72,
n1 = 47, n2 = 25, p = 7129) in Golub et al. (1999) and Colon cancer data (n = 62, n1 = 22,
n2 = 40, p = 2000) in Alon et al. (1999). The comments are summarized as follows:

(I) They suggested that it might be desirable to use different values of τ? or ∆L for
different classes.

(II) From Figure 2 in their comment, they reported that e(1|2) was a lot higher than the
targeted level for Colon cancer data.

(III) They were also concerned about a case that the required sample size is larger than
what one currently has in the data.

As for (I), in the two-stage classification procedure, one may take different pilot-sample-
sizes, mi(≥ 4), such as mi/Ci ∈ (0, 1) as p → ∞ for i = 1, 2. Then, the assertions in
Theorems 4.3 and 4.4 can be still claimed.

As for (II), we have to emphasize that the assertions in Theorems 4.2 and 4.3 can be
claimed under ∆? ≥ ∆L. Their setting of ∆L seems to be larger than ∆?. In a real data
analysis, it is crucial to fix ∆L as careful as possible. One may estimate ∆? by

||x1n1 − x2n2 ||2 −
2∑

i=1

tr(Sini)
ni

+
|tr(S1n1) − tr(S2n2)|2

2maxi=1,2 tr(Sini)
(= ∆̂?,n, say). (6.1)

By using ∆̂?,n, let us provide an elastic two-stage procedure:
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[Elastic two-stage classification procedure]
1. Choose m (> 4) such as m/Ci? ∈ (0, 1), i = 1, 2, as p → ∞, where Ci? is defined

by Ci when ∆L = ∆?. We assume ∆? = o(p1/2) > 0. Take pilot samples of size m from
each πi and calculate ∆̂?,m according to (6.1), where m = (m,m). Then, we note that
∆̂?,m/∆? = 1 + op(1) as p → ∞ under (A-iv) and either (A-ii) or (A-iii). Let ∆L = ∆̂?,m.
Define the total sample size for each πi by (4.6) in Section 4.2.

2. Follow the second step in the two-stage classification procedure.

Let us consider the Colon cancer data having n1 = 22 and n2 = 40 samples. We set
m = 10. First, we took the first 10 samples as a pilot sample from each πi. According to
(6.1), we calculated ∆̂?,m = 4.45×107. Along the lines of the elastic two-stage classification
procedure, we set ∆L = 4.45×107. We also calculated tr(S1m(1)S1m(2)) = 1.001×1016 and
tr(S2m(1)S2m(2)) = 1.09 × 1016. When we set α = β = 0.1, we had N1 = 71 and N2 = 72.
The required sample sizes were larger than the available sample sizes, i.e., N1 > 22 and
N2 > 40.

As for (III), when the experimenter encounters such a case in which the required sample
size is larger than the available sample size, one may tune α and β to slightly upper. For
example, when we set α = β = 0.2 for the Colon cancer data, we had N1 = 31 and N2 = 31.
We considered iterating to randomly choose 10 samples from each πi and calculate N1 and
N2 for α = β = 0.2. We repeated the operation 100 times and obtained the average of
(N1, N2) as (28.16, 33.73). It seems that one cannot always construct the classification rule,
given by (4.7) in Section 4.2, for α, β ≤ 0.2 as long as the available samples are of sizes
(n1, n2) = (22, 40). If the experimenter is concerned with an original setting of (α, β), we
would like to recommend that one should consider the classification after variable selection
given by Section 7.

7. DISCUSSIONS ON HIGH-DIMENSIONAL VARIABLE SELECTION

Profs. Chen and Panchapakesan gave some comments on “large p, small n” multinomial
problems. They suggested that it is important to consider a parallel development of asymp-
totic theory for a multinomial distribution where p is the number of categories and n is
the sample size. They also suggested that asymptotic theory for large p could be useful to
obtain good approximate results for some inferential problems involving a large number of
rare species and parliamentary type election situations in which we commonly find many
minor party candidates and several independent candidates.

We understand that the problems they raised are hot and challenging topics. We have
several ideas to approach to those topics. The second problem is related to some inferential
problems involving a larger number of nuisance cells. One of the starting points would be
Aoshima et al. (2003). We would like to handle the “large p, small n” multinomial problems
in future research.

Profs. Ing and Lai introduced a fixed-width confidence interval for prediction in conjunc-
tion with variable selection for high-dimensional sparse linear regression models as p → ∞.
They mentioned that it is well known that fully sequential procedures for fixed-width con-
fidence intervals have advantages over two-stage counterparts.

Although we cannot simply compare our two-stage procedures with their fully sequential
procedure that handles a different problem in a different setup, it will not be easy to say
something about superiority or inferiority in high-dimensional data situations. Some new
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criteria would be expected to evaluate in terms of (i) time, (ii) cost, and (iii) easy to use for
the implementation of the procedure. In addition, if the experimenter is concerned with the
cost of each sampling, the two-stage procedure would be a likely candidate in a real world.
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