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Abstract: In this paper, we consider a variety of inference problems for high-dimensional
data. The purpose of this paper is to suggest directions for future research and possible so-
lutions about p >> n problems by using new types of two-stage estimation methodologies.
This is the first attempt to apply sequential analysis to high-dimensional statistical inference
ensuring prespecified accuracy. We offer the sample size determination for inference prob-
lems by creating new types of multivariate two-stage procedures. To develop theory and
methodologies, most important and basic idea is the asymptotic normality when p → ∞.
By developing asymptotic normality when p → ∞, we first give (1) a given-bandwidth con-
fidence region for the square loss. In addition, we give (2) a two-sample test to assure
prespecified size and power simultaneously together with (3) an equality-test procedure for
two covariance matrices. We also give (4) a two-stage discriminant procedure that controls
misclassification rates being no more than a prespecified value. Moreover, we propose (5) a
two-stage variable selection procedure that provides screening of variables in the first stage
and selects a significant set of associated variables from among a set of candidate variables
in the second stage. Following the variable selection procedure, we consider (6) variable se-
lection for high-dimensional regression to compare favorably with the Lasso in terms of the
assurance of accuracy and the computational cost. Further, we consider variable selection
for classification and propose (7) a two-stage discriminant procedure after screening some
variables. Finally, we consider (8) pathway analysis for high-dimensional data by construct-
ing a multiple test of correlation coefficients.
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1. INTRODUCTION

High-dimensional data situation occurs in many areas of modern science such as genetic
microarrays, medical imaging, text recognition, finance, chemometrics, and so on. A com-
mon feature of high-dimensional data is that, while the data dimension is high, the sample
size is relatively small. This is the so-called “HDLSS” or “large p, small n” situation where
p/n → ∞; here p is the data dimension and n is the sample size.

The asymptotic studies of this type of data are becoming increasingly relevant. In
recent years, substantial work has been done on the asymptotic behavior of eigenvalues of

Address correspondence to Makoto Aoshima, Institute of Mathematics, University of Tsukuba, Ibaraki
305-8571, Japan; Fax: +81-298-53-6501; E-mail: aoshima@math.tsukuba.ac.jp

–1–



the sample covariance matrix in the limit as p → ∞, see Johnstone (2001), Baik et al. (2005)
and Paul (2007) for Gaussian assumptions and Baik and Silverstein (2006) for non-Gaussian
but i.i.d. assumptions when p and n increase at the same rate, i.e. n/p → c > 0. The HDLSS
asymptotics, where only p → ∞ while n is fixed, were studied by Hall et al. (2005), Ahn
et al. (2007) and Yata and Aoshima (2010c). They explored conditions to give a geometric
representation of HDLSS data. Jung and Marron (2009) investigated consistency properties
of both eigenvalues and eigenvectors of the sample covariance matrix in the HDLSS data
situations. Many of these focus on the spiked covariance model introduced by Johnstone
(2001). The HDLSS asymptotics usually regulate either the population distribution by
the normality or the dependency of the random variables in the sphered data matrix by
a ρ-mixing condition. However, Yata and Aoshima (2010b) have developed the HDLSS
asymptotics without assuming either the normality or a ρ-mixing condition. In addition,
Yata and Aoshima (2009b) have succeeded in investigating the consistency properties of
both eigenvalues and eigenvectors of the sample covariance matrix in more general settings
that include the case when all eigenvalues are in the range of sphericity. Furthermore,
Yata and Aoshima (2010a) have recently developed the cross-data-matrix methodology that
provides effective inference on PCA and clustering for HDLSS data.

Suppose we have independent and p-variate populations, πi, i = 1, ..., k, having unknown
mean vector µi = (µi1, ..., µip)T and unknown covariance matrix Σi(> O) for each i. We
do not assume that Σ1 = · · · = Σk. The eigen-decomposition of Σi (i = 1, ..., k) is Σi =
H iΛiH

T
i , where Λi is a diagonal matrix of eigenvalues λi1 ≥ · · · ≥ λip > 0 and H i =

[hi1, ...,hip] is an orthogonal matrix of corresponding eigenvectors. Having recorded i.i.d.
samples, xi1, ...,xini , from each πi, we have a p×ni (p > ni) data matrix Xi = [xi1, ...,xini ],
where xij = (xi1j , ..., xipj)T , j = 1, ..., ni. We assume ni ≥ 4, i = 1, ..., k. Then, Zi =
Λ−1/2

i HT
i (Xi − [µi, ...,µi]) is a p × ni sphered data matrix from a distribution with the

identity covariance matrix. Here, we write Zi = [zi1, ...,zini ] and zij = (zi1j , ..., zipj)T , j =
1, ..., ni. Note that E(z2

ijl) = 1 and E(zijlzij′l) = 0 for i = 1, ..., k; j(6= j′) = 1, ..., p; l =
1, ..., ni. We assume that λip > 0 (i = 1, ..., k) as p → ∞ and the fourth moments of each
variable in Zi are uniformly bounded. Let σ(i)j (> 0), j = 1, ..., p, be diagonal elements of
Σi. In this paper, we assume one of the following three assumptions for πi’s as necessary:

(A-i) πi : Np(µi,Σi) for i = 1, ..., k;

(A-ii) zijl, j = 1, ..., p are independent for i = 1, ..., k;

(A-iii) E(z2
ijlz

2
isl) = 1 and E(zijlzislzitlziul) = 0, j 6= s, t, u, and {xijl − µij}j∈N is a

strictly stationary sequence and ρ-mixing for i = 1, ..., k.

Note that (A-i) implies (A-ii). We also assume the following condition for Σi’s as necessary:

(A-iv)
tr(Σt

i)
p

< ∞ (t = 1, 2) and
tr(Σ4

i )
p2

→ 0 as p → ∞ for i = 1, ..., k.

We assume the following extra condition when applying (A-iii):

(A-v)
tr(ΣiΣj)

p
→ cij as p → ∞ for all i, j = 1, ..., k, where cij ’s are positive constants.

Remark 1.1. If all λij ’s are bounded, (A-iv) trivially holds. For a spiked model such
as λij = aijp

αij (j = 1, ...,mi) and λij = cij (j = mi + 1, ..., p) with positive constants
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aij ’s, cij ’s and αij ’s, (A-iv) holds under the condition that αij < 1/2, j = 1, ...,mi(< ∞),
i = 1, ..., k. See Yata and Aoshima (2009b, 2010a) for the details of a spiked model. As an
interesting example, both (A-iv) and (A-v) hold for Σi′ = ci′(ρ

|i−j|qi′

i′ ), i′ = 1, ..., k, where
ci′ ’s, qi′ ’s and ρi′ ’s(< 1) are positive constants.

The concept of ρ-mixing was first developed by Kolmogorov and Rozanov (1960). See
Bradley (2005) for a clear and insightful discussion. See also Jung and Marron (2009). For
−∞ ≤ J ≤ K ≤ ∞, let FK

J denote the σ-field of events generated by the random variables
(Yj , J ≤ j ≤ K). For any σ-filed A, let L2(A) denote the space of square-integrable, A
measurable (real-valued) random variables. For each r ≥ 1, define the maximal correlation
coefficient

ρ(r) = sup|Corr(f, g)|, f ∈ L2(F i
−∞), g ∈ L2(F∞

i+r),

where sup is over all f , g, and i is a positive integer. The sequence {Yj} is said to be ρ-
mixing if ρ(r) → 0 as r → ∞. Note that when (xi1l, xi2l, ...) is ρ-mixing and V ar(x2

ijl) < ∞,
j = 1, 2, ..., it holds for j, j′ = 1, 2, ... with |j − j′| = r that

|Corr(x2
ijl, x2

ij′l)| ≤ ρ(r) → 0 as r → ∞.

Let µ =
∑k

i=1 biµi with bi’s known and nonzero scalars. Let T n =
∑k

i=1 bixini , where
n = (n1, ..., nk) and xini =

∑ni
j=1 xij/ni. One choice of making inference on µ is to construct

a confidence region by Rn = {µ ∈ Rp : ||T n − µ|| ≤ d}, where || · || denotes the Euclidean
norm. Let θ = (µ1, ...,µk,Σ1, ...,Σk). For given and fixed d (> 0) and α ∈ (0, 1), the
requirement is established by

P„(µ ∈ Rn) ≥ 1 − α. (1.1)

There is a huge literature out there addressing scenarios related to this problem when p
is fixed less than ni. One may refer to Ghosh et al. (1997), Aoshima and Mukhopad-
hyay (1998), Aoshima et al. (2002), Aoshima et al. (2003), Aoshima and Takada (2004),
Aoshima (2005) and Yata and Aoshima (2009a) among others in which Stein (1945)-type
two-stage procedures were proposed in a typical multivariate context. Recently, Aoshima
and Yata (2010) provided a general methodology to make a Stein-type two-stage procedure
asymptotically second-order consistent for a variety of multivariate inference problems such
as multiple comparisons and bioequivalence tests. For the concept of second-order effi-
ciency, refer to Ghosh et al. (1997). In a high-dimensional case, those methodologies tend
to satisfy the probability requirement such as (1.1) excessively by taking overly samples.
To overcome this inconvenience, Yata (2010) gave a two-stage procedure that meets the
equality in (1.1) approximately with a moderate sample size when p is large. However, the
high-dimensional cases discussed by Yata (2010) were restricted to a high dimension, large
sample size context such as p/ni < ∞.

In this paper, we consider a variety of inference problems for high-dimensional data such
as p/n → ∞ in the context of sequential analysis. The most challenging issue is to develop
the new asymptotic theory when p → ∞ instead of the large sample asymptotic theory in
which n → ∞ while p is fixed. We emphasize that high-dimensional statistical inference
can be ensured prespecified accuracy with the help of the new asymptotic theory when
p → ∞. We do not assume Σ1 = · · · = Σk because it is a rather strong assumption and
most importantly such an assumption is difficult to verify specially for non-Gaussian and
high-dimensional data.
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The purpose of this paper is to suggest directions for future research and possible so-
lutions about p >> n problems by using new types of two-stage estimation methodologies.
This is the first attempt to apply sequential analysis to high-dimensional statistical inference
ensuring prespecified accuracy. We offer the sample size determination for each inference
problem by creating new types of multivariate two-stage procedures. To develop theory and
methodologies, most important and basic idea is the asymptotic normality when p → ∞. We
develop the asymptotic normality when p → ∞ for the high-dimensional statistics given in
this paper. We emphasize that one cannot apply the existing multivariate two-stage proce-
dures, that are based on the large sample asymptotic theory, to p >> n problems because
of the curse of dimensionality. One may also refer to Sen et al. (2007).

In Section 2, we consider a new type of confidence region that has a given-bandwidth for
the square loss. Here, µ is included in a region sandwiched by two p-dimensional spheres
with a certain radius from centre T n. We give a two-stage estimation procedure to assure
a prespecified coverage probability. In Section 3, we give a two-stage test procedure that
provides a two-sample test having prespecified size and power together with a equality-
test procedure for two covariance matrices. In Section 4, we give a two-stage discriminant
procedure that controls misclassification rates being no more than a prespecified value. In
Section 5, we propose a two-stage variable selection procedure that provides screening of
variables in the first stage. We select a significant set of associated variables from among a
set of candidate variables in the second stage. In Section 6, we consider variable selection for
high-dimensional regression to compare favorably with the Lasso in terms of the assurance
of accuracy and the computational cost. In Section 7, we consider variable selection for
classification and propose a two-stage discriminant procedure after screening some variables.
Finally, in Section 8, we consider pathway analysis for high-dimensional data by constructing
a multiple test of correlation coefficients.

Throughout this paper, let ni1 = [ni/2] + 1 and ni2 = ni − ni1, where [x] denotes the
largest integer less than x. We define for each πi

Sini =

∑ni
j=1(xij − xini)(xij − xini)

T

ni − 1
, Sini(1) =

∑ni1
j=1(xij − xini1)(xij − xini1)

T

ni1 − 1
,

and Sini(2) =

∑ni
j=ni1+1(xij − xini2)(xij − xini2)

T

ni2 − 1
, (1.2)

where xini1 =
∑ni1

j=1 xij/ni1 and xini2 =
∑ni

j=ni1+1 xij/ni2.

2. CONFIDENCE REGION FOR HIGH-DIMENSIONAL DATA

First, we note that a HDLSS data set has a geometric representation given by Hall et al.
(2005). A confidence region defined by (1.1) is not available for a given and fixed d (> 0) in
the HDLSS context. Let Σn =

∑k
i=1 b2

i tr(Σi)/ni. Note that E„(||T n − µ||2) = Σn. Under
(A-i) and (A-iv), we have as p → ∞ that ||T n − µ||2/Σn = 1 + op(1). Thus it holds that
||T n −µ||2 behaves around Σn and P„(µ ∈ Rn) = P„(||T n −µ|| ≤ d) → 0 under ni/p → 0,
i = 1, ..., k. In this section, we consider constructing a given-bandwidth confidence region
for the square loss defined by

RΣn = {µ ∈ Rp : max{−δ + Σn, 0} ≤ ||T n − µ||2 ≤ δ + Σn} (2.1)

for given δ (> 0). We assume δ = o(p1/2). For given δ (> 0) and α ∈ (0, 1), we are interested
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in constructing a confidence region RΣn such that

P„(µ ∈ RΣn) ≥ 1 − α. (2.2)

2.1. ASYMPTOTIC NORMALITY AND SAMPLE SIZE DETERMINATION

Let us consider the region RΣn . It indicates for Σn > δ that µ is included in the region
sandwiched by the two p-dimensional spheres with radius of

√
Σn + δ and

√
Σn − δ from

centre T n. In Fig.1, the gray zone represents the sandwiched region when p = 2. Note that
one can control the loss function ||T n − µ||2 by using RΣn .

Figure 1. The gray zone represents a confidence region RΣn when p = 2.

We have the following theorems.

Theorem 2.1. Assume (A-i) and (A-iv). Then, we have that

||T n − µ||2 − Σn√
2

∑
i,j b2

i b
2
j tr(ΣiΣj)/(ninj)

⇒ N(0, 1) (2.3)

when p → ∞ and either ni → ∞ or ni is fixed for i = 1, ..., k, where “⇒” denotes the con-
vergence in distribution and N(0, 1) denotes a random variable distributed as the standard
normal distribution.

Theorem 2.2. Assume (A-iv) and either (A-ii) or (A-iii) with (A-v). Then, we have
(2.3) as p → ∞ and ni → ∞, i = 1, ..., k.

It should be noted that the result in Theorem 2.1 can be claimed even when ni is fixed for
i = 1, ..., k. The condition that p → ∞ and ni → ∞ does not restrict ni to either p/ni → ∞
or p/ni < ∞.

Corollary 2.1. Let Σ̂n =
∑k

i=1 b2
i tr(Sini)/ni. Assume (A-iv) and either (A-ii) or (A-iii)

with (A-v). Then, we have as p → ∞ and ni → ∞, i = 1, ..., k, that

||T n − µ||2 − Σ̂n√
2

∑
i,j b2

i b
2
j tr(ΣiΣj)/(ninj)

⇒ N(0, 1).
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From the fact that tr(ΣiΣj) ≤
√

tr(Σ2
i )tr(Σ

2
j ), it holds that

√∑
i,j b2

i b
2
j tr(ΣiΣj)/(ninj)

≤
∑k

i=1 b2
i

√
tr(Σ2

i )/ni. Let zα/2 be the upper α/2 point of N(0, 1). Here, we consider ni’s
such that

min
k∑

i=1

ni subject to
√

2
k∑

i=1

b2
i

√
tr(Σ2

i )/ni ≤ δ/zα/2.

Then, we find the sample size for each πi as

ni ≥
zα/2

√
2

δ
|bi|tr(Σ2

i )
1/4

k∑
j=1

|bj |tr(Σ2
j )

1/4 (= Ci, say). (2.4)

Note that Ci = o(p/δ) for i = 1, ..., k, under (A-iv). Thus it holds that Ci/p → 0 as p → ∞.
We also notice that ni → ∞, i = 1, ..., k, as p → ∞. Let

R
bΣn

= {µ ∈ Rp : max{−δ + Σ̂n, 0} ≤ ||T n − µ||2 ≤ δ + Σ̂n}, (2.5)

where Σ̂n =
∑k

i=1 b2
i tr(Sini)/ni. Then, we have the following theorem.

Theorem 2.3. Assume (A-iv) and either (A-ii) or (A-iii) with (A-v). Then, for ni

satisfying (2.4), we have as p → ∞ that

lim inf P„(µ ∈ R
bΣn

) ≥ 1 − α.

Remark 2.1. The same assertion as in Theorem 2.3 holds for RΣn .

2.2. TWO-STAGE PROCEDURE FOR CONFIDENCE REGION

Since Σi’s are unknown, it is necessary to estimate Ci’s in (2.4) with some pilot samples.
We consider a two-stage procedure to construct a confidence region R

bΣn
. Along the line of

Mukhopadhyay and Duggan (1997, 1999), we suppose the following assumption: There exists

a known and positive lower bound σi? for
√

tr(Σ2
i ) such that σi?/

√
tr(Σ2

i ) ∈ (0, 1), i =
1, ..., k, as p → ∞. We proceed the following two steps:

1. Let τ? = min1≤i≤k |bi|
√

σi?
∑k

j=1 |bj |
√

σj?. Having a fixed integer m0 (≥ 4), define

m = max
{

m0,
[zα/2

√
2

δ
τ?

]
+ 1

}
. (2.6)

According to (2.6), take pilot samples xij , j = 1, ...,m, of size m from each πi. Then,
calculate Sim, Sim(1) and Sim(2) according to (1.2) for each πi. Define the total sample size
for each πi by

Ni = max
{

m,
[zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))

1/4
k∑

j=1

|bj |tr(Sjm(1)Sjm(2))
1/4

]
+ 1

}
. (2.7)

Note that tr(Sim(1)Sim(2)) ≥ 0 w.p.1. Let N = (N1, ..., Nk).
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2. Take additional samples xij , j = m + 1, ..., Ni, of size Ni − m from each πi. By
combining the initial samples and the additional samples, calculate xiNi =

∑Ni
j=1 xij/Ni

and SiNi =
∑Ni

j=1(xij − xiNi)(xij − xiNi)
T /(Ni − 1) for each πi. Then, define Σ̂N =∑k

i=1 b2
i tr(SiNi)/Ni and the region R

bΣN
according to (2.5) with TN =

∑k
i=1 bixiNi .

We have the following theorem.

Theorem 2.4. Assume (A-iv) and either (A-ii) or (A-iii) with (A-v). For the two-stage
procedure given by (2.6)-(2.7), we have as p → ∞ that

lim inf P„(µ ∈ R
bΣN

) ≥ 1 − α. (2.8)

Remark 2.2. Assume (A-iv) and either (A-ii) or (A-iii). It holds as p → ∞ that Ni/Ci =
1 + op(1), i = 1, ..., k, that are in the HDLSS situation in the sense that Ni/p = op(1),
i = 1, ..., k. Further, under (A-i), we have higher-order results as in the following theorem.

Theorem 2.5. Assume (A-i) and (A-iv). For the two-stage procedure given by (2.6)-(2.7),
it holds as p → ∞ that

lim sup |E„(Ni − Ci)| ≤ 1 and V ar„(Ni) = o(p1/2/δ) for i = 1, ..., k.

Remark 2.3. One of the choices of σi? is, for example, a positive lower bound, σi0, for
tr(Σi)/

√
p such that σi0

√
p/tr(Σi) ∈ (0, 1) as p → ∞. Then, it holds from Schwartz’s

inequality and (A-iv) that 0 < σi0/
√

tr(Σ2
i ) = (σi0

√
p/tr(Σi))(tr(Σi)/

√
ptr(Σ2

i )) < 1 as

p → ∞. We emphasize that the two-stage procedure still holds (2.8) as long as σi?/p1/2 > 0
as p → ∞ for i = 1, ..., k. In that sense, the two-stage procedure is quite robust for the
misidentification of σi?.

Remark 2.4. Under (A-i), it holds that E„{tr(S2
im)} = (1 + (m − 1)−1)tr(Σ2

i ) +
tr(Σi)2/(m − 1). Hence, the naive estimator of tr(Σ2

i ) is overly biased when p → ∞.
Yata (2010) considered an unbiased estimator of tr(Σ2

i ) by tr(Sim(1)Sim(2)). Note that
E„(Sim(1)Sim(2)) = tr(Σ2

i ) and tr(Sim(1)Sim(2)) ≥ 0 w.p.1. Under either (A-ii) or (A-iii),
it holds as p → ∞ and m → ∞ that

V ar„

(
tr(Sim(1)Sim(2))

tr(Σ2
i )

)
=

8
m2

(1 + o(1)) + O
( tr(Σ4

i )
tr(Σ2

i )2m

)
.

On the other hand, Bai and Saranadasa (1996) and Srivastava (2005) considered an estima-

tor of tr(Σ2
i ) by tr(Σ̂2

i ) = c−1
m {tr(S2

im)− tr(Sim)2/(m−1)} with cm = (m−2)(m+1)/(m−
1)2. Then, it holds under (A-i) that E„(tr(Σ̂2

i )) = tr(Σ2
i ) and

V ar„

(
tr(Σ̂2

i )
tr(Σ2

i )

)
=

4
m2

(1 + o(1)) +
8tr(Σ4

i )
tr(Σ2

i )2m
(1 + o(1))

as p → ∞ and m → ∞. One might consider tr(Σ̂2
i ) for tr(Sim(1)Sim(2)) in (2.7). However,

it should be noted that tr(Σ̂2
i ) is not unbiased unless (A-i) holds. In addition, it does not
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hold V ar„(tr(Σ̂2
i )/tr(Σ2

i )) < ∞ when the eighth moments of each variable in Zi are not
uniformly bounded.

2.3. SIMULATION

In order to study the performance of the two-stage procedure given by (2.6)-(2.7), we took
resort to computer simulations. We set k = 2, p = 1600, b1 = b2 = 1 and δ = 5. Our goal
was to construct a 95% given-bandwidth confidence region R

bΣN
. In other words, we set

α = 0.05. We set µ1 = µ2 = (0, ..., 0)T . Independent pseudorandom normal observations
were generated for πi : Np(µi,Σi), i = 1, 2. We considered the covariance matrix such as

Σ1 = c1B(ρ|i−j|1/3

1 )B and Σ2 = c2B(ρ|i−j|1/3

2 )B, where ρi ∈ (0, 1), i = 1, 2, and

B = diag
(√

0.5 + 1/(p + 1),
√

0.5 + 2/(p + 1), ...,
√

0.5 + p/(p + 1)
)

. (2.9)

Note that tr(Σi) = cip (i = 1, 2). We considered the following three cases: (i) (c1, c2) =
(1, 1) and (ρ1, ρ2) = (0.3, 0.3), i.e., Σ1 = Σ2; (ii) (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.4),
i.e., tr(Σ1) = tr(Σ2) and tr(Σ2

1) 6= tr(Σ2
2); (iii) (c1, c2) = (1, 1.5) and (ρ1, ρ2) = (0.3, 0.3),

i.e., Σ2 = 1.5Σ1.
For the two-stage procedure (2.6)-(2.7), Table 1 gives the findings obtained by averaging

the outcomes from 2000 (= R, say) replications. We set σi? = tr(Σ2
1)

1/2/3, i = 1, 2, so that
m = 20. The findings for case (i) were given in the first block and the ones for cases (ii) and
(iii) followed after the block. Under a fixed scenario, suppose that the rth replication ends
with Ni = nir (i = 1, 2) observations and the corresponding confidence region with nr =
(n1r, n2r) for r = 1, ..., R. Let ni = R−1

∑R
r=1 nir and V ar(ni) = (R−1)−1

∑R
r=1(nir −ni)2.

Then, n (= n1 + n2) estimates C = C1 + C2 defined by (2.4) with its estimated variance
V ar(n), computed analogously. In the end of the rth replication, we checked whether µ
does (or does not) belong to the corresponding confidence region and defined Pr = 1 (or 0)
accordingly. Let P = R−1

∑R
r=1 Pr, which estimates the target coverage probability, having

its estimated standard error s(P ) where s2(P ) = R−1P (1 − P ).
Let us explain, for example, the entries from the second block for case (ii) in Table 1. We

had C1 = 61.87, C2 = 69.79 and C = 131.66 from (2.4). From 2000 independent replica-
tions, we observed n1 = 62.17 (n1−C1 = 0.30), n2 = 70.07 (n2−C2 = 0.28), n = 132.24 (n−
C = 0.58) and p = 0.950 together with V ar(n1) = 16.60, V ar(n2) = 27.08, V ar(n) = 69.54
and s(p) = 0.00487. Throughout, the two-stage procedure constructed required confidence
region successfully.

3. TWO-SAMPLE TEST FOR HIGH-DIMENSIONAL DATA

Suppose we have two independently distributed populations, πi, i = 1, 2. We do not assume
Σ1 = Σ2. A well-pursued interest in high-dimensional data analysis is to test if the two
high-dimensional populations have the same mean or not, namely,

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (3.1)

The hypothesis H0 consists of p marginal hypotheses regarding the means of each data
dimension. Bai and Saranadasa (1996), Srivastava (2007) and Chen and Qin (2010) con-
sidered testing hypothesis (3.1). We should note that Hotelling’s classical T 2 test does not
work for HDLSS situations. Let ∆ = ||µ1 − µ2||2. We are interested in designing a test of
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Table 1. Required sample size and the coverage probability by (2.6)-(2.7) with δ = 5.

C n n − C V ar(n) P s(P )

Case (i): (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.3)
116.29 117.00 0.72 47.81 0.943 0.00518
58.14 58.50 0.36 15.13
58.14 58.50 0.36 14.83

Case (ii): (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.4)
131.66 132.24 0.58 69.54 0.950 0.00487
61.87 62.17 0.30 16.60
69.79 70.07 0.28 27.08

Case (iii): (c1, c2) = (1, 1.5) and (ρ1, ρ2) = (0.3, 0.3)
143.89 144.21 0.32 74.89 0.946 0.00505
64.68 64.88 0.20 17.53
79.21 79.33 0.12 29.48

(3.1) with size α and power no less than 1 − β when ∆ ≥ ∆L, where α, β ∈ (0, 1/2) and
∆L (> 0) are prespecified constants. We assume ∆L = o(p1/2).

3.1. ASYMPTOTIC NORMALITY AND SAMPLE SIZE DETERMINATION

Having recorded xi1, ...,xini from each πi, Chen and Qin (2010) gave an estimator of ∆ by

T̃n =
2∑

i=1

∑ni
j 6=j′ x

T
ijxij′

ni(ni − 1)
− 2

∑n1
j=1

∑n2
j′=1 xT

1jx2j′

n1n2
.

We note that the above description is equivalent to

T̃n = ||x1n1 − x2n2 ||2 −
2∑

i=1

tr(Sini)
ni

. (3.2)

They showed that E„(T̃n) = ∆ and

V ar„(T̃n) =
2∑

i=1

2
ni(ni − 1)

tr(Σ2
i ) +

4
n1n2

tr(Σ1Σ2) +
2∑

i=1

4
ni

(µ1 −µ2)
TΣi(µ1 − µ2). (3.3)

We consider estimating V ar„(T̃n) by

V̂ ar„(T̃n) =
2∑

i=1

2
ni(ni − 1)

tr(Sini(1)Sini(2)) +
4

n1n2
tr(S1niS2ni).

Then, we have the following theorem.

Theorem 3.1. Assume that (µ1−µ2)TΣi(µ1−µ2) = o(tr(Σ2
i )/ni), i = 1, 2. Assume also

(A-iv) and either (A-ii) or (A-iii) with (A-v). Then, it holds as p → ∞ and n1, n2 → ∞
that

T̃n − ∆√
V̂ ar„(T̃n)

⇒ N(0, 1).
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Remark 3.1. Assume that (µ1 −µ2)TΣi(µ1 −µ2) = o(tr(Σ2
i )/ni), i = 1, 2. Assume also

(A-iv) and either (A-ii) or (A-iii) with (A-v). Then, it holds that

T̃n − ∆√
V ar„(T̃n)

⇒ N(0, 1)

when p → ∞ and ni → ∞ for i = 1, 2. Chen and Qin (2010) gave the asymptotic normality
under different conditions.

Remark 3.2. Chen and Qin (2010) gave a different estimator of V ar„(T̃n) by 2
∑2

i=1 tr(Σ̂2
i )

/(ni(ni − 1)) + 4tr(Σ̂1Σ2)/(n1n2) with

tr(Σ̂2
i ) = (ni(ni − 1))−1tr{

ni∑
j 6=k

(xij − xini(j,k))x
T
ij(xik − xini(j,k))x

T
ik},

tr(Σ̂1Σ2) = (n1n2)−1tr{
n1∑

j=1

n2∑
k=1

(x1j − x1n1(j))x
T
1j(x2k − x2n2(k))x

T
2k}.

Here, xini(j,k) is the i-th sample mean after excluding xij and xik, and xini(j) is the i-
th sample mean without xij . Then, they claimed the asymptotic normality under several
assumptions similar to Theorem 3.1. However, from the proof of Theorem 2 given in Chen
and Qin (2010), it should be noted that E„(tr(Σ̂2

i )) = tr(Σ2
i ) + µT

i Σiµi/(ni − 2). When

||µi||2 is large such as ||µi||2 = O(p), the bias of tr(Σ̂2
i ) becomes formidably large.

(a-i) p = 4 : n1 = n2 = 10 (a-ii) p = 4 : n1 = n2 = 20

(b-i) p = 32 : n1 = n2 = 10 (b-ii) p = 32 : n1 = n2 = 20
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(c-i) p = 256 : n1 = n2 = 10 (c-ii) p = 256 : n1 = n2 = 20

(d-i) p = 2048 : n1 = n2 = 10 (d-ii) p = 2048 : n1 = n2 = 20
Figure 2. The solid lines are probability densities of A: N(0, 1) and B: N(δ, 1). The histogram of

T̃n/

√
V̂ arθ(T̃n) with ||µ2||2 = 0 or ||µ2||2 = p1/2 fits well the solid lines with increasing dimension:

p = 4 for (a-i) and (a-ii), p = 32 for (b-i) and (b-ii), p = 256 for (c-i) and (c-ii), and p = 2048 for
(d-i) and (d-ii).

Let us observe Theorem 3.1. We considered an easy example such as ||µ1||2 = 0,
Σ1 = Ip, ||µ2||2 = 0 or ||µ2||2 = p1/2, and Σ2 = 1.2Ip. We considered two cases for
each dimension: n1 = n2 = 10 and n1 = n2 = 20. Here, xij(i = 1, 2; j = 1, ..., ni)
were generated from independent pseudorandom normal distribution with mean vector µi

and covariance matrix Σi for p =4, 32, 256 and 2048. Fig. 2 gives the histograms of

2000 independent outcomes of T̃n/

√
V̂ ar„(T̃n) when ||µ2||2 = 0 or ||µ2||2 = p1/2. Let

δ = p1/2/(
∑2

i=1 2tr(Σ2
i )/(ni(ni−1))+4tr(Σ1Σ2)/(n1n2))1/2. From Theorem 3.1, we expect

that T̃n/

√
V̂ ar„(T̃n) is close to N(0, 1) when ||µ2||2 = 0, and T̃n/

√
V̂ ar„(T̃n) is close

to N(δ, 1) when ||µ2||2 = p1/2. When p = 4 and p = 32, the histograms appear quite
different from the probability densities specially when ||µ1−µ2|| 6= 0. However, as expected,
the histograms fit well the probability densities as p increases. We can observe for each
dimension that taking more samples makes more difference of those two hypotheses.

For testing the hypothesis (3.1), we find the sample size for each πi as

ni ≥
(zα + zβ)

√
2

∆L
tr(Σ2

i )
1/4

2∑
j=1

tr(Σ2
j )

1/4 (= Ci, say) (3.4)
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and test the hypothesis by

rejecting H0 ⇐⇒ T̃n >
∆Lzα

zα + zβ
, (3.5)

where zα is the upper α point of N(0, 1). Then, we have the following theorem.

Theorem 3.2. Assume (A-iv) and either (A-ii) or (A-iii) with (A-v). The test given by
(3.4)-(3.5) has as p → ∞ that

lim sup size ≤ α and lim inf power(∆L) ≥ 1 − β, (3.6)

where power(∆L) is the power when ∆ = ∆L.

Remark 3.3. Assume (A-iv) and either (A-ii) or (A-iii). If it holds that ∆L/p1/2 > 0 as
p → ∞, the test given by (3.5) has as p → ∞ and n1, n2 → ∞ that the size → 0 and the
power → 1 when ∆ ≥ ∆L.

3.2. TWO-STAGE PROCEDURE FOR TWO-SAMPLE TEST

Since Σi’s are unknown, it is necessary to estimate Ci’s in (3.4) with some pilot samples.
We propose a two-stage test procedure to determine the sample sizes n. We suppose the

following assumption: There exists a known and positive lower bound σi? for
√

tr(Σ2
i ) such

that σi?/
√

tr(Σ2
i ) ∈ (0, 1), i = 1, 2, as p → ∞. We proceed the following two steps:

1. Let τ? = mini=1,2
√

σi?
∑2

j=1
√

σj?. Having a fixed integer m0 (≥ 4), define

m = max
{

m0,
[(zα + zβ)

√
2

∆L
τ?

]
+ 1

}
. (3.7)

According to (3.7), take pilot samples xij , j = 1, ...,m, of size m from each πi. Then,
calculate Sim(1) and Sim(2) for each πi according to (1.2). Define the total sample size for
each πi by

Ni = max
{

m,
[(zα + zβ)

√
2

∆L
tr(Sim(1)Sim(2))

1/4
2∑

j=1

tr(Sjm(1)Sjm(2))
1/4

]
+ 1

}
. (3.8)

Let N = (N1, N2).
2. Take additional samples xij , j = m + 1, ..., Ni, of size Ni − m from each πi. By

combining the initial samples and the additional samples, calculate T̃N according to (3.2).
Then, test the hypothesis (3.1) by

rejecting H0 ⇐⇒ T̃N >
∆Lzα

zα + zβ
. (3.9)

We have the following theorems.

Theorem 3.3. Assume (A-iv) and either (A-ii) or (A-iii) with (A-v). The test given by
(3.9) with (3.7)-(3.8) has (3.6) as p → ∞.
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Table 2. Required sample size and the size and power by (3.9) with (3.7)-(3.8).

C n n − C V ar(n) α s(α) 1 − β s(β)

When p = 400: m=14
53.57 53.88 0.31 27.30 0.062 0.00541 0.852 0.00794
24.08 24.26 0.18 6.45
29.49 29.62 0.13 10.69

When p = 800: m=19
75.89 76.63 0.73 26.04 0.063 0.00545 0.875 0.00741
34.11 34.50 0.38 6.21
41.78 42.13 0.35 10.63

When p = 1200: m=23
93.00 93.67 0.66 24.09 0.055 0.00510 0.865 0.00765
41.80 42.16 0.36 5.74
51.20 51.50 0.30 9.54

When p = 1600: m=27
107.42 108.19 0.77 21.81 0.052 0.00499 0.882 0.00723
48.28 48.67 0.38 5.41
59.14 59.52 0.38 8.40

When p = 2000: m=30
120.12 120.98 0.86 21.71 0.052 0.00499 0.888 0.00707
53.99 54.44 0.45 5.28
66.13 66.54 0.41 8.51

Theorem 3.4. Assume (A-i) and (A-iv). For the two-stage procedure given by (3.7)-(3.8),
it holds as p → ∞ that

lim sup |E„(Ni − Ci)| ≤ 1 and V ar„(Ni) = o(p1/2/∆L) for i = 1, 2.

Remark 3.4. Assume (A-iv) and either (A-ii) or (A-iii). Then, it holds as p → ∞
that Ni/Ci = 1 + op(1) for i = 1, 2, that are in the HDLSS situation in the sense that
Ni/p = op(1), i = 1, 2.

3.3. SIMULATION FOR TWO-STAGE TEST

In order to study the performance of the two-stage test procedure given by (3.9) with (3.7)-
(3.8), we took resort to computer simulations. We fixed ∆L = 10. Our goal was to construct
a test with size α = 0.05 and power no less than 1 − β = 0.9 when ∆ ≥ ∆L. Independent
pseudorandom normal observations were generated from πi : Np(µi,Σi), i = 1, 2. We
considered Σ1 = B(0.3|i−j|1/3

)B and Σ2 = 1.5B(0.3|i−j|1/3
)B, where B is defined by (2.9).

From Remark 2.3, we set σi? = 0.8 × tr(Σ1)/p1/2, i = 1, 2. Then, we obtained m=14, 19,
23, 27 and 30 from (3.7) for p = 400(400)2000, respectively.

In Table 2, each block gives the findings when p = 400(400)2000. The findings were
obtained by averaging the outcomes from 4000 (= R, say) replications, where the first
2000 replications were generated by setting as ∆ = 0 (µ1 = µ2 = (0, ..., 0)T ) and the
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last 2000 replications were generated by setting as ∆ = 10 (µ1 = (1, ..., 1, 0, ..., 0)T whose
first 10 elements are 1 and µ2 = (0, ..., 0)T ). Under a fixed scenario, suppose that the
rth replication ends with Ni = nir (i = 1, 2) observations given by (3.8) and the test
result given by (3.9). Let ni = R−1

∑R
r=1 nir and V ar(ni) = (R − 1)−1

∑R
r=1(nir − ni)2.

Then, n (= n1 + n2) estimates C = C1 + C2, defined by (3.4), with its estimated variance
V ar(n), computed analogously. In the end of the rth replication, we defined Pr = 1 (or 0)
accordingly as ∆ = 0 was falsely rejected (or not) and ∆ = 10 was rightly rejected (or not).
We defined α = (R/2)−1

∑(R/2)
r=1 Pr to estimate the size and 1−β = (R/2)−1

∑R
r=R/2+1 Pr to

estimate power(∆L), having their estimated standard errors s(α) and s(β), where s2(α) =
(R/2)−1α(1 − α) and s2(β) = (R/2)−1β(1 − β). Throughout, we observed that the test
given by (3.9) with (3.7)-(3.8) gave good performances especially in a very high-dimensional
case.

3.4. TESTING THE EQUALITY OF TWO COVARIANCE MATRICES

We consider testing the equality of two covariance matrices as follows:

H0 : tr(Σ1) = tr(Σ2) vs. H1 : tr(Σ1) 6= tr(Σ2). (3.10)

This type of equality test is essential for high-dimensional data. See Section 4 for example.
We are interested in designing a test of (3.10) with size α and power no less than 1 − β
when |tr(Σ1 − Σ2)| ≥ ∆Σ, where α, β ∈ (0, 1/2) and ∆Σ (> 0) are prespecified constants.
We assume ∆Σ = o(p1/2). Under (A-i) and (A-iv), it holds that

tr(S1n1 − S2n2) − tr(Σ1 − Σ2)√
2tr(Σ2

1)/(n1 − 1) + 2tr(Σ2
2)/(n2 − 1)

⇒ N(0, 1) (3.11)

when p → ∞ and either ni → ∞ or ni is fixed for i = 1, 2. For testing the hypothesis (3.10),
we find the sample size for each πi as

ni ≥
2u(α, β)2

∆2
Σ

tr(Σ2
i )

1/2
2∑

j=1

tr(Σ2
j )

1/2 (= Ci, say) (3.12)

and test the hypothesis by

rejecting H0 ⇐⇒ |tr(S1n1 − S2n2)| >
zα/2∆Σ

u(α, β)
, (3.13)

where u(α, β) (> 0) is a solution of the equation P (|N(0, 1) + u(α, β)| > zα/2) = 1 − β.
Then, we have the following theorem.

Theorem 3.5. Assume (A-i) and (A-iv). The test given by (3.12)-(3.13) has as p → ∞
that

lim sup size ≤ α and lim inf power(∆Σ) ≥ 1 − β, (3.14)

where power(∆Σ) is the power when |tr(Σ1 − Σ2)| = ∆Σ.

Remark 3.5. Assume (A-iv) and either (A-ii) or (A-iii). Suppose that zα/2/u(α, β) ∈
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(0, 1). If it holds that ∆Σ/p1/2 > 0 as p → ∞, the test given by (3.13) has as p → ∞ and
n1, n2 → ∞ that the size → 0 and the power → 1 when |tr(Σ1 − Σ2)| ≥ ∆Σ.

Since Ci depends on unknown Σi’s, we proceed the following two steps:
1. Let τ? = mini=1,2 σi?

∑2
j=1 σj?, where σi?’s are given in Section 3.2. Having a fixed

integer m0 (≥ 4), define

m = max
{

m0,
[2u(α, β)2

∆2
Σ

τ?

]
+ 1

}
. (3.15)

According to (3.15), take pilot samples xij , j = 1, ...,m, of size m from each πi. Then,
calculate Sim(1) and Sim(2) for each πi according to (1.2). Define the total sample size for
each πi by

Ni = max
{

m,
[2u(α, β)2

∆2
Σ

tr(Sim(1)Sim(2))
1/2

2∑
j=1

tr(Sjm(1)Sjm(2))
1/2

]
+ 1

}
. (3.16)

2. Take additional samples xij , j = m + 1, ..., Ni, of size Ni − m from each πi. By
combining the initial samples and the additional samples, calculate SiNi , i = 1, 2. Then,
test the hypothesis (3.10) by

rejecting H0 ⇐⇒ |tr(S1N1 − S2N2)| >
zα/2∆Σ

u(α, β)
. (3.17)

We have the following theorems.

Theorem 3.6. Assume (A-i) and (A-iv). The test given by (3.17) with (3.15)-(3.16) has
(3.14) as p → ∞.

Theorem 3.7. Assume (A-i) and (A-iv). For the two-stage procedure given by (3.15)-
(3.16), it holds as p → ∞ that

lim sup |E„(Ni − Ci)| ≤ 1 and V ar„(Ni) = o(p/∆2
Σ) for i = 1, 2.

Remark 3.6. Assume (A-iv) and either (A-ii) or (A-iii). Then, it holds as p → ∞
that Ni/Ci = 1 + op(1) for i = 1, 2, that are in the HDLSS situation in the sense that
Ni/p = op(1), i = 1, 2, under ∆Σ → ∞ as p → ∞.

4. HIGH-DIMENSIONAL CLASSIFICATION

Suppose we have two independently distributed populations, πi, i = 1, 2. We do not
assume Σ1 = Σ2. Let x0 be an observation vector on an individual belonging to π1 or to
π2. Having recorded xi1, ...,xini from each πi, we estimate µi and Σi by xini and Sini . A
typical discriminant rule is that one classifies x0 into π1 if

(x0 − x1n1)
T S−1

1n1
(x0 − x1n1) − log

{det(S2n2)
det(S1n1)

}
< (x0 − x2n2)

T S−1
2n2

(x0 − x2n2), (4.1)
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and into π2 otherwise. However, the inverse matrix of Sini does not exist in the HDLSS
context (p > ni). When Σ1 = Σ2, Saranadasa (1993) considered using Ip. Srivastava
and Kubokawa (2007) considered using three types of the inverse covariance matrix: the
Moore-Penrose inverse matrix; the inverse matrix defined by only diagonal elements of
Sini ; and the empirical Bayes inverse matrix estimator. On the other hand, Yata and
Aoshima (2010c) considered using a ridge-type inverse covariance matrix derived by the
noise reduction methodology. When Σ1 6= Σ2, Dudoit et al. (2002) considered the quadratic
discriminant rule using the inverse matrix defined by only diagonal elements of Sini . On
the other hand, Hall et al. (2008) considered the distance-based classifiers and showed an
asymptotic normality about ||x0 − x1j ||2 − ||x0 − x2j′ ||2 (j = 1, ..., n1; j′ = 1, ..., n2) by
ignoring the covariance matrices.

We consider a discriminant rule given by replacing S−1
ini

with (tr(Sini)/p)−1Ip such that
one classifies x0 into π1 if

p||x0 − x1n1 ||2

tr(S1n1)
− p||x0 − x2n2 ||2

tr(S2n2)
− p log

{
tr(S2n2)
tr(S1n1)

}
− p

n1
+

p

n2
+ γ < 0 (4.2)

and into π2 otherwise. Here, −p/n1 +p/n2 is a bias-correction and γ is a tuning parameter.
We denote the error rate of misclassifying an individual from π1 (into π2) or from π2 (into
π1) by e(2|1) or e(1|2). Let ∆ = ||µ1−µ2||2 and ∆Σi = (tr(Σ1)− tr(Σ2))2/tr(Σi), i = 1, 2.
Then, let us write that ∆i = ∆ + ∆Σi/2, i = 1, 2, and ∆? = min

i=1,2
∆i. We are interested in

designing the discriminant rule (4.2) having both e(2|1) ≤ α and e(1|2) ≤ β when ∆? ≥ ∆L,
where α, β ∈ (0, 1/2) and ∆L (> 0) are prespecified constants. We assume ∆L = o(p1/2).

4.1. ASYMPTOTIC NORMALITY AND SAMPLE SIZE DETERMINATION

We assume the followings:

(A-vi)
(µ1 − µ2)TΣi(µ1 − µ2)

∆2
?

→ 0 as p → ∞ for i = 1, 2;

(A-vii)
tr(Σ2

i )
n2

i ∆2
?

→ 0 and
tr(Σ2

i )
ni∆2

?

> 0 as p → ∞ and ni → ∞ for i = 1, 2.

Then, we have the following theorem.

Theorem 4.1. Assume that tr(Σ1)/tr(Σ2) → 1 as p → ∞. Assume also (A-iv), (A-vi),
(A-vii) and either (A-ii) or (A-iii) with (A-v). Let

ω(x0) =
p||x0 − x1n1 ||2

tr(S1n1)
− p||x0 − x2n2 ||2

tr(S2n2)
− p log

{
tr(S2n2)
tr(S1n1)

}
− p

n1
+

p

n2
.

Then, we have as p → ∞ and n1, n2 → ∞ that

ω(x0) + ∆2(tr(Σ2)/p)−1

2
√

(tr(Σ1)/p)−2tr(Σ2
1)/n1 + (tr(Σ2)/p)−2tr(Σ1Σ2)/n2

⇒ N(0, 1) when x0 ∈ π1;

ω(x0) − ∆1(tr(Σ1)/p)−1

2
√

(tr(Σ2)/p)−2tr(Σ2
2)/n2 + (tr(Σ1)/p)−2tr(Σ1Σ2)/n1

⇒ N(0, 1) when x0 ∈ π2.
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Remark 4.1. Assume (A-iv) and either (A-ii) or (A-iii). If it holds p/∆2
? → 0 as p → ∞,

there exist positive constants c1 and c2 such that

ω(x0)
∆?

< −c1 when x0 ∈ π1;
ω(x0)
∆?

> c2 when x0 ∈ π2.

Then, for the discriminant rule given by (4.2) with γ = 0, we have as p → ∞ that

e(2|1) → 0 and e(1|2) → 0. (4.3)

For instance, let us consider a case that tr(Σ1)/tr(Σ2) 6= 1 as p → ∞. (For testing the
equality, see Section 3.4). Then, it follows that mini=1,2 ∆Σi/p > 0 as p → ∞. Since it
holds p/∆2

? → 0 as p → ∞, we can claim (4.3) in the case.

Let us observe Theorem 4.1. Now, we consider a non-Gaussian example such as zijl =
(13/15)1/2wijl, where wijl, i = 1, 2; j = 1, ..., p (l = 1, ..., ni) were independently generated
by t-distribution with 15 degrees of freedom. Then, note that E(zijl) = 0, E(z2

ijl) = 1 and

zijl, j = 1, ..., p (i = 1, 2; l = 1, ..., ni) are independent. Let xil = c
1/2
i (zi1l, ..., zipl)T +µi (i =

1, 2; l = 1, ..., ni) with (c1, c2) = (1, 1 + p−1/4), µ1 = 0 and ||µ2||2 = p1/2, so that
Σi = ciIp, i = 1, 2. Then, the population distributions of xil, i = 1, 2, satisfy (A-ii) and
(A-iv). Since it holds that ∆ = ||µ1 −µ2||2 = p1/2, ∆Σ1 = tr(Σ1 −Σ2)2/tr(Σ1) = p1/2 and
∆Σ2 = p1/2/(1+ p−1/4), we have that ∆1 = 3p1/2/2 and ∆2 = p1/2(1+1/(2+2/p1/4)). Let

δ1 = 2
√

(tr(Σ1)/p)−2tr(Σ2
1)/n1 + (tr(Σ2)/p)−2tr(Σ1Σ2)/n2,

δ2 = 2
√

(tr(Σ2)/p)−2tr(Σ2
2)/n2 + (tr(Σ1)/p)−2tr(Σ1Σ2)/n1.

Figs. 3(a), (b), (c) and (d) give two histograms of 2000 independent outcomes of ω(x0)/δ1

when x0 ∈ π1 or x0 ∈ π2 for p = 4, 32, 256 and 2048, respectively. Here, ω(x0) was
calculated from n1 = n2 = 15 samples for each πi. Fig. 3 also displays the probabil-
ity density of ω(x0)/δ1 claimed by Theorem 4.1. We expect that ω(x0)/δ1 is close to
N(−∆2/(δ1tr(Σ2)/p), 1) when x0 ∈ π1 and ω(x0)/δ1 is close to N(∆1/(δ1tr(Σ1)/p), δ2

2/δ2
1)

when x0 ∈ π2. When p = 4 and p = 32, the histograms appear quite different from the
probability densities. However, as expected, the histograms become similar to the proba-
bility densities as p increases.

(a) p = 4 (b) p = 32
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(c) p = 256 (d) p = 2048
Figure 3. The solid lines are probability densities of A: N(−∆2(δ1tr(Σ2)/p)−1, 1) and B: N(∆1

(δ1tr(Σ1)/p)−1, δ2
2/δ2

1). The histograms of ω(x0)/δ1 for x0 ∈ πi, i = 1, 2, fit well the solid lines with
increasing dimension: (a) p = 4, (b) p = 32, (c) p = 256, and (d) p = 2048.

Let σ = max{tr(Σ2
1)

1/2, tr(Σ2
2)

1/2}. We find the sample size for each πi as

ni ≥
(zα + zβ)2σ

∆2
L

tr(Σ2
i )

1/4
2∑

j=1

tr(Σ2
j )

1/4 (= Ci, say). (4.4)

Note that Ci = O(p/∆2
L) for i = 1, 2, under (A-iv). Thus under ∆L → ∞ as p → ∞, it

holds that Ci/p → 0 as p → ∞ . Then, we have the following theorem.

Theorem 4.2. Assume (A-iv), (A-vi) and either (A-ii) or (A-iii) with (A-v). Let γ =
(tr(S1n1 + S2n2)/(2p))−1∆L(zβ − zα)/(zα + zβ) in (4.2). Then, for the discriminant rule
given by (4.2) with (4.4), it holds as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β

when ∆? ≥ ∆L.

4.2. TWO-STAGE PROCEDURE FOR CLASSIFICATION

Since Σi’s are unknown, it is necessary to estimate Ci’s in (4.4) with some pilot samples.
We suppose the following assumption: There exists a known and positive lower bound σi?

for
√

tr(Σ2
i ) such that σi?/

√
tr(Σ2

i ) ∈ (0, 1), i = 1, 2, as p → ∞. We proceed the following
two steps:

1. Let τ? = mini=1,2 σi?
∑2

j=1 σj?. Having a fixed integer m0 (≥ 4), define

m = max
{

m0,
[(zα + zβ)2

∆2
L

τ?

]
+ 1

}
. (4.5)

According to (4.5), take pilot samples xij , j = 1, ...,m, of size m from each πi. Then, calcu-
late Sim, Sim(1) and Sim(2) for each πi according to (1.2). Let σ̂ = max{tr(S1m(1)S1m(2))1/2,

tr(S2m(1)S2m(2))1/2}. Define the total sample size for each πi by

Ni = max
{

m,
[(zα + zβ)2σ̂

∆2
L

tr(Sim(1)Sim(2))
1/4

2∑
j=1

tr(Sjm(1)Sjm(2))
1/4

]
+ 1

}
. (4.6)
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2. Take additional samples xij , j = m + 1, ..., Ni, of size Ni − m from each πi. By
combining the initial samples and the additional samples, calculate xiNi , SiNi , i = 1, 2.
Then, we classify x0 into π1 if

p||x0 − x1N1 ||2

tr(S1N1)
− p||x0 − x2N2 ||2

tr(S2N2)
− p log

{
tr(S2N2)
tr(S1N1)

}
− p

N1
+

p

N2
+ γ̂ < 0 (4.7)

and into π2 otherwise, where γ̂ = (tr(S1N1 + S2N2)/(2p))−1∆L(zβ − zα)/(zα + zβ).
Then, we have the following theorems.

Theorem 4.3. Assume (A-iv), (A-vi) and either (A-ii) or (A-iii) with (A-v). Then, for
the discriminant rule given by (4.7) with (4.5)-(4.6), it holds as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β

when ∆? ≥ ∆L.

Theorem 4.4. Assume (A-i), (A-iv) and that tr(Σ2
1)/tr(Σ

2
2) 6= 1 as p → ∞. For the

two-stage procedure given by (4.5)-(4.6), it holds as p → ∞ that

lim sup |E„(Ni − Ci)| ≤ 1 and V ar„(Ni) = o(p/∆2
L) for i = 1, 2.

Remark 4.2. Assume (A-iv) and either (A-ii) or (A-iii). Then, it holds as p → ∞
that Ni/Ci = 1 + op(1) for i = 1, 2, that are in the HDLSS situation in the sense that
Ni/p = op(1), i = 1, 2, under ∆L → ∞ as p → ∞.

4.3. SIMULATION

In order to study the performance of the discriminant rule given by (4.7) with (4.5)-(4.6),
we took resort to computer simulations. We set α = 0.1, β = 0.2 and ∆L = 20. Then,
we obtained zα + zβ = 2.12. Independent pseudorandom observations were generated from
πi : Np(µi,Σi), i = 1, 2. We set µ1 = (1, ..., 1, 0, ..., 0)T whose first 25 elements are 1,
and µ2 = (0, ..., 0)T . Then, we obtained ||µ1 − µ2||2 = ∆ = 25. We considered Σ1 =
c1B(0.3|i−j|1/3

)B and Σ2 = c2B(0.3|i−j|1/3
)B, where B is defined by (2.9). We considered

the following four cases: (i) (c1, c2) = (1, 1) when p = 800; (ii) (c1, c2) = (0.95, 1.05) when
p = 800; (iii) (c1, c2) = (1, 1) when p = 1600; (iv) (c1, c2) = (0.95, 1.05) when p = 1600.
Then, we obtained ∆? = ∆ + mini=1,2 ∆Σi/2 =25, 28.81, 25 and 32.62 for (i), (ii), (iii)
and (iv). From Remark 2.3, we set σi? = 0.9 × tr(Σi)/p1/2, i = 1, 2. Then, from (4.5), we
obtained m = 15, 14, 30 and 28 for (i), (ii), (iii) and (iv).

In Table 3, the findings obtained by averaging the outcomes from 4000 (= R, say)
replications were summarized in each situation, where x0 ∈ π1 is taken for the first 2000
replications and x0 ∈ π2 is taken for the last 2000 replications. Under a fixed scenario,
suppose that the rth replication ends with Ni = nir (i = 1, 2) observations for r = 1, ..., R.
Let ni = R−1

∑R
r=1 nir and V ar(ni) = (R−1)−1

∑R
r=1(nir −ni)2. Then, n (= n1 +n2) esti-

mates C = C1 + C2 with its estimated variance V ar(n), computed analogously. In the end
of the rth replication, we checked whether the rule (4.7) does (or does not) classify x0 cor-
rectly and defined Pr = 1 (or 0) accordingly. We calculated 1 − e(2|1) = (R/2)−1

∑R/2
r=1 Pr

and 1 − e(1|2) = (R/2)−1
∑R

r=R/2+1 Pr for the estimates of 1 − e(2|1) and 1 − e(1|2).
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Table 3. Discriminant rule (4.7) with (4.5)-(4.6).

C n n − C V ar(n) 1-e(2|1) s(e(2|1)) 1-e(1|2) s(e(1|2))

When p = 800 and (c1, c2) = (1, 1): m = 15
61.88 66.23 4.35 137.20 0.886 0.00711 0.809 0.00880
30.94 33.17 2.23 36.51
30.94 33.06 2.13 36.45

When p = 800 and (c1, c2) = (0.95, 1.05): m = 14
64.93 66.88 1.95 164.41 0.927 0.00584 0.852 0.00795
31.65 32.57 0.92 36.87
33.28 34.31 1.04 50.68

When p = 1600 and (c1, c2) = (1, 1): m = 30
123.97 128.65 4.68 105.62 0.901 0.00669 0.837 0.00827
61.99 64.35 2.37 28.34
61.99 64.30 2.31 27.89

When p = 1600 and (c1, c2) = (0.95, 1.05): m = 28
130.09 131.51 1.42 140.00 0.949 0.00490 0.893 0.00693
63.42 64.11 0.69 29.45
66.67 67.40 0.73 44.77

Their estimated standard errors were given by s(e(2|1)) and s(e(1|2)), where s2(e(2|1)) =
(R/2)−1e(2|1)(1− e(2|1)) and s2(e(1|2)) = (R/2)−1e(1|2)(1− e(1|2)). Throughout, the dis-
criminant rule given by (4.7) with (4.5)-(4.6) gave adequate performances specially when
tr(Σ1) 6= tr(Σ2). This result is quite natural because ∆? for tr(Σ1) 6= tr(Σ2) is greater
than that for tr(Σ1) = tr(Σ2).

4.4. EXAMPLE

We analyzed gene expression data given by Chiaretti et al. (2004) in which data set con-
sisted of 12625 (= p) genes and 128 samples. Note that the expression measures were
obtained using the three-step robust multichip average (RMA) preprocessing method. Re-
fer to Pollard et al. (2005) as well for the details. The data set had two tumor cellular
subtypes, B-cell (95 samples) and T-cell (33 samples). We set π1: B-cell and π2: T-cell.
We set α = 0.05, β = 0.05 and ∆L = 800. Here, we emphasize that one can make ∆L in
the two sample test of mean vectors and covariance matrices in Section 3. Our goal was
to construct a discriminant rule with e(2|1) ≤ 0.05 and e(1|2) ≤ 0.05 when ∆? ≥ ∆L. We
assume that tr(Σ2

1)
1/2 > 700 for B-cell and tr(Σ2

2)
1/2 > 550 for T-cell. We set σ1? = 700

and σ2? = 550 so that τ? = mini=1,2 σi?(σ1? + σ2?) = 6.88× 105. We chose the pilot sample
size for each πi as

m =
{

4,

[
(zα + zβ)2τ?

∆2
L

]
+ 1

}
= 12

according to (4.5), where zα = zβ = 1.64. So, we took the first 12 samples from each πi

as a pilot sample. Then, we had tr(S1m(1)S1m(2))1/2 = 718, tr(S2m(1)S2m(2))1/2 = 571 and
σ̂ = max{tr(S1m(1)S1m(2))1/2,tr(S2m(1)S2m(2))1/2} = 718. According to (4.6), the total
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sample size for each πi was given by

N1 = max

{
12,

[
(zα + zβ)2σ̂

∆2
L

tr(S1m(1)S1m(2))
1/4

2∑
i=1

tr(Sim(1)Sim(2))
1/4

]
+ 1

}
= 17,

N2 = max

{
12,

[
(zα + zβ)2σ̂

∆2
L

tr(S2m(1)S2m(2))
1/4

2∑
i=1

tr(Sim(1)Sim(2))
1/4

]
+ 1

}
= 15.

So, we took the next 5 samples from π1 and the next 3 samples from π2. Note that
γ̂ = 0 for α = β. Then, we constructed the discriminant rule (4.7) with e(2|1) ≤ 0.05
and e(1|2) ≤ 0.05 when ∆? ≥ ∆L. Note that an estimator of ∆? was given by T̃N +
mini=1,2tr(S1N1 − S2N2)

2/(2tr(SiNi)) = 1564, where T̃N is defined in Section 3.
We compared the constructed discriminant rule with two different discriminant rules,

DLDR and DQDR, that were given by Dudoit et al. (2002) as follows: Diagonal linear
discriminant rule (DLDR) was given by replacing (4.7) with

(x0 − (x1N1 + x2N2)/2)T S−1
diag(x2N2 − x1N1) < 0

with Sdiag = diag(s1N , ..., spN ), where sjN =
∑2

i=1

∑Ni
l=1(xijl−xijNi)

2/(N1 + N2 − 2) and
xijNi =

∑Ni
l=1 xijl/Ni. Diagonal quadratic discriminant rule (DQDR) was given by replacing

(4.7) with

(x0−x1N1)
T S−1

diag(1)(x0−x1N1)−(x0−x2N2)
T S−1

diag(2)(x0−x2N2)−log
{

det(Sdiag(2))
det(Sdiag(1))

}
< 0

with Sdiag(i) = diag(s(i)1Ni
, ..., s(i)pNi

), where s(i)jNi
=

∑Ni
l=1(xijl−xijNi)

2/(Ni−1). In Table
4, we investigated the performance of the three discriminant rules with (N1, N2) = (17, 15)
by using test data sets of 95 − N1 = 78 surplus samples from π1 and 33 − N2 = 18 surplus
samples from π2. The discriminant rule given by (4.7) showed an adequate performance
and was best among the three rules.

Table 4. The correct discrimination rates of (4.7), DLDR and DQDR to test data sets of 78
samples from π1 and 18 samples from π2.

(4.7) DLDR DQDR

1-e(2|1) 74/78 (=0.949) 64/78 (=0.821) 67/78 (=0.859)

1-e(1|2) 18/18 (=1.0) 18/18 (=1.0) 18/18 (=1.0)

5. HIGH-DIMENSIONAL VARIABLE SELECTION

Suppose we have two independently distributed populations, πi, i = 1, 2. We do not assume
Σ1 = Σ2. We consider a methodology to select a significant set of associated variables from
among high-dimensional data sets. We recall that µi = (µi1, ..., µip)T , i = 1, 2. Then, we
consider testing the following univariate hypotheses:

H0j : µ1j = µ2j vs. H1j : µ1j 6= µ2j for j = 1, ..., p. (5.1)

Our interest is to select a set of significant variables such that D = {j : µ1j 6= µ2j}. Fan and
Fan (2008), Meinshausen et al. (2009) and Wasserman and Roeder (2009) considered this
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type of problem. Assume that |D| = S for some S ≥ 1, where |D| denotes the number of
elements in set D. A variable selection procedure D̂ maps the data into subsets of {1, ..., p}.
In this section, we are interested in designing D̂ such that the asymptotic family-wise error
rate (FWER) is 0, i.e.,

P„(|Dc ∩ D̂| 6= 0) → 0, (5.2)

and the asymptotic average power (AP) is 1, i.e.,

|D ∩ D̂|
S

→ 1 when min
j∈D

|µ1j − µ2j |2 > δ, (5.3)

where δ (> 0) is a prespecified constant. We should note that the assertion (5.3) does not
consider the case when min

j∈D
|µ1j − µ2j |2 = δ.

5.1. SAMPLE SIZE DETERMINATION

Let σi = max1≤j≤p σ(i)j (i = 1, 2), where we recall that σ(i)j , j = 1, ..., p, are diagonal
elements of Σi. We assume that σ(i)j < ∞ for i = 1, 2; j ∈ D, and E„{exp(t|xijl −
µij |/σ

1/2
(i)j)} < ∞, i = 1, 2; j = 1, ..., p, for some t > 0. We do not assume σi < ∞ as p → ∞

for i = 1, 2. Let Tj(n) = x1jn1 − x2jn2 with xijni =
∑ni

l=1 xijl/ni, i = 1, 2. Then, for testing
the hypotheses (5.1), we find the sample size for each πi as

ni ≥
2(log p)1+ζ

δ

√
σi

2∑
j=1

√
σj (= Ci, say) (5.4)

with ζ ∈ (0, 1) chosen, and test the hypothesis for j = 1, ..., p, by

rejecting H0j ⇐⇒ |Tj(n)| >
√

δ. (5.5)

Let D̂ = {j | rejecting H0j}. Then, we have the following theorem.

Theorem 5.1. The test given by (5.5) with (5.4) has as p → ∞ that

P„(|Dc ∩ D̂| 6= 0) = o(1) ;

|D ∩ D̂|
S

= 1 + op(1) when min
j∈D

|µ1j − µ2j |2 > δ. (5.6)

Remark 5.1. Assume (A-i). We choose ζ = 0 in (5.4). Then, the test given by (5.5) with
(5.4) has (5.6) as p → ∞.

Remark 5.2. We consider a test having the asymptotic power

P„(D ⊆ D̂) → 1 when min
j∈D

|µ1j − µ2j |2 ≥ δ

instead of (5.3). We define the sample size for each πi as

ni ≥
8(log p)1+ζ

δ

√
σi

2∑
j=1

√
σj (5.7)
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with ζ ∈ (0, 1) chosen, and test the hypothesis for j = 1, ..., p, by

rejecting H0j ⇐⇒ |Tj(n)| >
√

δ/2.

Let D̂ = {j | rejecting H0j}. Then, it holds as p → ∞ that

P„(|Dc ∩ D̂| 6= 0) = o(1) ;

P„(D ⊆ D̂) = 1 + o(1) when min
j∈D

|µ1j − µ2j |2 ≥ δ.

Under (A-i), it holds the above results for ζ = 0 in (5.7).

5.2. TWO-STAGE VARIABLE SELECTION PROCEDURE

In this section, we propose a two-stage variable selection procedure that provides screening
of variables in the first stage. We select a significant set of associated variables from among
a set of candidate variables in the second stage. We proceed the following two steps:

1. Choose a pilot sample size m such that m = O(log p) and m → ∞ as p → ∞. Take
pilot samples xil, l = 1, ...,m, of size m from each πi. Calculate Tj(m) = x1jm − x2jm, j =
1, ..., p, where xijm =

∑m
l=1 xijl/m for each πi. Then, provide screening of variables by

D̃ = {j | |Tj(m)| >
√

δ} (5.8)

for a set of candidate variables. Calculate |D̃| (= S̃, say) and s̃i = max
j∈fD

(m − 1)−1
m∑

l=1

(xijl

−xijm)2, i = 1, 2. Define the additional sample size for each πi by

Ni =
[2max{(log S̃)1+ξ, (log p)ε}

δ

√
s̃i

2∑
j=1

√
s̃j

]
+ 1, (5.9)

where ξ ∈ (0, 1) and ε ∈ (0, 1) are chosen constants.
2. Regarding j ∈ D̃, take new samples xijl, l = m + 1, ...,m + Ni, of size Ni from each

πi. Calculate Tj(N ) = x1j(N1) − x2j(N2), where xij(Ni) =
∑m+Ni

l=m+1 xijl/Ni, j ∈ D̃ for each πi.
Then, test the hypothesis by

rejecting H0j ⇐⇒ |Tj(N )| >
√

δ (5.10)

for j ∈ D̃, and define
D̂ = {j ∈ D̃ | rejecting H0j}. (5.11)

Select the variables regarding D̂.
Then, we have the following theorem.

Theorem 5.2. The two-stage variable selection procedure (5.8)-(5.11) given by (5.10) has
(5.6) as p → ∞.

We emphasize that the two-stage variable selection procedure allows the experimenter
to reduce the cost of sampling in the second stage by taking samples only from D̃.
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5.3. SIMULATION

In order to study the performance of the two-stage variable selection procedure, we took
resort to computer simulations. Our goal was to estimate D with accuracy regarding
asymptotic FWER= 0 and asymptotic AP=1 when min

j∈D
|µ1j − µ2j |2 > δ. We fixed δ = 1.

We set µ1 = (0, ..., 0)T , and µ2 = (1.5, ..., 1.5, 0, ..., 0)T whose first 20 elements are 1.5.
Then, D = {j : µ1j 6= µ2j} = {1, ..., 20} and S = |D| = 20. We considered Σ1 =
B(0.3|i−j|1/3

)B and Σ2 = 1.2B(0.3|i−j|1/3
)B, where B is given by (2.9). Independent

pseudorandom observations xij , i = 1, 2; j = 1, 2, ..., were generated from πi : Np(µi,Σi).
We considered the following four cases: (1) p = 1600; (2) p = 3200; (3) p = 4800 and (4)
p = 6400. For all cases, we set m = 20. We fixed (ζ, ε, ξ) = (0.2, 0.2, 0.2) in (5.4) and (5.9).

In Table 5, we compared the performance of the two-stage variable selection procedure
(5.8)-(5.11) given by (5.10) with the fixed-sample procedure given by (5.5) when (n1, n2) =
([C1] + 1, [C2] + 1). The findings obtained by averaging the outcomes from 2000 (= R, say)
replications were summarized in each case. Under a fixed scenario, suppose that the rth
replication provides D̃r from (5.8) in the first stage. We calculated S̃ = R−1

∑R
r=1 |D̃r| to

estimate the mean of the number of candidate variables, S̃. Suppose that the rth replication
ends with Ni = nir (i = 1, 2) observations from (5.9) and the corresponding test rule (5.10)
together with a set of selected variables, D̂r from (5.11). We calculated pm + S̃ni =
pm + R−1

∑R
r=1 |D̃r|nir to estimate the mean of the number of required observations for

each πi. We calculated Ŝ = R−1
∑R

r=1 |D̂r| to estimate the mean of the number of selected
variables, say Ŝ. We checked whether |Dc∩D̂r| = |{21, ..., p}∩D̂r| 6= 0 (or = 0) and defined
Pr = 1 (or 0) accordingly. We calculated P = R−1

∑R
r=1 Pr to estimate the target FWER,

having its estimated standard error s(P ), where s2(P ) = R−1P (1 − P ). We calculated
|D ∩ D̂|/S = R−1

∑R
r=1 |{1, ..., 20} ∩ D̂r|/20 to estimate the target asymptotic AP.

Let us explain, for example, the entries from the first block when p = 3200. For the
two-stage variable selection procedure (5.8)-(5.11) given by (5.10), we observed S̃ = 32.89
in the first stage and Ŝ = 19.63 in the second stage. The numbers of required observations,
pm + S̃ni, i = 1, 2, were (65342, 65471) on average. Then, we had P = 0.002 with
s(P ) = 0.001 for FWER and |D ∩ D̂|/S = 0.982 for the asymptotic AP. On the other
hand, for the fixed-sample procedure given by (5.5), we observed Ŝ = 19.99. Then, it
should be noted that the number of observations was (249600, 272000). We had P = 0.0
with s(P ) = 0.0 and |D ∩ D̂|/S = 0.999. Throughout, we observed that the number of
candidate variables, S̃, is extremely small compared to p. The two-stage variable selection
procedure allows the experimenter to reduce the cost of sampling in the second stage.
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Table 5. Two-stage variable selection procedure (5.8)-(5.11) given by (5.10)
vs. Fixed-sample procedure given by (5.5).

S̃ (m + n1, m + n2) (pm + S̃n1, pm + S̃n2) Ŝ P s(P )
|D ∩ D̂|

S

When p = 1600
Two-stage variable selection procedure: m = 20

26.28 (53.06, 56.11) (32880, 32961) 19.59 0.005 0.00158 0.979

Fixed-sample procedure: n1 = 70 and n2 = 76
(112000, 121600) 19.99 0.0 0.0 0.999

When p = 3200
Two-stage variable selection procedure: m = 20

32.89 (60.41, 64.3) (65342, 65471) 19.63 0.002 0.001 0.982

Fixed-sample procedure: n1 = 78 and n2 = 85
(249600, 272000) 19.99 0.0 0.0 0.999

When p = 4800
Two-stage variable selection procedure: m = 20

39.24 (64.96, 69.27) (97779, 97950) 19.63 0.001 0.0005 0.981

Fixed-sample procedure: n1 = 82 and n2 = 90
(393600, 432000) 20.0 0.001 0.0005 1.0

When p = 6400
Two-stage variable selection procedure: m = 20

45.87 (69.29, 74.14) (130279, 130503) 19.65 0.001 0.00071 0.983

Fixed-sample procedure: n1 = 86 and n2 = 94
(550400, 601600) 19.99 0.0 0.0 0.999
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5.4. EXAMPLE

We analyzed gene expression data given by Chiaretti et al. (2004) that was used in Section
4.4 as well. The data set consisted of 12625 (= p) genes and two tumor cellular subtypes,
π1: B-cell and π2: T-cell. We set δ = 2.52. Our goal was to find variables j’s such that
|µ1j − µ2j | > 2.5. We chose the pilot sample size for each πi as m = 15. Then, we took the
first 15 samples from each πi in their data set as pilot samples, that are given in Table 6.

Table 6. Pilot samples, xijl (p = 12625, m = 15)

π1: B-cell π2: T-cell
j\l 1 · · · 15 1 · · · 15
1 7.597 · · · 7.892 7.240 · · · 7.165
...

...
...

...
...

...
...

...
...

...
12625 3.806 · · · 3.945 3.599 · · · 2.798

We considered screening variables by D̃ = {j| |x1jm − x2jm| > 2.5}. Then, we obtained a
set of candidate variables as D̃ = {106, 122, 1144, ..., 11576, 11834} with S̃ = |D̃| = 35. For
j ∈ D̃, we calculated s̃i = max

j∈fD
(m − 1)−1

∑m
l=1(xijl − xijm)2 and obtained (s̃1, s̃2) =

(5.563, 2.474). We set (ξ, ε) = (0.4, 0.4). According to (5.9), the additional sample size for
each πi is given by

N1 =
[2max{(log S̃)1+ξ, (log p)ε}

δ

√
s̃1

2∑
j=1

√
s̃j

]
+ 1 = 18,

N2 =
[2max{(log S̃)1+ξ, (log p)ε}

δ

√
s̃2

2∑
j=1

√
s̃j

]
+ 1 = 12.

Regarding j ∈ D̃, we took additional samples xijl, l = m + 1, ...,m + Ni, of size Ni from
each πi, which are given in Table 7.

Table 7. Additional samples, xijl, j ∈ D̃ (S̃ = 35, (N1, N2) = (18, 12))

π1: B-cell π2: T-cell
j\l 16 · · · 33 16 · · · 27
106 9.414 · · · 8.575 6.377 · · · 5.439
122 6.620 · · · 5.457 9.834 · · · 10.119
...

...
...

...
...

11834 9.461 · · · 8.379 7.010 · · · 4.306

We selected significant variables by D̂ = {j ∈ D̃| rejecting H0j} = {j ∈ D̃| |x1j(N1) −
x2j(N2)| > 2.5} and finally obtained

D̂ = {106, 122, 1271, 2673, 3268, 3740, 5064, 6702, 7106, 7414, 8172, 8173,
8225, 8321, 8399, 8917, 9002, 9478, 9932, 10299, 10670, 11270, 11271, 11834}
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with Ŝ = |D̂| = 24. For j ∈ D̂, we calculated x̄ijm+Ni =
∑m+Ni

l=1 xijl/(m + Ni) for each πi

and obtained estimates of µ1j − µ2j for j ∈ D̂ as

{x̄1jm+N1 − x̄2jm+N2 |j ∈ D̂}
= {2.595,−3.315, 2.982,−3.347,−3.068, 2.890, 3.273, 3.301, 3.361, 2.574, 3.849, 4.443,

− 3.202, 2.896,−4.486, 3.036,−2.763, 3.831, 3.571, 2.618, 3.236, 3.290, 2.909, 3.671}.

6. HIGH-DIMENSIONAL REGRESSION

We consider a usual high-dimensional linear regression setup with a response vector y =
(y1, ..., yn)T and an p × n fixed design matrix X = [x1, ...,xn] such that

E(y) = β01 + XT β

with 1 = (1, ..., 1)T . Here, β0 is an unknown intercept and β = (β1, ..., βp)T is an unknown
p-vector of regression model parameters. Meinshausen et al. (2009) and Wasserman and
Roeder (2009) considered variable selection for the regression model by using hypothesis
testing to eliminate some variables such as

H0j : βj = 0 vs. H1j : βj 6= 0 for j = 1, ..., p. (6.1)

We consider the case that yi ∈ {1,−1}. Let us rewrite that X = [x1(1), ...,xn1(1), x1(2), ...,

xn2(2)] and y = (1, ..., 1,−1, ...,−1)T whose first n1 elements are 1 and last n2 elements are
−1. Note that n1+n2 = n. We assume for i = 1, 2 that ni/n → ηi ∈ (0, 1), n−1

i

∑ni
j=1 xj(i) →

µi and n−1
i

∑ni
j=1 xj(i)x

T
j(i) − µiµ

T
i → Σi (> O) as n → ∞.

We consider β0? and β? such that

min
β0, β

||y − β01 − XT β||2.

Then, we have as n → ∞ that

β0? =
n∑

j=1

yj/n − βT
2∑

i=1

ni∑
j=1

xj(i)/n → η1 − η2 − βT (η1µ1 + η2µ2). (6.2)

Let y0 = y − (η1 − η2)1 and X0 = X − (η1µ1 + η2µ2)1T . Then, from (6.2), note that
||y − β0?1− XT β||2 → ||y0 − XT

0 β||2 as n → ∞. Since it holds as n → ∞ that

X0y0

n
→ 2η1η2(µ1 − µ2);

X0X
T
0

n
→ η1Σ1 + η2Σ2 + η1η2(µ1 − µ2)(µ1 − µ2)

T (= Σ, say),

we have as n → ∞ that
β? → 2η1η2Σ−1(µ1 − µ2).

Let ∆ = ||µ1 −µ2||2. Let λ(1) and λ(2)be the largest eigenvalues of Σ1 and Σ2. We assume
that λ(i)/∆ → 0, i = 1, 2, as p → ∞. Then, we have that (µ1−µ2)TΣ(µ1−µ2)/∆2 → η1η2

as p → ∞. By noting that Σ/∆ → η1η2(µ1 − µ2)(µ1 − µ2)T /∆ as p → ∞, we have as
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p → ∞ that 2η1η2∆Σ−1(µ1 − µ2) → 2(µ1 − µ2). Let β? = (β1?, ..., βp?)T . Then, it holds
as p → ∞ after n → ∞ that

∆βj? → 2(µ1j − µ2j) for j = 1, 2, ...

Therefore, we can claim that testing (6.1) is equivalent to testing (5.1).
Wasserman and Roeder (2009) also considered the lasso estimator βλ such as

βλ = min
β

(
||y0 − XT

0 β||2 + λ

p∑
j=1

|βj |
)
,

where λ is a smoothing parameter. Here, note that ||βλ|| = O(||β?||). When we follow the
same arguments stated above, it holds as p → ∞ after n → ∞ that

argmin
β

(
||y0 − XT

0 β||2 + λ

p∑
j=1

|βj |
)
→ argmin

β

(
||XT

0 (β − β?)||2 + λ

p∑
j=1

|βj |
)

→ argmin
β

(
η1η2(βT (µ1 − µ2))

2 − 4η1η2β
T (µ1 − µ2) +

λ

n

p∑
j=1

|βj |
)

= argmin
β

(
(βT (µ1 − µ2))

2 − 4
p∑

j=1

|βj |
(
sgn(βj)(µ1j − µ2j) − λ/(4nη1η2)

))
.

We observe that the lasso estimator concludes βj = 0 if one chooses λ as 4nη1η2|µ1j−µ2j | <
λ. Then, one would note that λ is equivalent to 4nη1η2

√
δ, where δ is the prespecified

constant discussed in Section 5. Thus, in the above setting, the variable selection given by
Section 5 might be promising to compare favorably with the Lasso in terms of the assurance
of accuracy and the computational cost.

7. CLASSIFICATION AFTER VARIABLE SELECTION

In this section, we consider applying a variable selection procedure to classification. Fan
and Fan (2008) also considered this problem. Suppose we have πi : Np(µi,Σi), i = 1, 2.
First, we consider testing the hypotheses given by (5.1). We are interested in designing a
D̂ satisfying (5.2) and

P„(D ⊆ D̂) → 1 when min
j∈D

|µ1j − µ2j |2

σ(1)j + σ(2)j
≥ δ, (7.1)

where δ (> 0) is a prespecified constant.
Let us choose the sample size for each πi as

ni ≥
8(log p)1+ζ

δ
(7.2)

with ζ ∈ (0, 1) chosen, and test the hypothesis for j = 1, ..., p, by

rejecting H0j ⇐⇒
|Tj(n)|√

s(1)jn1
+ s(2)jn2

>
√

δ/2, (7.3)
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where s(i)jni
= (ni − 1)−1

∑ni
l=1(xijl−xijni)

2, i = 1, 2, with xijni =
∑ni

l=1 xijl/ni. Let D̂
= {j | rejecting H0j}. Then, we have the following theorem.

Theorem 7.1. The test given by (7.3) with (7.2) has as p → ∞ that

P„(|Dc ∩ D̂| 6= 0) = o(1) ;

P„(D ⊆ D̂) = o(1) when min
j∈D

|µ1j − µ2j |2

σ(1)j + σ(2)j
≥ δ.

Next, we consider a discriminant rule by using only the variables of D̂. We assume that
minj∈D(σ(1)j + σ(2)j)−1(µ1j − µ2j)2 ≥ δ. Let S = |D| and Ŝ = |D̂|. Let fD(·) denote the
function such that fD(x) = (x(1), ..., x(S))T for any vector x = (x1, ..., xp)T , where x(j) = xj′

with j′ the j-th smallest subscript in D. Similarly, let us write f
cD

(x) = (x(1), ..., x(bS)
)T for

any vector x = (x1, ..., xp)T . Let µi(S) and Σi(S) be a mean vector and a covariance matrix
of fD(xik) (k = 1, ..., ni). We assume that S → ∞ and

(µ1(S) − µ2(S))TΣi(S)(µ1(S) − µ2(S))
||µ1(S) − µ2(S)||4

→ 0

for i = 1, 2, as p → ∞. Let x̂ = f
cD

(x) for any vector x = (x1, ..., xp)T . Now, we calculate

x̂ini =
∑ni

l=1 x̂il/ni and Ŝini =
∑ni

l=1(x̂il − x̂ini)(x̂il − x̂ini)
T /(ni − 1) for each πi. Let

x0 be an observation vector on an individual belonging to π1 or to π2. We propose the
discriminant rule that one classifies x0 into π1 if(

x̂0 −
x̂1n1 + x̂2n2

2

)T

(x̂2n2 − x̂1n1) −
tr(Ŝ1n1)

2n1
+

tr(Ŝ2n2)
2n2

< 0 (7.4)

and into π2 otherwise. As for the error rates of misclassification, e(2|1) and e(1|2), we have
the following theorem.

Theorem 7.2. The discriminant rule given by (7.4) has as p → ∞ that

e(2|1) → 0 and e(1|2) → 0.

8. PATHWAY ANALYSIS FOR HIGH-DIMENSIONAL DATA

In this section, we consider pathway analysis for high-dimensional data by constructing a
multiple test of correlation coefficients. Suppose we have i.i.d. p + 1-variate data vectors,
xj(∗) = (xT

j , xj(∗))T , j = 1, ..., n, where xT
j = (x1j , ..., xpj). We assume n ≥ 4. Here, xj has

unknown mean vector µ and unknown covariance matrix Σ (> O), and xj(∗) has unknown
mean µ∗ and unknown variance σ∗(< ∞). We denote the correlation coefficient vector
between xj and xj(∗) by Corr(xj , xj(∗)) = ρ, where ρ = (ρ1, ..., ρp)T . We consider testing
the correlation between xj and xj(∗) as follows:

H0 : ρ = 0 vs. H1 : ρ 6= 0.

The test of the correlation is a very important tool of pathway analysis or graphical modeling
for high-dimensional data. For example, Kraft et al. (2003) and Drton and Perlman (2007)
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considered the pathway analysis or graphical modeling of microarray data by testing a
correlation coefficient individually.

Let xn(1)
=

∑n(1)

j=1 xj/n(1), xn(2)
=

∑n
j=n(1)+1 xj/n(2), xn(1)(∗) =

∑n(1)

j=1 xj(∗)/n(1) and
xn(2)(∗) =

∑n
j=n(1)+1 xj(∗)/n(2), where n(1) = [n/2] + 1 and n(2) = n − n(1). We denote the

covariance vector between xj and xj(∗) by Cov(xj , xj(∗)) = σ, where σ = (σ1, ..., σp)T . We
propose an estimator of ||σ||2 by

T̂σ =

( n(1)∑
j=1

(xj(∗) − xn(1)(∗))(xj − xn(1)
)

n(1) − 1

)T (
n∑

j=n(1)+1

(xj(∗) − xn(2)(∗))(xj − xn(2)
)

n(2) − 1

)
.

(8.1)
Note that E(T̂σ) = ||σ||2. Let Σ = HΛHT , where Λ is a diagonal matrix of eigenvalues
λ1 ≥ · · · ≥ λp > 0 and H is an orthogonal matrix of corresponding eigenvectors. Let
zj = (z1j , ..., zpj)T = Λ−1/2HT (xj − µ). We assume that zij , i = 1, ..., p, are independent,
the fourth moments of zij ’s and xj(∗) are uniformly bounded, λp > 0 as p → ∞, and xj and
xj(∗) (j = 1, ..., n) are independent when ρ = 0. Then, we have the following theorem.

Theorem 8.1. Assume that tr(Σ4)/tr(Σ2)2 → 0 as p → ∞. When ρ = 0, we have as
p → ∞ and n → ∞ that

T̂σ

√
(n(1) − 1)(n(2) − 1)/(σ2

∗tr(Σ
2)) ⇒ N(0, 1).

Let us observe Theorem 8.1. Now, we consider an easy example such as µ = 0,
Σ = (0.3|i−j|1/3

), µ∗ = 0, σ∗ = 1 and n = 40. Figs. 4(a), (b), (c) and (d) give the histograms

of 2000 independent outcomes of T̂σ

√
(n(1) − 1)(n(2) − 1)/(σ2

∗tr(Σ
2)) when p =4, 32, 256

and 2048. Here, xj , j = 1, ..., n, were generated from independent pseudorandom normal
distribution with zero mean and covariance matrix Σ for p =4, 32, 256 and 2048. Inde-
pendent of xj , xj(∗), j = 1, ..., n, were generated from independent pseudorandom normal
distribution with zero mean and variance σ∗. Thus it holds ρ = 0. When p = 4 and p = 32,
the histograms appear different from N(0, 1). However, when p = 256, the histogram be-
comes quite similar to N(0, 1). When p = 2048, the histogram fits N(0, 1) perfectly as
expected.

(a) p = 4 (b) p = 32
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(c) p = 256 (d) p = 2048
Figure 4. The solid line is probability density of N(0, 1). The histogram of T̂σ

√
(n(1) − 1)(n(2) − 1)

/
√

σ2
∗tr(Σ

2) fits the solid line with increasing dimension: (a) p=4, (b) p=32, (c) p=256, and (d)
p=2048.

Remark 8.1. Let σ̂∗ = (n − 1)−1
∑n

j=1(xj(∗) − xn(∗))2, where xn(∗) =
∑n

j=1 xj(∗)/n. As-
sume that tr(Σ4)/tr(Σ2)2 → 0 as p → ∞. When ρ = 0, we have as p → ∞ and n → ∞
that

T̂σ

√
(n(1) − 1)(n(2) − 1)/(σ̂2

∗tr(Sn(1)Sn(2))) ⇒ N(0, 1),

where Sn(1) and Sn(2) are defined similarly to (1.2).

By using Theorem 8.1 (or Remark 8.1), the experimenter can conduct a test whether ρ = 0
or ρ 6= 0. There are future prospects to develop a two-stage procedure for the correlation
test in the pathway analysis for high-dimensional data.

APPENDIX

Proof of Theorem 2.1. Note that T n−µ is distributed as Np(0,
∑k

i=1 b2
i Σi/ni). Let H(n) =

[h1(n), ...,hp(n)] be an orthogonal matrix such that HT
(n)(

∑k
i=1 b2

i Σi/ni) H(n) =diag(
∑k

i=1

b2
i λi1(n)/ni, ...,

∑k
i=1 b2

i λip(n)/ni), where hT
j(n)Σihj(n) = λij(n), i = 1, ..., k; j = 1, ..., p. Note

that
∑p

j=1 λij(n) = tr(Σi). We write that ||T n−µ||2−Σn =
∑p

j=1

∑k
i=1 b2

i λij(n)(wj−1)/ni,
where wj , j = 1, ..., p, are independent random variables distributed as a chi-square distri-
bution with 1 degree of freedom. From (A-iv) and the assumption that λip > 0 (i = 1, ..., k)

as p → ∞, it holds as p → ∞ that 0 < tr(ΣiΣi′)/p ≤
√

tr(Σ2
i )tr(Σ

2
i′)/p < ∞. Thus

it follows that {V ar„(||T n − µ||2)}−1 = {2
∑

i,i′ b
2
i b

2
i′tr(ΣiΣi′)/(nini′)}−1 = O( min

1≤i≤k
n2

i

/p). Let vj =
∑k

i=1 b2
i λij(n)n

−1
i (wj − 1)/

√
V ar„(||T n − µ||2), j = 1, ..., p. Note that∑p

j=1 E„(v2
j ) = 1. Then, by noting that

∑p
j=1 λij(n)λi′j(n)λlj(n)λl′j(n) ≤ max

1≤i≤k
tr(Σ4

i ) for

i, i′, l, l′ = 1, ..., k, we have for Lyapunov’s condition that

p∑
j=1

E„(v4
j ) = O

(
( min
1≤i≤k

ni)−4 max
1≤i≤k

tr(Σ4
i )

)
× O( min

1≤i≤k
n4

i /p2) → 0
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under (A-iv). Then, from Lyapunov’s central limit theorem, we obtain that

||T n − µ||2 − Σn√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′)

⇒ N(0, 1)

when p → ∞ and either ni → ∞ or ni is fixed for i = 1, ..., k. It concludes the result. 2

Proof of Theorem 2.2 and Corollary 2.1. We first consider (A-ii). We have from (A-iv)
that

||T n − µ||2 − Σ̂n

=
k∑

i=1

b2
i

ni∑
l 6=l′

(xil − µi)T (xil′ − µi)
ni(ni − 1)

+ 2
∑
i<i′

bibi′

ni∑
l=1

ni′∑
l′=1

(xil − µi)T (xi′l′ − µi′)
nini′

=
k∑

i=1

b2
i

ni∑
l 6=l′

(xil − µi)T (xil′ − µi)
n2

i

+ 2
∑
i<i′

bibi′

ni∑
l=1

ni′∑
l′=1

(xil − µi)T (xi′l′ − µi′)
nini′

+ op(
√

p/( min
1≤i≤k

ni)) (A.1)

when p → ∞ and ni → ∞ for i = 1, ..., k. Note that

V ar„(||T n − µ||2 − Σ̂n) = 2
k∑

i=1

b4
i tr(Σ

2
i )

ni(ni − 1)
+ 2

∑
i6=i′

b2
i b

2
i′tr(ΣiΣi′)
nini′

= (1 + o(1))2
∑
i,i′

b2
i b

2
i′
tr(ΣiΣi′)

nini′
.

Let n∗ =
∑k

i=1 ni. Let yj = b1(x1j −µ1)/n1 for j = 1, ..., n1, yj+
Pi−1

i′=1
ni′

= bi(xij −µi)/ni

for j = 1, ..., ni (i ≥ 2) and φij = yT
i yj . Define Vnj =

∑j−1
i=1 φij for j = 2, ..., n∗. From

(A.1), we write that ||T n − µ||2 − Σ̂n = 2
∑n∗

j=2 Vnj + op(
√

p/(min1≤i≤k ni)). First, we
consider the case that 0 < ni/ni′ < ∞ as ni, ni′ → ∞ for all i 6= i′ = 1, ..., k. By noting
the tr(ΣiΣjΣiΣj′) ≤ max1≤i≤k tr(Σ4

i ), in a way similar to the proof of Theorem 1 in Chen
and Qin (2010), we can claim that

||T n − µ||2 − Σ̂n√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′)

⇒ N(0, 1) (A.2)

when p → ∞ and ni → ∞ for i = 1, ..., k. Next, we consider the case that ni/ni′ → 0 as
ni, ni′ → ∞ for some i′(6= i). By noting that ||T n − µ||2 − Σ̂n = ||

∑k
i(\i′) bi(xi − µi)||2 −∑k

i(\i′) b2
i tr(Sini)/ni+op(

√
p/(min1≤i≤k ni)), similarly, it holds (A.2). It concludes the result

in Corollary 2.1 for (A-ii). As for Theorem 2.2, we note that

Σn − Σ̂n√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′)

= op(1).
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Thus it follows that

||T n − µ||2 − Σn√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′)

=
||T n − µ||2 − Σ̂n − Σn + Σ̂n√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′)

⇒ N(0, 1), (A.3)

which concludes the result in Theorem 2.2 for (A-ii).
Next, we consider (A-iii) with (A-v). We write that

||T n − µ||2 − Σ̂n

=
p∑

j=1

( k∑
i=1

b2
i

ni∑
l 6=l′

(xijl − µij)(xijl′ − µij)
ni(ni − 1)

+ 2
∑
i<i′

bibi′

ni∑
l=1

ni′∑
l′=1

(xijl − µij)(xi′jl′ − µi′j)
nini′

)
=

p∑
j=1

Yj (say).

Let W =
√

2
∑

i,i′ b
2
i b

2
i′cii′/(nini′), where cii′ ’s are defined in (A-v). Then, by using Theorem

5.2 in Bradley (2005), we note from (A-iii) that {Yj/W} is a strictly stationary sequence
and ρ-mixing. From (A-v), it holds that V ar„(

∑p
j=1 Yj/W ) = p(1 + o(1)) as p → ∞

and ni → ∞, i = 1, ..., k. Then, by using Theorem 2.1 in Ibragimov (1975), we claim that∑p
j=1 Yj/(p1/2W ) ⇒ N(0, 1). From the fact that p1/2W/

√
2

∑
i,i′ b

2
i b

2
i′tr(ΣiΣi′)/(nini′) → 1

as p → ∞, we can claim (A.2) and (A.3) under (A-iii) with (A-v). Thus it concludes the
results. 2

Proof of Theorems 2.3. From (2.4), one can claim that√√√√2
k∑
i,j

b2
i b

2
j tr(ΣiΣj)/(ninj) ≤

√
2

k∑
i=1

b2
i tr(Σ

2
i )

1/2/ni ≤
δ

zα/2
.

Note that ni → ∞ as p → ∞ for i = 1, ..., k. Then, we have from (2.5) and Theorem 2.2
that

P„(µ ∈ R
bΣn

) = P„(||T n − µ||2 − Σ̂n| ≤ δ) ≥ P„(|N(0, 1)| ≤ zα/2) + o(1) = 1 − α + o(1)

as p → ∞. It concludes the result. 2

Proof of Theorems 2.4 and 2.5. We have under either (A-ii) or (A-iii) that

V ar„

(
tr(Sim(1)Sim(2))

tr(Σ2
i )

)
= O(m−2) + O(tr(Σ4

i )/(tr(Σ2
i )

2m)). (A.4)

Here, from (A-i) and (A-iv) , one can claim that

E„

(zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))

1/4
k∑

j=1

|bj |tr(Sjm(1)Sjm(2))
1/4

)

=
zα/2

√
2

δ
|bi|tr(Σ2

i )
1/4

k∑
j=1

|bj |tr(Σ2
j )

1/4 + o(1) = Ci + o(1); (A.5)

E„

{(zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))

1/4
k∑

j=1

|bj |tr(Sjm(1)Sjm(2))
1/4/Ci − 1

)2}
= o(m−1).
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Here, in a way similar to the proof of Lemma 2 in Yata and Aoshima (2009a), we have
under (A-i) that

E„

{(
Ni −

[zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))

1/4
k∑

j=1

|bj |tr(Sjm(1)Sjm(2))
1/4

]
− 1

)t}
= o(mt−1) (t = 1, 2). (A.6)

Then, from (A.5) and (A.6), it holds that

|E„(Ni − Ci)|

≤ |E„

(zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))

1/4
k∑

j=1

|bj |tr(Sjm(1)Sjm(2))
1/4

)
− Ci| + 1 + o(1)

= 1 + o(1);

V ar„(Ni) = o(m) = o(p1/2/δ).

It concludes the results in Theorem 2.5.
Next, from (A.4), it holds as p → ∞ that |Ni − Ci| = op(m1/2) under (A-iv) and either

(A-ii) or (A-iii). Then, we can write that |Ni−Ci| = Op(ωm1/2), where ω is a variable such
that ω → 0 as p → ∞. Let Ci? = [Ci−(ωm)1/2] (i = 1, ..., k). We claim as p → ∞ that m <
Ci? < Ni < Ci +(ωm)1/2 w.p.1. Here, we write that xiNi =

∑Ci?
l=1 xil/Ni +

∑Ni
l=Ci?+1 xil/Ni.

Then, it holds that

||xiNi − µi||2 − tr(SiNi)/Ni

=
p∑

j=1

λij

(∑Ci?
l 6=l′ zijlzijl′

Ni(Ni − 1)
+ 2

∑Ci?
l=1

∑Ni
l′=Ci?+1 zijlzijl′

Ni(Ni − 1)
+

∑Ni

l 6=l′(≥Ci?+1) zijlzijl′

Ni(Ni − 1)

)
.

By using Markov’s inequality and Schwarz’s inequality, for any τ > 0, we have from Ni <
[Ci + (ωm)1/2] + 1 w.p.1 that

P„

 Ni∑
l 6=l′(≥Ci?+1)

∣∣∣∣∣∣
p∑

j=1

λijzijlzijl′

C2
i?

∣∣∣∣∣∣ > τδ

 ≤ P„

[Ci+(ωm)1/2]+1∑
l 6=l′(≥Ci?+1)

∣∣∣∣∣∣
p∑

j=1

λijzijlzijl′

C2
i?

∣∣∣∣∣∣ > τδ

 + o(1)

= O(ωmδ−1
√

tr(Σ2
i )/C2

i?) + o(1) → 0. (A.7)

Thus from Ni/Ci? = 1 + op(1), we claim that

p∑
j=1

λij
∑Ni

l 6=l′(≥Ci?+1) zijlzijl′

Ni(Ni − 1)
= op(δ).

Note that

E„


 p∑

j=1

λij

∑Ci?
l=1 zijlzijl′

C2
i?

2 = O(tr(Σ2
i )/C3

i?) for l′ = Ci? + 1, ..., Ni.
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In a way similar to (A.7), we have that

P„

 Ni∑
l′=Ci?+1

∣∣∣∣∣∣
p∑

j=1

λij

∑Ci?
l=1 zijlzijl′

C2
i?

∣∣∣∣∣∣ > τδ

 → 0.

Hence, we have that
p∑

j=1

λij

∑Ci?
l=1

∑Ni
l′=Ci?+1 zijlzijl′

Ni(Ni − 1)
= op(δ).

Then, it holds as p → ∞ that

||xiNi − µi||2 − tr(SiNi)/Ni =
p∑

j=1

λij

(∑Ci?
l 6=l′ zijlzijl′

Ci?(Ci? − 1)

)
+ op(δ).

Similarly, it holds for i 6= i′ that

(xiNi − µi)
T (xi′Ni′

− µi′) = (xiCi? − µi)
T (xi′Ci′?

− µi′) + op(δ).

Then, we have that

||T N − µ||2 − Σ̂N = ||T C? − µ||2 − Σ̂C? + op(δ),

where C? = (C1?, ..., Ck?). Hence, similarly to the proof of Theorem 2.3, we have that

P„(|||TN − µ||2 − Σ̂N| ≤ δ) = P„(|||TC? − µ||2 − Σ̂C? | ≤ δ) + o(1) ≥ 1 − α + o(1).

It concludes the result in Theorem 2.4. 2

Proof of Theorem 3.1. From the assumptions, we have that V̂ ar„(T̃n)/V ar„(T̃n) → 1 as
p → ∞ and n1, n2 → ∞. The remainder of the proof is the same as in the proof of Theorem
2.2 and Corollary 2.1. 2

Proof of Theorem 3.2. When ∆ = 0, we have from (3.3) and (3.4) that
√

V ar„(T̃n) ≤
∆L/(zα + zβ). Then, it holds as p → ∞ that

size = P„

(
T̃n >

∆Lzα

zα + zβ

)
≤ P„ (N(0, 1) > zα) + o(1) = α + o(1).

From (A-iv), it holds λ4
i1 = o(p2). When ∆ = ∆L, we have as p → ∞ that

(µ1 − µ2)
TΣi(µ1 − µ2)/(ni∆2

L) ≤ λi1/(ni∆L) = O(λi1/tr(Σ2
i )

1/2) = o(1).

Thus we claim as p → ∞ that
√

V ar„(T̃n)(zα + zβ)/∆L ≤ 1 + o(1). Then, it holds as
p → ∞ that

power(∆L) = P„

(
T̃n >

∆Lzα

zα + zβ

)
= P„

(
(T̃n − ∆L)(zα + zβ)/∆L > −zβ

)
≥ P„ (N(0, 1) > −zβ) + o(1) = 1 − β + o(1).

–35–



The results follow. 2

Proof of Theorems 3.3 and 3.4. The proof is the same as in the proof of Theorems 2.4 and
2.5. We omit the details for brevity. 2

Proof of Theorems 3.5, 3.6 and 3.7. Under (A-i), we claim that tr(Sini) =
∑p

j=1 λijwijni

/(ni−1), where wijni , j = 1, ..., p, are independently distributed as a chi-square distribution
with ni−1 degrees of freedom. Thus, in a way similar to the proof of Theorem 2.1, we have
under (A-iv) that

tr(Sini − Σi)√
2tr(Σ2

i )/(ni − 1)
⇒ N(0, 1)

when p → ∞ and either ni → ∞ or ni is fixed. Hence, from the fact that S1n1 and S2n2 are
independent, we obtain (3.11). By using (3.11), similarly to the proof of Theorems 2.4-2.5
and 3.2, we can conclude the results. 2

Proof of Theorem 4.1. From (A-iv) and either (A-ii) or (A-iii), we have as p → ∞ and
∆? → ∞ that tr(Sini) = tr(Σi) + op(∆

1/2
? p1/2) for i = 1, 2. Then, it holds for x0 ∈ πi that

p(||x0 − µi||2 − tr(Σi))(tr(S2n2) − tr(S1n1))
tr(S1n1)tr(S2n2)

=
p(||x0 − µi||2 − tr(Σi))(tr(Σ2) − tr(Σ1))

tr(S1n1)tr(S2n2)
+ op(∆?) = op(∆?). (A.8)

We first consider the case when x0 ∈ π1. Here, we have that

p log
(

tr(S2n2)
tr(S1n1)

)
− p log

(
tr(Σ2)
tr(Σ1)

)
= p

tr(Σ1)
tr(S1n1)

− p − p
tr(Σ1)

tr(S2n2)
+ p

tr(Σ1)
tr(Σ2)

+ op(∆?).

(A.9)

Note that p log(tr(Σ1)/tr(Σ2)) = ptr(Σ1)/tr(Σ2) − p − ptr(Σ1 −Σ2)2/(2tr(Σ2)2) + o(∆?).
Then, by combining (A.8) and (A.9), when x0 ∈ π1, it holds from (A-vi) and (A-vii) that

ω(x0) =
−2(x0 − µ1)T (x1n1 − µ1)

tr(Σ1)/p
+

2(x0 − µ1)T (x2n2 − µ2) − ||µ1 − µ2||2

tr(Σ2)/p

+ p − p
tr(Σ1)
tr(Σ2)

− p log
(

tr(Σ2)
tr(Σ1)

)
+ op(∆?)

=
−2(x0 − µ1)T (x1n1 − µ1)

tr(Σ1)/p
+

2(x0 − µ1)T (x2n2 − µ2)
tr(Σ2)/p

− ∆2

tr(Σ2)/p
+ op(∆?).

(A.10)

First, we consider (A-ii). Let us write that HT
1 (x0−µ1) = (λ1/2

11 z01, ..., λ
1/2
1p z0p)T . Then, we

have that (x0−µ1)T ((x2n2−µ2)/(tr(Σ2)/p)−(x1n1−µ1)/(tr(Σ1)/p)) =
∑p

j=1

√
λ1jz0j(hT

1j

(x2n2 − µ2)/(tr(Σ2)/p) −
√

λ1jz1jn1/(tr(Σ1)/p)), where z1jn1 =
∑n1

l=1 z1jl/n1. Let

v1j =

√
λ1jz0j(hT

1j(x2n2 − µ2)/(tr(Σ2)/p) −
√

λ1jz1jn1/(tr(Σ1)/p))√
(tr(Σ1)/p)−2tr(Σ2

1)/n1 + (tr(Σ2)/p)−2tr(Σ1Σ2)/n2

, j = 1, ..., p.
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Then, it holds for j = 2, ..., p, that E„(v1j |v1j−1, ..., v11) = 0. Note that
∑p

j=1 E„(v2
1j) = 1.

We consider applying the martingale central limit theorem. Refer to Section 2.6 in Ghosh
et al. (1997) for the details of the martingale central limit theorem. Let I(·) be the
indicator function. Note that E„{(hT

1j(x2n2 − µ2))4} = O((hT
1jΣ2h1j)2/n2

2). Then, by
using Chebyshev’s inequality and Schwarz’s inequality, from (A-iv), we have for Lindeberg’s
condition that

p∑
j=1

E„

{
v2
1jI

(
v2
1j > τ

)}
≤ τ−1

p∑
j=1

E„

(
v4
1j

)
=

p∑
j=1

O
(λ2

1j(h
T
1jΣ2h1j/n2 + λ1j/n1)2

(tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2)2

)
= O

(maxi=1,2 tr(Σ4
i )/(mini=1,2 ni)2

(tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2)2

)
→ 0

for any τ > 0. Here, we claim that

P„

∣∣∣∣∣∣
p∑

j=1

v2
1j − 1

∣∣∣∣∣∣ > τ

 = O
(maxi=1,2 tr(Σ4

i )/(mini=1,2 ni)2

(tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2)2

)
→ 0.

Hence, by using the martingale central limit theorem, we obtain that

p∑
j=1

v1j ⇒ N(0, 1). (A.11)

Next, we consider (A-iii) with (A-v). In a way similar to the proof of Theorem 2.2 and
Corollary 2.1, we can claim (A.11). Hence, when x0 ∈ π1, we obtain from (A.10) that

ω(x0) + ∆2/(tr(Σ2)/p)

2
√

(tr(Σ1)/p)−2tr(Σ2
1)/n1 + (tr(Σ2)/p)−2tr(Σ1Σ2)/n2

⇒ N(0, 1)

under (A-ii) or (A-iii) with (A-v). When x0 ∈ π2, we have the result in a similar way. Thus
the proof is completed. 2

Proof of Theorem 4.2. We first consider the case when tr(Σ1)/tr(Σ2) 6= 1 as p → ∞.
Noting that γ = op(∆?), it holds (4.3). Next, we consider the case when x0 ∈ π1 and
tr(Σ1)/tr(Σ2) → 1 as p → ∞. We have from (4.4) that

tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2 ≤

∆2
L

(zα + zβ)2
. (A.12)

Then, it holds from Theorem 4.1 that

ω(x0) + γ

2∆2/(tr(Σ2)/p)
⇒ N

(
−1/2 +

γ

2∆2/(tr(Σ2)/p)
,

tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2

∆2
2

)
.

Hence, from (A.12) we have as p → ∞ that

P„

(
ω(x0) + γ

2∆2/(tr(Σ2)/p)
< 0

)
≥ P„

(
N

(−zα − zβ

2
+

zβ − zα

2
, 1

)
< 0

)
+ o(1) = 1 − α + o(1).

For the case when x0 ∈ π2, we obtain the result similarly. Thus, the results follow. 2
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Proof of Theorem 4.3. By noting that σ̂ = σ+op((p/m)1/2) and tr(SiNi) = tr(Σi)+op(p1/2),
i = 1, 2, similarly to the proof of Theorems 2.4 and 2.5, it concludes the results. 2

Proof of Theorem 4.4. From the assumption that tr(Σ2
1)/tr(Σ2

2) 6= 1 as p → ∞, the results
can be obtained in a way similar to the proof of Lemmas 1 and 5 in Yata and Aoshima
(2009a). We omit further details for brevity. 2

Proof of Theorem 5.1. Let θj = (µ1j , µ2j , σ(1)j , σ(2)j), j = 1, ..., p. From the assumption

that E„j
{exp(t|xijl − µij |/σ

1/2
(i)j)} < ∞, i = 1, 2 (j = 1, ..., p) for some t > 0, for any x

satisfying x → ∞ and x = o(n1/2
i ) as ni → ∞, we claim as ni → ∞ that

log
(

P„j

(∣∣∣( ni

σ(i)j

)1/2
(xijni − µij)

∣∣∣ > x
))

= −x2/2 + o(x2).

Refer to Section 4 in Shao (2005) for the details of this result. From (5.4), it holds that
(niδ/σ(i)j) ≥ 2(log p)1+ζ(σ1/2

(1)j + σ
1/2
(2)j)/σ

1/2
(i)j > 2(log p)1+ζ . Note that

√
2(log p)1+ζ/2 >√

2(log p)1+ζ/2 = o(n1/2
i ) as p → ∞. Thus we have that

P„j

(∣∣∣( ni

σ(i)j

)1/2
(x1jni − µij)

∣∣∣ >
( ni

σ(i)j

)1/2√
δ/2

)
< P„j

(∣∣∣( ni

σ(i)j

)1/2
(x1jni − µij)

∣∣∣ >
√

2(log p)1+ζ/2
)

= exp
(
− (log p)1+ζ/2(1 + o(1))

)
≤ exp

(
− (log p)1+ζ/4

)
= o(p−1). (A.13)

Then, it holds that

P„j

(
|Tj(n) − (µ1j − µ2j)| >

√
δ
)
≤

2∑
i=1

P„j

(
|xijni − µij | >

√
δ/2

)
= o(p−1). (A.14)

Thus by using Bonferroni’s inequality, we claim that

P„(|Dc ∩ D̂| = 0) ≥ 1 −
∑

j∈Dc

P„j

(∣∣Tj(n)

∣∣ >
√

δ
)

= 1 + o(1).

Next, we have for j ∈ D that

P„j

(∣∣Tj(n)

∣∣ >
√

δ
)
≥ P„j

(∣∣|Tj(n) − (µ1j − µ2j)| − |µ1j − µ2j |
∣∣ >

√
δ
)

≥ P„j

(
|Tj(n) − (µ1j − µ2j)| < |µ1j − µ2j | −

√
δ
)

= 1 + o(1)

by noting that Tj(n) − (µ1j − µ2j) = op(1) and |µ1j − µ2j | >
√

δ. Thus we have that
|D̂ ∩ D| = S(1 + op(1)). The results follow. 2

Proof of Theorem 5.2. In a way similar to the proof of Theorem 5.1, we have for j ∈ D
that

P„j

(∣∣Tj(m)

∣∣ >
√

δ
)

= 1 + o(1).
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Thus it holds that |D̃ ∩ D| = S(1 + op(1)). Let ji∗ denote a subscript such that σ(i)ji∗ =
max
j∈fD

σ(i)j . We have as m → ∞ that

√
s̃i

2∑
k=1

√
s̃k ≥ √

siji∗

2∑
k=1

√
skjk∗ =

√
σ(i)ji∗

2∑
k=1

√
σ(k)jk∗(1 + op(1)).

Thus we claim that

Ni ≥
2max{(log S̃)1+ξ, (log p)ε}

δ

√
σ(i)ji∗

2∑
k=1

√
σ(k)jk∗(1 + op(1)). (A.15)

Note that Ni and xij m+l (j ∈ D̃) are independent for each l (= 1, ..., Ni). Note that
max{(log S̃)1+ξ, (log p)ε} → ∞ as p → ∞ either when S̃ = O(1) or S̃ → ∞. By combining
(A.14) with (A.15), we have for j ∈ D̃ ∩ Dc that

P„

(
|Tj(N)| >

√
δ
∣∣∣D̃)

= o(1/S̃).

Thus we have that

P„(|D̂ ∩ Dc| = 0) ≥ 1 − E„

( ∑
j∈cD∩Dc

P„

(∣∣Tj(N)

∣∣ >
√

δ
∣∣∣D̃) )

= 1 + o(1).

Next, from the fact that max{(log S̃)1+ξ, (log p)ε} → ∞, it holds for j ∈ D̃ ∩ D that

P„j

(∣∣Tj(N)

∣∣ >
√

δ
)

= 1 + o(1).

Thus we have that |D̂ ∩ D| = S(1 + op(1)). The results follow. 2

Proof of Theorem 7.1. By using Lemma A.2 in Fan and Fan (2008), we note that
maxj=1,...,p |s(i)jni

/σ(i)j − 1| = op(1) for log p = o(ni). Then, similarly to (A.13)-(A.14),
we have from (7.2) that

P„(|Dc ∩ D̂| = 0) ≥ 1 −
∑

j∈Dc

P„j

(
|Tj(n)|√

s(1)jn1
+ s(2)jn2

>
√

δ/2

)

= 1 −
∑

j∈Dc

P„j

(
|Tj(n)|√

σ(1)j + σ(2)j
>

√
δ(1 + op(1))/2

)
= 1 + o(1).

(A.16)

On the other hand, we have for j ∈ D that

P„j

(
|Tj(n)|√

s(1)jn1
+ s(2)jn2

≤
√

δ/2

)
≤ P„j

(
|Tj(n) − (µ1 − µ2)|√

σ(1)j + σ(2)j
>

√
δ(1 + op(1))/2

)
= o(p).

Thus, it concludes the results similarly to (A.16). 2
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Proof of Theorem 7.2. From the assumption that minj∈D(σ(1)j +σ(2)j)−1(µ1j −µ2j)2 ≥ δ,

it holds D̂ = D w.p.1. We first consider the case when x0 ∈ π1. Note that tr(Σ1(S) +
Σ2(S)) ≤ ||µ1(S)−µ2(S)||2/δ. Thus it holds for i = 1, 2 that tr(Σ2

i(S))/(||µ1(S)−µ2(S)||4ni) ≤
tr(Σi(S))2/(||µ1(S) − µ2(S)||4ni) → 0 as p → ∞. Let x(S) = fD(x) for any vector x =
(x1, ..., xp)T . Then, we have for i = 1, 2 that

V ar„

( ||xini(S) − µi(S)||2 − tr(Sini(S))/ni

||µ1(S) − µ2(S)||2
)

= O
( tr(Σ2

i(S))

n2
i ||µ1(S) − µ2(S)||4

)
→ 0;

V ar„

((x1n1(S) − µ1(S))T (x2n2(S) − µ2(S))
||µ1(S) − µ2(S)||2

)
= O

( tr(Σ1(S)Σ2(S))
n1n2||µ1(S) − µ2(S)||4

)
→ 0;

V ar„

((x0(S) − µ1(S))T (xini(S) − µi(S))
||µ1(S) − µ2(S)||2

)
= O

( tr(Σ2
i(S))

ni||µ1(S) − µ2(S)||4
)
→ 0;

V ar„

((x0(S) − µ1(S))T (µ1(S) − µ2(S))
||µ1(S) − µ2(S)||2

)
= O

((µ1(S) − µ2(S))TΣ1(S)(µ1(S) − µ2(S))
||µ1(S) − µ2(S)||4

)
→ 0,

where xini(S) =
∑ni

l=1 xil(S)/ni and Sini(S) =
∑ni

l=1(xil(S) −xini(S))(xil(S) −xini(S))T /(ni −
1). Then, from the fact that D̂ = D w.p.1, we claim for i = 1, 2 that

||x̂ini − µi(S)||2 − tr(Ŝini)/ni

||µ1(S) − µ2(S)||2
= op(1),

(x̂1n1 − µ1(S))T (x̂2n2 − µ2(S))
||µ1(S) − µ2(S)||2

= op(1),

(x̂0 − µ1(S))T (x̂ini − µi(S))
||µ1(S) − µ2(S)||2

= op(1),
(x̂0 − µ1(S))T (µ1(S) − µ2(S))

||µ1(S) − µ2(S)||2
= op(1).

Hence, we have that(
x̂0 −

x̂1n1 + x̂2n2

2

)T

(x̂2n2 − x̂1n1) −
tr(Ŝ1n1)

2n1
+

tr(Ŝ2n2)
2n2

 /||µ1(S) − µ2(S)||2

= −1/2 + op(1) < 0

w.p.1. For the case when x0 ∈ π2, we obtain the result similarly. Thus the proof is
completed. 2

Proof of Theorem 8.1. Let us write that

wi(1) =
n(1)∑
j=1

(xj(∗) − µ∗)λ
1/2
i zij

n(1) − 1
−

n(1)

n(1) − 1
(xn(1)(∗) − µ∗)λ

1/2
i

n(1)∑
j=1

zij/n(1),

wi(2) =
n∑

j=n(1)+1

(xj(∗) − µ∗)λ
1/2
i zij

n(2) − 1
−

n(2)

n(2) − 1
(xn(2)(∗) − µ∗)λ

1/2
i

n∑
j=n(1)+1

zij/n(2).

Then, we can write that T̂σ =
∑p

i=1 wi(1)wi(2). When ρ = 0, from the assumption, xj and
xj(∗) are independent. Thus we have that V ar(wi(1)wi(2)) = ((n(1) − 1)(n(2) − 1))−1σ2

∗λ
2
i .
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Then, we claim for i = 2, ..., p, that E(wi(1)wi(2)|wi−1(1)wi−1(2), ..., w1(1)w1(2)) = 0. Note
that

P„

∣∣∣∣∣∣
p∑

j=1

w2
i(1)w

2
i(2)

((n(1) − 1)(n(2) − 1))−1σ2
∗tr(Σ

2)
− 1

∣∣∣∣∣∣ > τ

 = O

(
tr(Σ4)
tr(Σ2)2

)
+ o(1) → 0

as p → ∞ and n → ∞ for any τ > 0. Hence, similarly to (A.11), from the martingale
central limit theorem, the result follows. 2
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