1	Dependence of crystal orientation in Al-induced crystallized poly-Si layers
2	on SiO ₂ insertion layer thickness
3	
4	
5	Atsushi Okada ^a , Kaoru Toko ^a , Kosuke O. Hara ^b , Noritaka Usami ^{b,c} , and Takashi Suemasu ^{a,b}
6	^a Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
7	305-8573, Japan
8	^b Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075,
9	Japan
10	^c Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Miyagi
11	980-8577, Japan
12	
13	We have fabricated poly-Si thin films on fused silica substrates by the Al-induced
14	crystallization (AIC) method with SiO ₂ insertion layers of various thicknesses (0-20 nm). The
15	growth morphologies of poly-Si layers were dramatically changed by the SiO ₂ thickness, <i>i.e.</i> ,
16	thin layers (2 nm) provided high growth rates and (100) orientations, and thick layers (10 nm)
17	provided low growth rates and (111) orientations. These results showed that the crystal
18	orientation of AIC-Si significantly depends on the diffusion rate of Si atoms into the Al layer.
19	

20	PACS: 61.05.cp; 61.05.jh; 68.55.ag
21	
22	
23	
24	Keywords: A1. Growth models; A3. Solid phase epitaxy; B2. Semiconducting silicon; B3.
25	Solar cells

1. Introduction

28	The Al-induced crystallization (AIC) method is known as a method for obtaining thin
29	poly-Si layers on glass substrates, where amorphous Si (a-Si) layers on Al are transformed
30	into a crystalline phase via exchange between the Al and Si layers during annealing [1].
31	This method enables us to fabricate seed layers for epitaxially grown absorbers for thin-film
32	solar cells on inexpensive SiO ₂ substrates [2-7]. Conventional solid phase crystallization
33	(SPC) requires temperatures higher than 600° C, and the Si grains obtained are as small as a
34	few μ m [8]. In the AIC method, Si crystallizes at relativity low temperatures in the range of
35	400-500°C, and large grains of tens of μm in size can be obtained even on
36	non-lattice-matched substrates [9,10]. Therefore, the Si seed crystals fabricated by the AIC
37	method seem to enable the growth of high-quality devices such as thin-film solar cells and
38	thin-film transistors on low-cost glass substrates [11-15]. The crystal orientation is critical
39	for device performances [16]. Thus, the control of crystal orientations in the poly-Si layers
40	is required.
41	However, factors determining the preferential crystal orientation of AIC-Si layers
42	remain an open question. Preferential (100) orientation of the AIC-Si layers has been
43	reported [9,13,17]. On the other hand, growth of (111)-oriented Si layers has been also
44	reported [15,18]. Kurosawa et al. showed that the preferential orientation of AIC-Si on

45 fused silica can be controlled by changing the exposure time of Al in air, and they proposed

46	a model showing that the orientation of AIC-Si is determined by the crystal phase of the
47	native Al oxide [19]. In contrast, Jung et al. considered that the preferential orientation
48	depends on the annealing temperature, and proposed a model showing that the growth rate
49	of AIC-Si determines the preferential orientation [20]. In this study, our aim was to
50	investigate the influence of Si diffusion rate on the preferential orientation of AIC-Si. We
51	also aimed to develop a method to control the crystal orientation of AIC-Si. For this purpose,
52	we introduced SiO_2 layers with various thicknesses as intermediate layers between the a-Si
53	and Al layers and carried out the AIC method. The SiO ₂ layer thickness is easier to control
54	compared to the thickness of a native Al oxide. In addition, the effect of the intermediate
55	layer crystallinity on the AIC-Si is negligible when we discuss the crystal orientation of
56	AIC-Si layers.
57	
58	2. Experimental procedures

Fused silica wafers were used as substrates in this work. A 100-nm-thick Al film was sputtered at room temperature (RT) on the substrate. Next, an amorphous SiO₂ layer was subsequently sputtered at RT on the Al layer, followed by sputtering a 100-nm-thick a-Si film at RT without breaking the vacuum. The thickness of the SiO₂ layer was varied from 0 to 20 nm. All the depositions were carried out by radio-frequency (RF) magnetron sputtering. For comparison, conventional AIC method was also performed, that is,

65	deposition of Al layers, followed by breaking the vacuum to form a native Al layer for 48 h,
66	and the subsequent deposition of a-Si layers. The argon pressure during the sputtering was
67	0.2 Pa. The RF power was set at 100 W. The AIC method was carried out by annealing the
68	samples in N_2 atmosphere at 500 $^\circ C$ for 10 h. Sample preparation was summarized in Table
69	1. The surface morphologies of some of the samples were observed during annealing by
70	optical microscopy. After annealing, the Al and oxide layers were etched away using a HF
71	solution (HF: 2%). The crystal orientation of AIC-Si was characterized by electron
72	backscatter diffraction (EBSD) measurement.
73	
74	3. Results and discussion
74 75	3. Results and discussion The time evolution of optical microscope images for sample D, prepared with a
75	The time evolution of optical microscope images for sample D, prepared with a
75 76	The time evolution of optical microscope images for sample D, prepared with a 2-nm-thick SiO_2 intermediate layer, is shown in Figs. 1(b)-1(e), and those for sample H,
75 76 77	The time evolution of optical microscope images for sample D, prepared with a 2-nm-thick SiO_2 intermediate layer, is shown in Figs. 1(b)-1(e), and those for sample H, prepared with a 10-nm-thick SiO_2 layer, are shown in Figs. 1(f)-1(i). Figure 1(a) shows the
75 76 77 78	The time evolution of optical microscope images for sample D, prepared with a $2-nm$ -thick SiO ₂ intermediate layer, is shown in Figs. 1(b)-1(e), and those for sample H, prepared with a 10-nm-thick SiO ₂ layer, are shown in Figs. 1(f)-1(i). Figure 1(a) shows the expected schematic cross-sectional diagram of each crystallization stage. Upon heating,
75 76 77 78 79	The time evolution of optical microscope images for sample D, prepared with a $2-nm$ -thick SiO ₂ intermediate layer, is shown in Figs. 1(b)-1(e), and those for sample H, prepared with a 10-nm-thick SiO ₂ layer, are shown in Figs. 1(f)-1(i). Figure 1(a) shows the expected schematic cross-sectional diagram of each crystallization stage. Upon heating, interdiffusion of Al and Si atoms begins. After the diffused atoms become supersaturated,

⁸³ nuclei were generated. The dependence of the incubation time and growth rate on the

82

5

The change of Si crystal radius per unit time is defined as growth rate. In growth stage, few

84	thickness of the SiO_2 intermediate layer is shown in Fig. 2. The results for sample I were
85	excluded as described later. This graph shows that the thicker the SiO_2 intermediate layer,
86	the longer the incubation time and the smaller the growth rate. This means that the SiO_2
87	intermediate layer works as a diffusion barrier for Si atoms, which is supported by the fact
88	that the diffusion coefficient of Si in SiO_2 is approximately 1000 times smaller than that in
89	Al [21,22]. On the basis of the results shown in Fig. 2, it can safely be stated that the
90	diffusion rate of Si depends on the SiO_2 intermediate layer thickness.
91	Figure 3 shows the crystal orientation mappings obtained by EBSD for AIC-Si layers
92	fabricated with various SiO_2 intermediate layer thicknesses. When we employed the
93	conventional AIC method, highly (111)-oriented AIC-Si layers were formed in sample A as
94	shown in Fig. 3(a). We next discuss the influence of SiO_2 intermediate layer thickness on
95	the AIC-Si crystal orientation. As shown in Figs. 3(b) and 3(f), the grain size of AIC-Si is
96	considerably small, less than 1 μ m both when the SiO ₂ intermediate layer thickness is zero
97	(sample B) and when it is very thick (20 nm, sample I). In the case of AIC-Si formed
98	without the SiO_2 layer as in sample B, the Si atoms were thought to diffuse into the Al
99	layer very rapidly, causing supersaturation shortly upon heating, and thus the Si atoms
100	started to nucleate everywhere at the Si/Al interface, resulting in small grains as shown in
101	Fig 3(b). In the case of very thick SiO_2 layer (20 nm, sample I), the results have not been
102	completely understood. In general, sputtered SiO ₂ films contain a certain amounts of

103	defects [23]. We speculate that these defects might significantly influence the diffusion of
104	Si atoms and thereby generation of Si nuclei at the Al/SiO ₂ interface, making it difficult to
105	understand the AIC process by the simple model shown in Fig. 1. In contrast, when the
106	SiO ₂ intermediate layer was 2-10 nm in thickness (samples C-H), the AIC-Si grains
107	exceeded tens of μ m in size as shown in Figs. 3(c)-3(e). We think that the Si diffusion was
108	suppressed moderately by this SiO ₂ layer, and thus only a small number of Si nuclei were
109	generated at the Al/SiO ₂ interface, leading to lateral growth of Si nuclei as shown in Figs.
110	3(c)-3(e). Figure 4 shows the SiO ₂ intermediate layer thickness dependence of crystal
111	orientation fractions of Si. The results obtained for sample I were not included. When the
112	SiO ₂ intermediate layer was 1 nm thick, the AIC-Si became highly (100) oriented. On the
113	other hand, highly (111)-oriented AIC-Si layers were formed when the SiO ₂ intermediate
114	layer was 10 nm thick. The crystal orientation was determined from grains whose
115	misorientation from the ideal (100) and (111) planes was less than 10° . The areas other
116	than the (100) and (111) planes were much smaller, and thus were excluded in Fig. 4.
117	These results suggest that the orientation of a poly-Si thin film fabricated by the AIC
118	method depends significantly on the SiO_2 layer thickness, thereby the diffusion rate of Si.
119	Next, we discuss the mechanism of preferential AIC-Si crystal orientation dependence
120	on the SiO ₂ intermediate layer thickness, and thus the diffusion rate of Si atoms to the Al
121	layer. The surface energy in crystalline Si is the lowest for the (111) plane, followed by the

122	(100) plane [24]. We think that the crystal plane dependence of the interface energy at the
123	crystalline Si/amorphous SiO_2 interface is mostly the same as that in the crystalline Si,
124	because SiO_2 has no anisotropy. The growth rate in Si is the largest on the (100) plane [25].
125	The nucleation of Si occurs at the Al/SiO ₂ interface in AIC, because the concentration of Si
126	is the largest there within the Al layer. When the SiO_2 intermediate layer is thick and the Si
127	diffusion rate is small, the concentration of Si in the Al increases gradually. Therefore, in
128	the nucleation stage, only the most stable nuclei, (111)-oriented Si nuclei, are generated. In
129	the crystal growth stage, these (111)-oriented nuclei grow laterally. As a result, the poly-Si
130	film becomes (111) oriented. This (111) domination appears to contradict the theory
131	presented by Schneider et al [26]. This contradict is possibly originated from the difference
132	in the Al and Si thicknesses, because these thicknesses significantly affect the orientation
133	of the AIC-Si layer [27]. In contrast, when the SiO_2 intermediate layer is thin and the Si
134	diffusion rate is large, the degree of supersaturation is likely to become large. Therefore, in
135	the nucleation stage, (100)-oriented nuclei, the second most stable nuclei, are generated in
136	addition to the (111)-oriented nuclei. In the crystal growth stage, (100)-oriented nuclei
137	grow rapidly because these grains have (100) facets. Therefore, (100)-oriented nuclei
138	finally become dominant.

4. Conclusions

141	In summary, we have fabricated poly-Si thin films on fused silica substrates by the AIC
142	method using SiO_2 intermediate layers with various thicknesses (0-20 nm) between the a-Si
143	(100 nm) and Al (100 nm) layers. The incubation time and growth rate of the Si grains
144	depended on the SiO_2 layer thickness. With increasing SiO_2 layer thickness from 2 to 10
145	nm, the crystal orientation of the AIC-Si changed gradually from the (100) to (111)
146	orientation. This selective formation technique of (100) and (111) oriented poly-Si films
147	opens up a possibility of high-quality epitaxial templates for thin film devices.
148	
149	Acknowledgments
150	This work was financially supported by Japan Science and Technology Agency,
151	CREST and Grant-in-Aid for Research Activity Start-up (No. 23860011 MEXT). A part of
152	this work was conducted by the AIST Nano-Processing Facility, supported by
153	"Nanotechnology Network Japan" of MEXT, Japan.
154	

155 **References**

156 [1] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, Appl. Phys. Lett. 73

157 (1998) 3214.

- 158 [2] Z. Shi and M. A. Green, Prog. Photovoltaics 6 (1998) 247.
- 159 [3] P. I. Widenborg and A. G. Aberle, J. Cryst. Growth 242 (2002) 270.
- 160 [4] E. Pihan, A. Slaoui, and C. Maurice, J. Cryst. Growth 305 (2007) 88.
- 161 [5] H. Kuraseko, N. Orita, H. Koaizawa, and M. Kondo, Appl. Phys. Express 2 (2009)
- 162 015501.
- [6] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, Thin Solid Films
 516 (2008) 6984.
- [7] B. R. Wu, S. Y. Lo, D. S. Wuu, S. L. Ou, H. Y. Mao, J. H. Wang, and R. H. Horng, Thin
 Solid Films 520 (2012) 5860.
- [8] R.B. Bergmann, G. Oswald, M. Albrecht, and V. Gross, Sol. Energy Mater. Sol. Cells 46
 (1997) 147.
- [9] H. Kim, D. Kim, G. Lee, D. Kim, and S. H. Lee, Sol. Energy Mater. Sol. Cells 74 (2002)
 323.
- [10] S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, J. Non-Cryst. Solids 299-302 (2002)
 741.
- 173 [11] Y. Ishikawa, A. Nakamura, Y. Uraoka, and T. Fuyuki, Jpn. J. Appl. Phys. 43 (2004) 877.

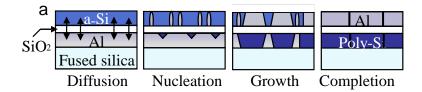
- [12] I. Gordon, L. Carnel, D. Gestel, G. Beaucarne, and J. Poortmans, Prog. Photovoltaic 15(2007) 575.
- [13] P. Prathap, O. Tuzun, D. Madi, and A. Slaoui, Sol. Energy Mater. Sol. Cells 95 (2011)S44.
- [14] K. Toko, M. Kurosawa, H. Yokoyama, N. Kawabata, T. Sakane, Y. Ohta, T. Tanaka, T.
 Sadoh, and M. Miyao, Appl. Phys. Express 3 (2010) 075603.
- 180 [15] D. Tsukada, Y. Matsumoto, R. Sasaki, M. Takeishi, T. Saito, N. Usami, and T. Suemasu,
- 181 Appl. Phys. Express 2 (2009) 051601.
- [16] S. M. Sze, Physics of Semiconductor Devices, p. 386, 2nd ed. (Wiley, New York, 1981)
- 183 [17] S. Gall, J. Schneider, J. Klein, K. Hübener, M. Muske, B. Rau, E. Conrad, I. Sieber, K.
- Petter, K. Lips, M. Stöger-Pollach, P. Schattschneider, and W. Fuhs, Thin Solid Films
 511-512 (2006) 7.
- [18] Y. Sugimoto, N. Takata, T. Hirota, K. Ikeda, F. Yoshida, H. Nakashima, and H.
 Nakashima, Jpn. J. Appl. Phys. 44 (2005) 4770.
- [19] M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 95 (2009)
 132103.
- [20] M. Jung, A. Okada, T. Saito, T. Suemasu, and N. Usami, Appl. Phys. Express 3 (2010)
 095803.
- 192 [21] S. Fujikawa, K. Hirano, and Y. Fukushima, Metall. Trans. A 9A (1978) 1811.

- 193 [22] S. Fukatsu, T. Takahashi, and K. M. Itoh, Appl. Phys. Lett. 83 (2003) 3897.
- 194 [23] Y. Urabe, T. Sameshima, K. Motai, and K. Ichimura, Jpn. J. Appl. Phys. 47 (2008) 8003.
- 195 [24] A. A. Stekolnikov, J. Furthmuller, and F. Bechstedt, Phys. Pev. B 65 (2002) 115318.
- 196 [25] L. Csepregi, E. F. Kennedy, and J. W. Mayer, J. Appl. Phys. 49 (1978) 3906.
- 197 [26] J. Schneider, A. Sarikov, J. Klein, M. Muske, I. Sieber, T. Quinn, H.S. Reehal, S. Gall,
- and W. Fuhs, J. Crystal Growth 287 (2006) 423.
- [27] M. Kurosawa, K. Toko, N. Kawabata, T. Sadoh, and M. Miyao, Solid-State Electron. 60
- 200 (2011) 7.

202	Fig. 1 (a) Schematic cross-sectional diagrams of each crystallization stage, optical
203	micrographs of surface morphologies of sample D, prepared with a 2-nm-thick SiO_2
204	intermediate layer, after annealing for (b) 40, (c) 50, (d) 55, and (e) 60 min, and those for
205	sample H, prepared with a 10-nm-thick SiO ₂ intermediate layer after annealing for (f) 120, (g)
206	150, (h) 180, and (i) 210 min.

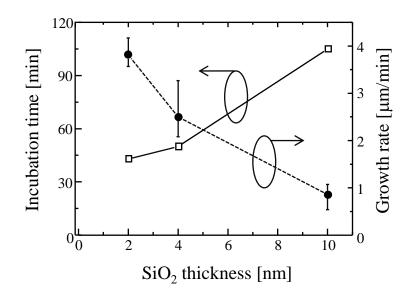
Fig. 2 Dependence of the incubation time and growth rate on the SiO₂ intermediate layer thickness.

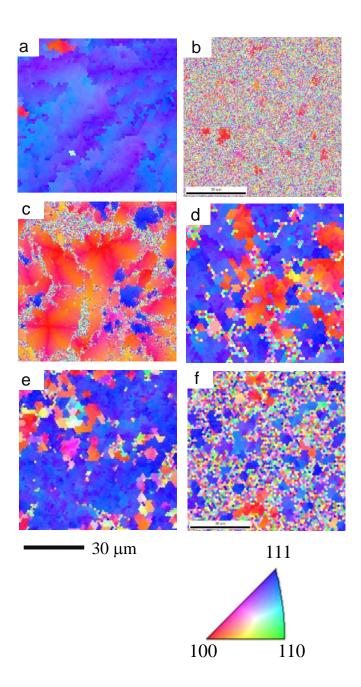
210


Fig. 3 Dependence of crystal orientation mappings of AIC-Si on the SiO₂ intermediate layer thickness for (a) sample A (native Al-oxide), (b) sample B (0 nm), (c) sample D (2 nm), (d) sample G (5 nm), (e) sample H (10 nm), and (f) sample I (20 nm).

214

<sup>Fig. 4 Dependence of AIC-Si crystal orientation fractions on the SiO₂ intermediate layer
thickness.</sup>


Sample	Al (nm)	Air exposure (h)	SiO ₂ (nm)	Si (nm)
A	100	48	0	100
В	100	0	0	100
С	100	0	1	100
D	100	0	2	100
Е	100	0	3	100
F	100	0	4	100
G	100	0	5	100
Н	100	0	10	100
I	100	0	20	100


Table 1 Preparation of samples A-I. Al layer thickness, air exposure time, SiO_2 and a-Si layer thicknesses are shown.

— 50 μm

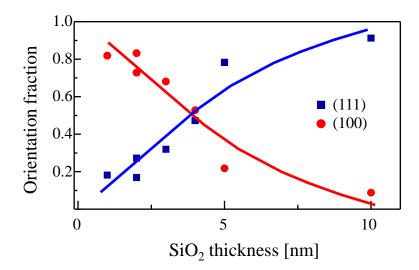


Figure 4