Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Dynamic Article Links ►

COMMUNICATION

Luminescent Ir(III) complexes containing benzothiazole-based tridentate ligands: synthesis, characterization, and application to organic light-emitting diodes

Junpei Kuwabara,^a Tomomi Namekawa,^a Masa-aki Haga,^b Takaki Kanbara*^a

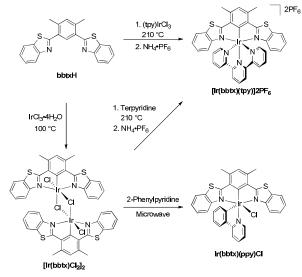
s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Ir(III) complexes that contain benzothiazole-based tridentate ligands were synthesized and their crystal structures and luminescent properties were examined. A 10 neutral complex had a high quantum yield (89%) and performed well as an emissive material for organic lightemitting diodes.

Keywords: Ir complex / Pincer ligand / phosphorescence / 15 OLEDs

Iridium complexes composed of cyclometallated ligands are promising phosphorescent materials for organic light-emitting diodes (OLEDs).¹ Anionic bidentate ligands such as 2-²⁰ phenylpyridine (ppy) and 2-phenylbenzothiazole (bt) are often found in the structures of emissive Ir complexes as cyclometallated ligands.² In particular, Ir(ppy)₃ is used widely in OLEDs owing to its high quantum yield and thermal stability. In general, tridentate cyclometalated ligands, also called pincer

- ²⁵ ligands, impart better thermal stability to complexes when bound with the metal center than do bidentate ligands.³ Therefore, Ir complexes composed of pincer ligands are believed to exhibit excellent thermal stability, which is beneficial for fabricating OLEDs and the stability of the devices that they are included in.
- ³⁰ Williams and Haga reported independently on Ir complexes composed of pincer ligands and their strong emission properties.⁴ Although their reports alluded to the great potential of pincer Ir complexes as emissive materials, there are only limited examples of pincer Ir complexes being applied to manufacturing OLEDs.⁵
- ³⁵ Ir complexes that contain 2-phenylbenzothiazole have good emissive performances, and therefore, tridentate ligands that are composed of two benzothiazole units are promising pincer ligand candidates. The pincer ligand was synthesized originally as a ligand of a Pt complex in our previous study.⁶ We herein report ⁴⁰ on the synthesis of Ir complexes composed of benzothiazole-
- based pincer ligands and their performance as emitting materials


^aTsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Japan; E-mail: kanbara@ims.tsukuba.ac.jp ^bDepartment of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, Japan.

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

This journal is © The Royal Society of Chemistry [year]

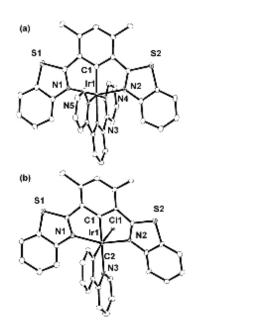
in OLEDs.

- 1,3-Bis(2-benzothiazolyl)-4,6-dimethylbenzene (bbtxH) was synthesized from 1,3-diiodo-4,6-dimethylbenzene by the Pd-⁴⁵ catalyzed direct arylation of benzothiazole in 69% yield.⁷ To check the reactivity of the ligand, the reaction between (tpy)IrCl₃ (tpy = terpyridine) and **bbtxH** at 210 °C in ethylene glycol was examined (Scheme 1). After treatment using NH₄PF₆, dicationic [Ir(bbtx)(tpy)]2PF₆ was obtained in 66% yield through 50 purification by crystallization. Although the reaction resulted in a single product, the combination of (tpy)IrCl₃ and 1,3-bis(2benzothiazolyl)-5-methylbenzene⁶ gave a mixture of products, presumably due to undesired cyclometallating reactions at positions such as 4 or 6 on the central benzene moiety. These 55 results indicate that two methyl groups at 4 and 6 positions on bbtxH play important roles in the selective cyclometallation at the 2 position. The reaction of bbtxH and IrCl₃•4H₂O gave the Cl-bridging dimer complex [Ir(bbtx)Cl₂]₂ in 89% yield (Scheme 1). Since [Ir(bbtx)Cl₂]₂ is insoluble in commonly used organic 60 solvents such as CHCl₃, THF, DMF, and DMSO, the complex
- was characterized by mass spectrometry and elemental analysis. **[Ir(bbtx)(tpy)]2PF**₆ was also obtained from **[Ir(bbtx)Cl₂]**₂ and terpyridine in 64% yield. The reaction of **[Ir(bbtx)Cl₂]**₂ with 2-

Scheme 1. Syntheses of Ir complexes with a benzothiazolebased tridentate ligand.

[journal], [year], [vol], 00-00 | 1

phenylpyridine was carried out by applying microwave radiation for 4 min; it resulted in a neutral complex, **Ir(bbtx)(ppy)Cl**, in 76% yield. Applying microwave radiation was better than employing conventional heating in terms of the yield, at 76% 5 versus 32%, and a reaction time of 4 min versus 20 h, respectively.⁸


45

50

55

60

65

- ¹⁰ Fig. 1. ORTEP drawings of (a) [Ir(bbtx)(tpy)]2PF₆ and (b) Ir(bbtx)(ppy)Cl with thermal ellipsoids shown at the 30% probability level. Hydrogen atoms, counter anions, and solvating molecules are omitted for clarity.
- ¹⁵ The solid-state structures of [Ir(bbtx)(tpy)]2PF₆ and Ir(bbtx)(ppy)Cl were determined by X-ray diffraction studies (Fig. 1).^{9,10} Both complexes possessed octahedral geometry around the Ir center. In Ir(bbtx)(ppy)Cl, the cyclometalated carbon of ppy was located at the trans position of the Cl ligand, ²⁰ which is consistent with the reported structure of the Ir pincer
- complex.⁴

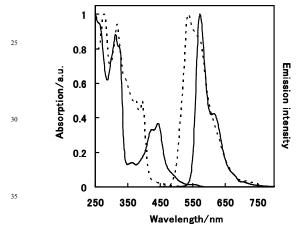
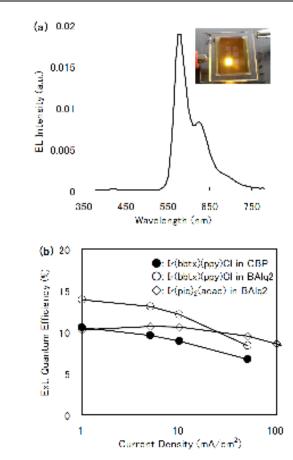



Fig. 2. UV/Vis absorption and photoluminescence spectra of **[Ir(bbtx)(tpy)]2PF**₆ in CH₃CN at r.t. (dashed line) and ⁴⁰ **Ir(bbtx)(ppy)Cl** in CH₂Cl₂ at r.t. (solid line).

⁷⁰ Fig. 3. (a) Electroluminescence (EL) spectrum of device I (inset: photograph of EL of the device at 3 V). (b) External quantum efficiencies of devices I, II, and III.

The UV/Vis absorption and photoluminescence spectra of 75 [Ir(bbtx)(tpy)]2PF₆ and Ir(bbtx)(ppy)Cl at r.t. are shown in Fig. 2. Ir(bbtx)(ppy)Cl exhibited characteristic absorption at around 450 nm, and this absorption was absent for [Ir(bbtx)(tpy)]2PF₆. The absorption was assigned tentatively to metal-to-ligand charge transfer (MLCT) on the basis of comparisons with Ir complexes ⁸⁰ composed of NCN ligands.⁴ Ir(bbtx)(ppy)Cl exhibited a strong emission at 572 nm when excited at 443 nm. The emission spectrum had a vibrational structure with a small side band at 1223 cm⁻¹. The quantum yield of Ir(bbtx)(ppy)Cl was as high as 89% in degassed CH2Cl2 at r.t. The emission lifetime of ⁸⁵ Ir(bbtx)(ppy)Cl was 1.1×10^{-6} s. Since the quantum yield was comparable to Ir(ppy)₃^{,11} Ir(bbtx)(ppy)Cl was expected to have high potential for use as an emissive material in OLEDs. On the other hand, [Ir(bbtx)(tpv)]2PF₆ exhibited a weak emission at 537 nm, where the quantum yield was less than 0.1% even in 90 degassed CH₃CN. The low quantum vield of [Ir(bbtx)(tpy)]2PF₆ is presumably due to low energy level of a d orbital on the Ir center, which inhibits MLCT leading to effective emission.4i

The thermal stability of **Ir(bbtx)(ppy)Cl** was evaluated by ⁹⁵ thermogravimetric analysis. The 5% decomposition temperature of **Ir(bbtx)(ppy)Cl** was 480 °C, which was higher than that of Ir(ppy)₃ at 413 °C.^{2c} This result proved to be the advantage of the pincer ligand in terms of thermal stability. Owing to its high

2 | Journal Name, [year], [vol], 00-00

thermal stability and high fluorescence quantum yield, **Ir(bbtx)(ppy)Cl** was evaluated as a candidate dopant for the emitting layer of OLEDs. To examine the electrophosphorescent properties of **Ir(bbtx)(ppy)Cl**, three OLEDs (I, II, and III) were

- s fabricated with different host materials and dopants. In the emission layer of device I, 4,4'-bis(9-dicarbazolyl)-2,2'-biphenyl (CBP) was used as the host material and Ir(bbtx)(ppy)Cl was used as the dopant. In device II, the host material was bis(2methyl-8-quinolinolato)phenolatealuminium(III) (BAlq2) instead
- ¹⁰ of CBP and the dopant was **Ir(bbtx)(ppy)CI**. In device III, the host material was BAlq2 and the dopant was bis(1phenylisoquinoline)(acetylacetonate)iridium(III), Ir(piq)₂(acac).¹² Fig. 3a shows the electroluminescence spectrum of device I, which is similar to its photoluminescence spectrum in the diluted
- ¹⁵ solution state. This result indicates that Ir(bbtx)(ppy)CI was well dispersed throughout CBP. The coordinates of the CIE chromaticity of device I were x = 0.55 and y = 0.44 at 1 mA/cm². The external quantum efficiency of device I was 10.5% at 1 mA/cm² (Fig. 3b). Since device II possessed a higher external
- ²⁰ quantum efficiency (14.0%) than device I, BAlq2 was a suitable host material for Ir(bbtx)(ppy)Cl. In addition, device II had the advantage of a longer lifetime of electroluminescence than device I (Fig. S-2).† Device II had an external quantum efficiency comparable to device III with Ir(piq)₂(acac), which is ²⁵ representative of a red emission dopant.¹²

In summary, the neutral Ir complex that contains the benzothiazole-based pincer ligand has a higher quantum yield and thermal stability than Ir complexes bearing bidentate ligands. The Ir complex can serve as an efficient emissive dopant in

³⁰ OLEDs. This investigation was an important step for the development of pincer Ir complexes as emissive materials for OLEDs. Further investigations such as optimizing devices that contain **Ir(bbtx)(ppy)Cl** as a dopant and developing new designs of pincer ligands are currently underway.

35 Acknowledgements

We are grateful to the Chemical Analysis Center of the University of Tsukuba for X-ray diffraction studies, elemental analyses, and NMR spectroscopy in this research. We thank Prof. T. Nabeshima, Prof. M. Yamamura, Prof. Y. Nishimura, Dr. T.

⁴⁰ Inoue, and S. Kitagawa for assistance in measuring the quantum yields, emission lifetime, and electrophosphorescent properties of the complexes.

Notes and references

- (a) M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S.
 R. Forrest, *Appl. Phys. Lett.*, 1999, **75**, 4; (b) M. Ikai, S. Tokito, Y.
 Sakamoto, T. Suzuki and Y. Taga, *Appl. Phys. Lett.*, 2001, **79**, 156; (c)
 C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, *J. Appl. Phys.*, 2001, **90**, 5048; (d) M. S. Lowry and S. Bernhard, *Chem. Eur. J.*, 2006, **12**, 7970; (e) C. Ulbricht, B. Beyer, C. Friebe, A. Winter and U.
- 50 S. Schubert, Adv. Mater., 2009, 21, 4418; (f) Y. You and S. Y. Park, Dalton Trans., 2009, 1267; g) Y. Chi and P.-T. Chou, Chem. Soc. Rev., 2010, 39, 638.
- 2 (a) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau and M. E. Thompson, *Inorg. Chem.*,
- 2001, 40, 1704; (b) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, *J. Am. Chem. Soc.*, 2001, 123, 4304; (c) A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T.

Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, J. Am. Chem. Soc., 2003, **125**, 12971; (d) J.-Y. Hung, Y. Chi, I.-H. Pai, Y.-C. Yu, G.-H. Lee, P.-T. Chou, K.-T. Wong, C.-C. Chen and C.-C Wu, Dalton Trans., 2009, 6472; (e) K. Tsuchiya, S. Yagai, A. Kitamura, T. Karatsu, K. Endo, J. Mizukami, S. Akiyama and M. Yabe, Eur. J. Inorg. Chem. 2010, 926, (f) V. K. Rai, M. Nishiura, M. Takimoto and Z. Hou, Chem. Commun., 2011, **47**, 5726

60

65

- M. Albrecht and G van Koten, *Angew. Chem., Int. Ed.*, 2001, **40**, 3750.
 (a) A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. G. Williams, *Inorg. Chem.*, 2004, **43**, 6513; (b) A. J. Wilkinson, H. Puschmann, J. A.
- K. Howard, C. E. Foster and J. A. G. Williams, *Inorg. Chem.*, 2006, 45, 8685; (c) V. L. Whittle and J. A. G. Williams, *Inorg. Chem.*, 2008, 47 6596; (d) T. Yutaka, S. Obara, S. Ogawa, K. Nozaki, N. Ikeda, T. Ohno, Y. Ishii, K. Sakai and M. Haga, *Inorg. Chem.*, 2005, 44, 4737; (e) S. Obara, M. Itabashi, F. Okuda, S. Tamaki, Y. Tanabe, Y. Ishii, K. Nozaki and M. Haga, *Inorg. Chem.*, 2006, 45, 8907; (f) L. Yang, F. Okuda, K.
- ⁷⁵ Kobayashi, K. Nozaki, Y. Tanabe, Y. Ishii and M. Haga, *Inorg. Chem.*, 2008, 47, 7154; (g) M. Ashizawa, L. Yang, K. Kobayashi, H. Sato, A. Yamagishi, F. Okuda, T. Harada, R. Kuroda and M. Haga, *Dalton Trans.*, 2009, 1700; (h) J. A. G. Williams, A. J. Wilkinson and V. L. Whittle, *Dalton Trans.*, 2008, 2081; (i) J. A. G. Williams, *Chem. Soc. Rev.*, 2009, 38, 1783.
- 5 D. Choi, T. Kim, S. M. Reddy and J. Kang, *Inorg. Chem. Commun.*, 2009, **12**, 41.
- 6 K. Okamoto, T. Kanbara, T. Yamamoto and A. Wada, Organometallics, 2006, 25, 4026.
- 85 7 (a) A. Yokooji, T. Okazawa, T. Satoh, M. Miura and M. Nomura, *Tetrahedron*, 2003, **59**, 5685; (b) D. Alagille, R. M. Baldwin and G. D. Tamagnan, *Tetrahedron Lett.*, 2005, **46**, 1349; (c) A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada, M. Kawamoto, T. Ikeda, *J. Am. Chem. Soc.*, 2003, **125**, 1700.
- 90 8 H. Konno and Y Sasaki, *Chem. Lett.*, 2003, **32**, 252.
 9 Crystallographic details for [Ir(bbtx)(tpy)]2PF₆·2DMF; C₄₃H₄₀N₇F₁₂IrO₂P₂S₂, *M* = 1233.1, Rigaku RAXIS-RAPID (Mo Kα radiation), *T* = 88 K, Triclinic spacegroup *P*-1, *a* = 8.8979(3) Å, *b* = 14.1372(5) Å, *c* = 19.0729(6) Å, *α* = 97.1587 (12), *β* = 90.6934(11), *γ*
- ⁹⁵ = 110.3673 (12)°, V = 2227.70(13) Å³, Z = 2, $D_{calc} = 1.838$ g/cm³, 21949 measured reflections, 10019 independent reflections [$R_{int} = 0.079$], $R_1[I > 2\sigma(I)] = 0.0404$, $wR_2(all data) = 0.0969$, GOF = 1.078. CCDC 834013. Selected bond distances of [Ir(bbtx)(tpy)]2PF₆ (Å): Ir-C1 = 1.972(4) Ir-N1 = 2.093(3), Ir-N2 = 2.087(4), Ir-N3 = 2.030(3), Ir-N4 = 2.066(3), Ir-N5 = 2.056(3)
- 10 Crystallographic details for **[Ir(bbtx)(ppy)Cl**·2CHCl₃; C₃₅H₂₅N₃IrS₂Cl₇, M = 992.1, Rigaku RAXIS-RAPID (Mo K α radiation), T = 88 K, Triclinic spacegroup P-1, a = 9.7217(5) Å, b =12.3438(6) Å, c = 16.1530(8) Å, $\alpha = 79.6257$ (15), $\beta = 87.9281(17)$, γ 105 = 71.2491 (15)°, V = 1805.03(16) Å³, Z = 2, $D_{calc} = 1.825$ g/cm³, 17542 measured reflections, 8161 independent reflections [$R_{int} = 0.098$], R_1 [I > $2\sigma(I)$] = 0.0563, w R_2 (all data) = 0.1348, GOF = 0.943. CCDC 834012. Selected bond distances (Å): Ir-C1 = 1.956(6), Ir-C2 = 2.013(7), Ir-N1 = 2.073(6), Ir-N2 = 2.083(7), Ir-N3 = 2.158(5), Ir-C11 = 110 2.5034(15)
- 2.5034(15).
 11(a) S. Sprouse, K. A. King, P. J. Spellane and R. J. Watts, *J. Am. Chem. Soc.*, 1984, **106**, 6647; (b) A. Endo, K. Suzuki, T. Yoshihara, S. Tobita, M. Yahiro and C. Adachi, *Chem. Phys. Lett.*, 2008, **460**, 155.
- 12 Y.-J. Su, H.-L Huang, C.-L. Li, C.-H. Chien, Y.-T. Tao, P.-T. Chou, S. Datta and R.-S. Liu, *Adv. Mater.*, 2003, **15**, 884.

This journal is © The Royal Society of Chemistry [year]