
Exploiting Twitter for Spiking Query Classification

Mitsuo Yoshida1 ? and Yuki Arase2

1 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
ceekz@mibel.cs.tsukuba.ac.jp

2 Microsoft Research Asia,
Building 2, No.5 Dan Ling Street, Haidian District, Beijing, P.R. China

yukiar@microsoft.com

Abstract. We propose a method for classifying queries whose frequency spikes
in a search engine into their topical categories such as celebrities and sports. Un-
like previous methods using Web search results and query logs that take a certain
period of time to follow spiking queries, we exploit Twitter to timely classify
spiking queries by focusing on its massive amount of super-fresh content. The
proposed method leverages unique information in Twitter—not only tweets but
also users and hashtags. We integrate such heterogeneous information in a graph
and classify queries using a graph-based semi-supervised classification method.
We design an experiment to replicate a situation when queries spike. The results
indicate that the proposed method functions effectively and also demonstrate that
accuracy improves by combining the heterogeneous information in Twitter.

Keywords: Query Classification, Spiking Query, Twitter

1 Introduction

The frequency of a Web search query naturally reflects the degree of people’s inter-
est in it. Therefore, queries that suddenly spike in a search engine can be regarded as
gaining more attention from people. We propose a method for timely classifying such
spiking queries into their topical categories, for example, celebrities and sports. Hav-
ing categories of spiking queries is useful for search engines in various ways. They
may help to immediately improve the relevance of search results and enable to trig-
ger an appropriate vertical search when a query becomes popular. They also benefit
search advertisers in presenting relevant advertisements at the time when more people
are interested in related topics. Although many query classification methods have been
proposed (e.g., [11]), little attention has been paid to spiking queries.

The biggest challenge in spiking query classification is a lack of resources for char-
acterizing them. Although previous methods of query classification have used Web
search results and query logs3, they are not always available in a timely fashion for
spiking queries due to the queries’ sudden emergence. Broder et al. [4] show that about
5% of queries in their experimental dataset are too recent to obtain search results for, and
? This project was conducted while the first author was visiting Microsoft Research Asia.
3 In this paper, query logs include all information associated with a query, even click-through.

that affects the classification accuracy. Apart from this challenge in resource unavail-
ability, the expensive cost of manually labeling queries to train a classifier is a common
challenge in query classification tasks, regardless of whether focusing on spiking or
general queries.

To tackle these challenges, we propose a method for timely classifying spiking
queries by exploiting Twitter4, which provides a huge amount of super-fresh content
on a broad range of topics in real-time. We leverage unique information that Twitter
provides: tweets, users, and hashtags. We use tweets that contain spiking queries to eval-
uate the similarity between queries, assuming that similar queries belong to the same
category. In addition, we use information on users and hashtags and evaluate their corre-
lation with queries. We assume that if a Twitter user follows, or in other words, “belongs
to” a category, queries that appear in his/her tweets also belong to that category. Like-
wise, if a query belongs to a category, users who posted tweets containing the query
also belong to the same category. The same relationship is also applicable to hashtags.
If a hashtag belongs to a category, queries that appear in tweets with the same hashtag
also belong to that category, and vice versa. We use a graph-model to integrate such
heterogeneous information and adapt a graph-based semi-supervised learning method
for classification that requires a smaller amount of training data.

The contribution of our method is twofold. First, we propose a novel method for
timely classifying spiking queries by capitalizing on its correlation with Twitter. Sec-
ond, we leverage unique information that Twitter provides to improve the classification
accuracy. We consider not only tweets, but also users and hashtags, to characterize spik-
ing queries and we combine these into a graph-model.

We carefully design an experiment to evaluate the proposed method for classifying
spiking queries on the day the queries become popular in a search engine. The results
show that the method is effective and that accuracy improves by combining the query
similarity and correlation with users/hashtags.

2 Related Work

Many studies have investigated query classification of their topical categories based on
Web search results and query logs. They use supervised, semi-supervised, or unsuper-
vised classification methods.

In supervised-learning based approaches, the KDD-Cup 2005 competition featured
query classification, where attendees used search result pages and their attributes such
as titles and snippets, as well as search engine directories to extract features of queries
[11]. Baeza-Yates et al. [2] use click-through data to expand an input query and generate
a feature based on terms that appear in accessed Web pages. Broder et al. [4] focus on
rare queries with low frequency that are therefore difficult to classify. The difference
between spiking queries and rare queries is the number of relevant Web pages. Broder et
al. assume that there are still a sufficient number of Web pages to characterize the rare
queries, even though their frequency in a search engine is small. Their method classifies
search result pages of an input rare query and Web pages linked from them instead of

4 http://twitter.com/

classifying the query itself. Nevertheless, we cannot always assume such resources are
available for spiking queries when they spike in a search engine.

These methods use supervised-learning methods and thus have a drawback in that
they require a large amount of training data. To relax this requirement, researchers also
use semi-supervised or unsupervised learning methods. Shen et al. [13] propose build-
ing a fine-grained intermediate classifier through which an input query is first classified
into intermediate categories based on maximum likelihood estimation, and then the in-
termediate categories are further classified into target categories with a coarse structure.
Beitzel et al. [3] generate rules to classify queries based on linguistic knowledge com-
bined with a classifier trained by a supervised-learning method. Xiao et al. [10] conduct
binary classification that decides whether a query has a predetermined intent, such as
job or product intents, using click-through data. Diemert and Vandelle [5] construct
a concept graph using their search result pages and query logs, in which they inject
target categories for classification. They expand an input query with its search result
pages and extract salient categories by matching the expanded query and concepts by
random-walk in the graph. Hu et al. [7] construct such a concept graph using Wikipedia.

These previous studies depend on relevant Web pages and query logs and they are
therefore not applicable for timely classifying spiking queries for which these resources
are not always available.

Another stream of related work exploits Twitter for extrinsic tasks such as detecting
earthquakes [12], identifying and ranking URLs of trendy Web pages [6], and deter-
mining high-quality content from a QA portal [1]. These studies have different goals;
however, they show that Twitter is a valuable resource that produces super-fresh content
and reflects the trends of the general public. These studies also demonstrate the useful-
ness of various content in Twitter, i.e., URLs, users, and their social relationships.

3 Problem Statement

We start by formally defining the spiking query classification problem. In this study,
we use Japanese queries and tweets, since Twitter has millions of users in Japan and
is therefore popular, and we can obtain a sufficient number of tweets to conduct query
classification. Although we use Japanese data, our approach is language-independent
and is easily applicable to other languages.

3.1 Definition of Spiking Query

We first define a spiking query as a query whose frequency in a search engine spikes; a
spike occurs when there is a massive increase followed by a corresponding decrease in
the query’s frequency [9]. We regard queries spiking once or multiple times as spiking
queries and aim to classify them when they become popular. In this study, we choose
queries showing spikes based on their frequency history from all queries that we obtain
through a toolbar (Bing Bar5) installed on Windows Internet Explorer6. Our method can
handle queries with either single-term or multiple-term structures.

5 http://toolbar.discoverbing.com/
6 http://windows.microsoft.com/en-US/internet-explorer/products/
ie/home

We observe trends in spiking queries on Twitter in comparison with their trends on
news pages to investigate whether tweets containing the spiking queries are available in
a timely fashion. News pages serve as a good baseline since they are highly responsive
to fresh topics, i.e., spiking queries, since they are intended to convey timely informa-
tion to people. We obtain news data by crawling the main content of Web pages from a
news portal (Ceek.jp News7) covering local and nationwide news agencies throughout
Japan.

A typical example is in Fig. 1. A trend in the spiking query karelog is evident
from August 24 to September 15, 2011. karelog is the name of a mobile application
released on August 28 in Japan. The frequencies of the query and tweets are shown in
a logarithmic scale (for intuitive representation, we add 1 to all frequencies to avoid
having a missing value when the raw frequency is 0), while the frequencies of the news
pages are raw values. It is clear that the query created a buzz on Twitter with more than
13K tweets simultaneously on the day it spiked in the search engine for the first time.
On the contrary, there was only one news page that featured this query on the same
day. The spike in news pages did not occur until two weeks later, and on that day, the
second spike occurred on Twitter. This shows that Twitter users are amazingly reactive
to trendy topics. These observations reveal that Twitter enables us to classify spiking
queries in a timely manner.

3.2 Problem Definition of Spiking Query Classification with Twitter

When queries Q = {q1, . . . , qn} that are input into a search engine spike, we aim to
timely classify a spiking query qi into a predetermined category in C = {c1, . . . , cm}
by leveraging unique information that Twitter provides, i.e., tweets, users, and hashtags.

In this study, we assume that one query belongs to one category, because when a
query spikes, it is generally triggered by a specific topic such as the release of a new
product or new film, which makes the corresponding category dominant. Therefore, we
decide the most likely category to be the query’s category.

4 Proposed Method

The input used with our method consists of spiking queries, predefined categories, and
prior labels of queries Ŷ = {y′1, . . . , y′n|y′i ∈ C ∪ ν} where y′j ∈ C if the query qj is
labeled; otherwise, y′j has a default label ν. Prior labels represent categories of labeled
queries and serve as training data in semi-supervised classification. The method finally
outputs categories Y = {y1, . . . , yn|yi ∈ C} assigned to the input queries.

Our first step is to construct a graph. We extract users UQ = {u1, . . . , ul} who
posted tweets containing the queries Q, and hashtags HQ = {h1, . . . , hk} that are as-
signed to tweets containing the queries Q. We match a query and tweet by substring
matching. With these queries, users, and hashtags, we construct the query-Twitter graph
G = {V,E,W}. Here, V consists of n query nodes Vq , l user nodes Vu, and k hashtag
nodes Vh (N = n+ l + k), in which we generate the query nodes Vq using the input

7 http://news.ceek.jp/ (This news portal is provided by the first author.)

QueryLog -1%

0

2

4

6

8

10

1

10

100

1000

10000

100000

08/24/11 08/31/11 09/07/11 09/14/11

#
 o

f
n

ew
s

p
a

g
es

#
 o

f
q

u
er

ie
s

a
n

d
 T

w
ee

ts
 [

lo
g

 s
ca

le
]

Date

Query frequency

Twitter

News

Fig. 1. Trend of spiking query karelog
in search engine, Twitter, and news pages.

(a) Twitter user

Spiking query

Category: Sports

Sports

Sports

... the TIME featuring global

soccer star Leo Messi ...

Messi

FCBarcelona

El Clasico

... I support FCBarcelona!!!

... will translate tonight about

El Clasico highlights...
...

Query

category

Sports

(b) Hashtag

Category: Sports

Valencia vs FCBarcelona:

Draw with some shine #FCB

Who would win in a current

day El Clasico if Messi &

Ronaldo were missing? #FCB

...

#FCB

Fig. 2. Correlation between query and user (a) and
query and hashtag (b); categories of query and
user/hashtag affect each other.

queries Q. The variable E represents the edges between nodes, and W is an N ×N
edge weight matrix. If the edge(vi, vj) /∈ E between nodes vi and vj , then Wij = 0.
With this query-Twitter graph G, we conduct classification using a graph-based semi-
supervised classification method, in which we propagate categories of labeled queries
Ŷ to the entire graph.

4.1 Graph Construction

Correlation between Query and User Twitter provides information on who posts tweets,
which enables to characterize queries from a novel aspect, i.e., correlation between a
query and a user. Fig. 2 (a) illustrates this correlation; we can infer that the category of
the user is “sports” if he/she posts many tweets containing queries in a sports category.
On the contrary, we can infer that the category of query Messi is probably sports if
users who belong to the sports category frequently post tweets containing that query.

To employ the correlation, we extract user nodes Vu from Twitter data. For each
query qi, we extract a set of tweets Ti containing the query qi. Based on Ti, we find a
set of users Ui who posted tweets containing the query qi. Finally, we obtain a unique
set of users UQ from Uall = {U1, . . . , Un} and use them as user nodes Vu.

We join nodes Vq and Vu by edges E and compute the edge weight matrix W . To
introduce the correlation between a query q and user u, we set an edge with weight
Wqu between them if the user has posted tweets containing the query. Naturally, the
more the user posts tweets containing the query, the more likely it is that the user and
query belong to the same category. Therefore, we define the edge weight to represent the
strength of their correlation. When considering this from the user side, the correlation
ψ(u→ q) represents the probability that the user posts tweets containing the query. On
the other hand, when considering this from the query side, the correlation ψ(q → u)
represents the probability of the query being tweeted by this specific user. These are
computed as

ψ(u→ q) =
count(u, q)∑

q′∈Q count(u, q
′)
, ψ(q → u) =

count(u, q)∑
u′∈UQ

count(u′, q)
,

where count(u, q) represents the number of tweets that are posted by the user u and that
contain the query q. We then compute the edge weight as Wqu = (ψ(u→ q) + ψ(q →
u))/2, which represents the strength of the correlation between the user and query.

Correlation between Query and Hashtag A unique functionality in Twitter is the hash-
tag. The hashtag starts with the indicator symbol “#,” as in “#FCB,” and is occasionally
assigned to mark the topic of a tweet. Users share the same hashtag and freely assign it
to their tweets, which enables tweets about the same topic to be aggregated. In our data,
about 10% of tweets contain hashtags. The hashtag is another useful resource for query
classification because it is highly likely that queries contained in tweets with the same
hashtag belong to the same category, as Fig. 2(b) shows. This relationship is identical
to the correlation between a query and a user.

For each query qi and tweets Ti containing the query, we find a set of hashtags Hi

assigned to Ti. We then obtain a unique set of hashtagsHQ fromHall = {H1, . . . ,Hn}
and use them as hashtag nodes Vh. Similar to the edge between a query and user, we set
an edge with weight Wqh between a query q and hashtag h based on their correlation:

ψ′(h→ q) =
count′(h, q)∑

q′∈Q count
′(h, q′)

, ψ′(q → h) =
count′(h, q)∑

h′∈HQ
count′(h′, q)

,

where count′(h, q) represents the number of tweets that contain both the hashtag h and
the query q. Finally, the edge weight is computed as Wqh = (ψ′(h → q) + ψ′(q →
h))/2.

Context Similarity between Queries In addition to the correlation between a query and
user/hashtag, we consider the similarity between queries using tweets in which the
queries appear. This common approach has been used in previous studies, as discuss
in Sec. 2. The underlying assumption is that queries of the same category are tweeted
in a common context; for example, queries belonging to the sports category would be
tweeted with the terms “football” and “tournament.” We set an edge between query q
and q′ with weight Wqq′ based on their similarity sim(q, q′).

We generate a vector to represent q using the bag-of-words model with terms ex-
tracted from tweets TQ = {T1, . . . , Tn} that contain the queries of the classification
target. We use tf-idf to compute an element of the vector. Then we compute the simi-
larity sim(q, q′) of q and q′ using the cosine similarity; this is a conventional method
to measure the similarity of two vectors. To prune an edge between dissimilar queries,
we introduce a threshold ρ. The edge is set only if sim(q, q′) > ρ; otherwise, the edge
weight is Wqq′ = 0.

When the categories the queries’ belonging to are semantically related, the queries
may have a similar context even though they belong to different categories. For exam-
ple, the name of an actress belonging to the celebrities category may appear together
with the title of a film starring the actress, even though the title belongs to the movie
category. In such a case, queries have similarity with various categories and may con-
fuse the classifier. Therefore, we need to introduce a normalizing factor in the similarity
measure. When we focus on q, the similarity is updated as

sim′(q → q′) =
sim(q, q′)∑

q∗∈{q∗|edge(q,q∗)∈E} sim(q, q∗)
.

This normalization factor makes the similarity directional, and thus, the final edge
weight is computed by considering the similarity both from q to q′ and from q′ to q:
Wqq′ = (sim′(q → q′) + sim′(q′ → q))/2.

Balance Edge Weights We define edge weights between a query and user/hashtag based
on their correlation, and an edge weight between queries based on their context simi-
larity. Since these correlations and context similarities are based on different statistical
evidence, we may not handle their weights equally. Therefore, we balance their influ-
ence by introducing a weighting parameter8 α.

W ′qu = αWqu,W
′
qh = αWqh,W

′
qq′ = (1− α)Wqq′ . (1)

All of these weights are normalized to range from 0 to 1 as describe previously. The
parameter α ranges from 0 ≤ α ≤ 1. We evaluate the effect of the parameters in our
method, i.e., ρ and α, in Sec. 5.4.

4.2 Graph-based Semi-supervised Classification

Now that we have the query-Twitter graph, we conduct classification using the graph.
We cast the classification problem as a semi-supervised graph labeling problem to
achieve a cost-effective classifier. The query-Twitter graph G has N nodes consisting
of n query nodes, l user nodes, and k hashtag nodes (n < k � l). Under the frame-
work of the semi-supervised approach, we assign category labels C to the small num-
ber of n0 query nodes Vq0. Other n1 query nodes are unlabeled (n = n0 + n1). Our
aim is to propagate the labels to unlabeled n1 query nodes via user/hashtag nodes. In
the label propagation, we want nodes connected by a highly weighted edge to have the
same label. When a node vi receives a propagated label yi and its neighboring node
vj ∈ Neighbor(vi) receives a propagated label yj , our objective function is

E(C) =
∑
i,j

Wij(yi − yj)2 s.t. yk = c̃,

where yk is the label of a labeled node vk ∈ Vq0 that is assigned a category c̃ ∈ C. The
final label assignment Y is obtained by minimizing the objective function

Y = argmin
Y

E(C).

Solutions for this optimization problem have been proposed as graph-based semi-
supervised classification algorithms [15, 14]. We adapt the modified adsorption algo-
rithm [14] because it is suitable for handling a highly connected graph like ours and pre-
vents densely connected nodes from excessively affecting the lesser connected nodes.
In addition, it achieves state-of-the-art performance. We use the implementation dis-
tributed by the authors9.

5 Evaluation

We evaluate the classification accuracy of the proposed method with a realistic setting
that replicates the situation when a query spikes.

8 Since the principle of the correlations regarding users and hashtags is the same, we use the
same weighting parameter for simplicity.

9 https://github.com/parthatalukdar/junto (Junto v1.2.2)

5.1 Dataset

For this evaluation, we need queries with their frequency history. We use a 1% sample
of queries in Japanese that ware input to Bing Bar during three months; from July
1 to September 30, 2011. Our query data consist of a query string, issued date, and
frequency on the day. We extract spiking queries and discard those whose frequency is
less than 10 since the magnitude of spikes is too small to determine whether the spikes
are meaningful or just by chance. The result produced 5,721 unique queries, which we
then labeled categories to.

For labeling, we use an on-line dictionary service called Hatena Keyword10, where
only approved users can edit entries and assign categories to them. This is a popular ser-
vice in Japan and is accessed by more than 5 million people per month. An advantage of
using this service is that it has a simple and clear category structure, unlike Wikipedia,
which has complex and unstructured categories. As a result, we assign 17 categories
to 2,923 queries, as shown in Fig. 3. We sample queries and manually examine the as-
signed categories, and confirm that their quality is reliable. In this evaluation, we only
label queries, not users or hashtags. We plan to label them in a future study.

The Twitter data we use consist of tweets in Japanese posted during the same period.
In total, we collect 251M tweets through Twitter’s official API11. Of these, we use about
45M tweets that contain the spiking queries necessary for the experiments. We carry
out preprocessing using MeCab12 [8], with which we segment Japanese sentences into
words in order to compute the similarity (i.e., edge weight) between queries.

5.2 Comparison Method

To evaluate our method in comparison to another method, we need a method that uses
a semi-supervised learning based classification approach. In addition, to evaluate accu-
racy on days when a query spikes, the comparison method should use resources with
date information for feature extraction. The latter requirement makes it difficult to com-
pare our method with those used in the previous studies we discuss in Sec. 2 because
they depend on resources that do not allow us to replicate their situation in the past, for
example, search engine results.

Therefore, we decide to compare our method with a method using a graph con-
structed with news pages that contain published date information instead of tweets.
Since news pages are one of the most responsive resources to fresh topics, this method
serves as a baseline to evaluate how timely the proposed method can classify spiking
queries. We also compare our method with subgraphs of the query-Twitter graph to an-
alyze the effect of the correlation and context similarity as follows.
1. NewsGraph (Baseline): We use the news archive described in Sec. 3.1. During the
three-month experiment period, we collect 402K news pages consisting of 103 sites
in total. We construct a graph consisting of query nodes and compute an edge weight
based on their context similarity when they appear in news content.

10 http://d.hatena.ne.jp/keyword/
11 https://dev.twitter.com/docs/streaming-apis/streams/public
12 http://code.google.com/p/mecab/ (MeCab v0.98 for MS-Windows)

2. QueryGraph: To evaluate the effect of similarity between queries only, we con-
struct a graph consisting of query nodes. This is a sub-graph of the query-Twitter graph,
i.e., Gq = {Vq, Eq,Wq} where Vq represents query nodes, Eq represents edges among
query nodes, and Wq is the edge weight matrix among query nodes.
3. UserGraph: To evaluate the effect of correlation between queries and users/hashtags
only, we construct a query-Twitter graph with only edges between query and user/hashtag
nodes. This is a sub-graph Gu = {V,Eu,Wu}, where V includes all nodes, Eu repre-
sents edges between query and user/hashtag nodes, and Wu is the edge weight matrix
among query and user/hashtag nodes, i.e., Wij = 0 if vi, vj ∈ Vq .
4. QueryTwitterGraph (Proposed method): This is the proposed query-Twitter graph
G that has full features, and is the superimposed graph of QueryGraph and UserGraph.

5.3 Procedure

To replicate the situation when a query spikes in a search engine, we segment queries,
tweets, and news pages according to their date information. We set a sliding window of
size d-day and use queries spiking in the window to evaluate classification accuracy. As
Fig. 4 shows, we use queries spiking in the window to construct a graph with tweets or
news pages published in the same window, and then label the queries spiking in the first
d− 1 days with their categories and then propagate their labels to queries spiking on
the d-th day (we call the d-th day a test day). For queries that spike multiple times, we
regard the day when each query’s frequency is maximum as its spike. In this manner,
we can evaluate the classification accuracy on the day a query spikes.

We set d = 28 (= 4 weeks) to avoid any differences in frequency between queries
and tweets due to the effect of the day of week. We slide the window from the beginning
of the experimental period to the end in one day intervals, i.e., the first test day is July
28. In this setting, we have 65 windows (with test days from July 28 to September 30).
Of these, we use the first 28 windows to tune the parameters for graph construction
as the development dataset, and the remaining 37 windows to evaluate the accuracy.
Overall, each day has about 31.7 queries on average with a standard deviation of 14.3,
and each test day has 30.1 queries on average with a standard deviation of 17.7.

We follow the standard evaluation metrics for query classification that were used in
the KDD-Cup 2005 competition [11], namely, precision (P) and recall (R), which are
defined as:

P =

∑
i # of queries are correctly labeled as ci∑

i # of queries are labeled as ci
,

R =

∑
i # of queries are correctly labeled as ci∑

i # of queries whose category is ci
,

as well as F-score (F1): F1 = 2PR/(P +R).

5.4 Results and Discussion

We first describe the overall classification accuracy, and then show how the different
parameters affect the evaluation metrics. Finally, we compare our method with a graph
constructed using click-through data.

Celebrities

14%

Animation

4%

Art

10%

Web

4%
Games

4% IT

2%
Science

4%

Sports

11%

TV

9% Comics

2%

Animals

1%

Geography

12%

Movies

3%

Society

4%

Books

3% Music

10%

Food

4%

Fig. 3. Distribution of query categories

Test day

Sliding window: d-day

09/30/11 07/01/11

...

Queries spiking on

the test day

Queries spiking before

the test day

...
...

Fig. 4. Experimental procedure

Table 1. Classification accuracy

Method Precision Recall F-score
NewsGraph 45.5 30.3 36.4
QueryGraph 46.1 42.1 44.0
UserGraph 48.9 45.7 47.3

QueryTwitterGraph 50.9 50.1 50.5

Table 2. Comparison with click-through data

Method Precision Recall F-score
ClickGraph 35.4 32.1 33.7
QueryGraph 38.5 25.8 30.3
UserGraph 23.3 17.6 20.1

QueryTwitterGraph 36.8 33.3 35.0

Classification Accuracy We set the parameters on graph construction (ρ and α) to have
the best F-score, as described in the next paragraph. Specifically, ρ = 0.4 for News-
Graph, ρ = 0.2 for QueryGraph, and ρ = 0.2 and α = 0.8 for QueryTwitterGraph.

Table 1 lists the precision, recall, and F-score of the proposed and comparison
methods. The proposed method achieves the best accuracy, with a precision value of
50.9%, recall of 50.1%, and F-score of 50.5%. We conduct a sign test and confirm
that QueryTwitterGraph has significantly better classification power than NewsGraph,
QueryGraph, and UserGraph (p� 0.01). In fact, it has about a 20% higher recall value
than NewsGraph. This result shows that Twitter is useful not only for timely classifica-
tion but also for widening the coverage of the classifier. Another surprising result is that
our method achieves about 5% higher precision than NewsGraph, even though tweets
are noisier than professionally edited news text. The results in Table 1 indicate that this
is due to the effect of user/hashtag nodes; the fact that UserGraph achieves 3.4% higher
precision than NewsGraph demonstrates it.

When comparing QueryGraph and UserGraph, it is impressive that UserGraph
achieves about 3% higher precision and about 4% higher recall than QueryGraph (p =
0.018 by a sign test). Recall that UserGraph does not depend on any textual resources;
it is based purely on the correlation between a query and user/hashtag in terms of their
belonging category. This shows that the correlation between a query and user/hashtag
is effective evidence of classification. The even better accuracy of QueryTwitterGraph
shows that these two graphs complement each other to improve the accuracy.

Effect of Parameters Next, we evaluate the effect of the parameters in our method.
We start with parameter ρ, which controls the number of edges between query nodes.
Fig. 5 plots the precision, recall, and F-score on QueryGraph when the value of the pa-
rameter ρ is changed in the development dataset. The best F-score (41.6%) is achieved
when ρ = 0.2, along with the best recall (39.7%) and the second-best precision (43.7%).

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re

c
is

io
n

/r
e
c
a

ll
/F

-s
c
o

r
e
 (

%
)

Value of ρ

Precision

Recall

F-score

Fig. 5. Effect of parameter ρ (QueryGraph)

42.5

43.0

43.5

44.0

44.5

45.0

45.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
re

c
is

io
n

/r
e
c
a

ll
/F

-s
c
o

r
e
 (

%
)

Value of α

Precision

Recall

F-score

Fig. 6. Effect of parameter α (ρ = 0.2)

When we increase the value of ρ, the number of edges decreases. Larger ρ disrupts the
propagation of labels, and thus both precision and recall drop.

Parameter α balances the effect of the correlation between a query and user/hashtag
and that of context similarity between queries in Eq. (1). When α is larger than 0.5,
our method places more edge weight on correlation. Fig. 6 plots the precision, recall,
and F-score on QueryTwitterGraph when the value of the parameter α (we use ρ = 0.2)
is changed in the development dataset. The accuracy improves when the value of α
is increased, and the best precision (45.4%), recall (45.1%), and F-score (45.2%) are
achieved when α = 0.8. This result shows the effectiveness of introducing the correla-
tion between a query and user/hashtag, and its contribution is significant.

Comparison with Click-Through Data Click-through data are a useful resource for
characterizing associated queries, since they provide relevant Web pages accessed by
people. We obtain click-through data of the experimental queries (four weeks from
September 3 to September 30) and use the data to construct a graph, which we then
compare with our method. In total, we have 809 queries with click-through data.

We construct a graph (ClickGraph) consisting of query nodes using the click-through
data and conduct classification as described in Sec. 4.2. We extract the top-10 most fre-
quently accessed Web pages for each query and compute an edge weight between query
nodes based on their context similarity. Due to the limitation in available data, we set
the size of the sliding window at two weeks (d = 14) to get 14 windows. We use the
first 7 windows to tune the parameters and the remaining 7 windows for evaluation. For
a fair comparison, we apply the same setting to QueryGraph, UserGraph, and Query-
TwitterGraph.

Table 2 lists the precision, recall, and F-score of ClickGraph (ρ = 0.4), QueryGraph
(ρ = 0.3), UserGraph, and QueryTwitterGraph (ρ = 0.3, α = 0.5). The results indicate
that QueryTwitterGraph achieves accuracy comparable to ClickGraph (no significant
difference is detected). This result shows that our approach is promising, as it is com-
parable to a method that uses a highly useful resource such as click-through.

6 Conclusion and Future Work

We propose a method for timely classifying spiking queries by exploiting Twitter. The
proposed method achieves high accuracy by leveraging unique information that Twitter
provides, i.e., tweets, users, and hashtags.

In the future, we first plan to extend our method and include social network informa-
tion in Twitter such as follower-followee relationships and behaviors of retweeting and
mentioning. Then, we apply multi-label classification. We also plan to collect a large-
scale human annotation to obtain categories for spiking queries and conduct a more
detailed evaluation. Moreover, we combine our method with a previous approach that
uses search result pages and query logs to further improve the classification accuracy.

Acknowledgments We sincerely thank Mikio Yamamoto, Takashi Inui, Takaaki Tsun-
oda, Ming Zhou, and Qing Ma for their valuable comments and feedback in this project.
This project was supported by JSPS KAKENHI Grant Number 11J01016.

References

1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content
in social media. In: WSDM ’08. pp. 183–194 (2008)

2. Baeza-Yates, R., Caldern-Benavides, L., Gonzlez-Caro, C.: The intention behind web
queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE ’06. LNCS, vol. 4209,
pp. 98–109. Springer, Heidelberg (2006)

3. Beitzel, S.M., Jensen, E.C., Frieder, O., Lewis, D.D., Chowdhury, A., Kolcz, A.: Improving
automatic query classification via semi-supervised learning. In: ICDM ’05. pp. 42–49 (2005)

4. Broder, A.Z., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., Zhang, T.: Robust
classification of rare queries using web knowledge. In: SIGIR ’07. pp. 231–238 (2007)

5. Diemert, E., Vandelle, G.: Unsupervised query categorization using automatically-built con-
cept graphs. In: WWW ’09. pp. 461–461 (2009)

6. Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the
essence: improving recency ranking using twitter data. In: WWW ’10. pp. 331–340 (2010)

7. Hu, J., Wang, G., Lochovsky, F., tao Sun, J., Chen, Z.: Understanding user’s query intent
with Wikipedia. In: WWW ’09. pp. 471–480 (2009)

8. Kudo, T., Yamamoto, K., Matsumoto, Y.: Applying conditional random fields to Japanese
morphological analysis. In: EMNLP ’04. pp. 230–237 (2004)

9. Kulkarni, A., Teevan, J., Svore, K.M., Dumais, S.T.: Understanding temporal query dynam-
ics. In: WSDM ’11. pp. 167–176 (2011)

10. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs. In: SIGIR
’08. pp. 339–346 (2008)

11. Li, Y., Zheng, Z., Dai, H.K.: KDD CUP-2005 report: facing a great challenge. SIGKDD
Explor. Newsl. 7(2), 91–99 (2005)

12. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detec-
tion by social sensors. In: WWW ’10. pp. 851–860 (2010)

13. Shen, D., Sun, J.T., Yang, Q., Chen, Z.: Building bridges for web query classification. In:
SIGIR ’06. pp. 131–138 (2006)

14. Talukdar, P., Crammer, K.: New regularized algorithms for transductive learning. In: Buntine,
W., Grobelnik, M., Mladenic, D., Shawe-Taylor, J. (eds.) ECML-PKDD ’09. LNCS, vol.
5782, pp. 442–457. Springer, Heidelberg (2009)

15. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and
harmonic functions. In: ICML ’03. pp. 912–919 (2003)

Notices This is the author version for the 8th Asia Information Retrieval Societies Con-
ference (AIRS 2012). The original publication is available at www.springerlink.com.

