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Overlap of quasiparticle random-phase approximation states for nuclear matrix elements
of the neutrino-less double-β decay
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Quasiparticle random-phase approximation (QRPA) is applied to two nuclei, and the overlap of the QRPA
excited states based on the different nuclei is calculated. The aim is to calculate the overlap of intermediate nuclear
states of the double-β decay. We use the like-particle QRPA after the closure approximation is applied to the
nuclear matrix elements. The overlap is calculated rigorously by making use of the explicit equation of the QRPA
ground state. The formulation of the overlap is shown, and a test calculation is performed. The effectiveness of
the truncations used is shown.
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Needless to say, neutrino physics is important for particle
physics as it provides information on lepton-number violation,
Majorana nature of neutrino, and neutrino mass (see, e.g.,
Refs. [1,2]), which are the aspects beyond the standard
model. Neutrino physics is also very interesting for nuclear
physics [3–10], because an accurate calculation of nuclear
matrix elements of the neutrino-less double-β (0νββ) decay
is necessary (e.g., Refs. [2,10]), along with the experimental
half-life value of the initial nucleus in order to determine the
neutrino mass in one of few methods. This calculation is a
challenging opportunity to test the capability of the techniques
of theoretical nuclear physics for calculating many-body
correlations in heavy nuclei.

One of the important theoretical methods to calculate the
nuclear matrix elements is the proton-neutron quasiparticle
random-phase approximation (pn-QRPA), a method that has
been improved significantly in the past few decades. A few of
the milestones include the correct treatment of the effects of
the Pauli-exclusion principle in the intermediate states by the
renormalized pn-QRPA [11], fulfillment of the Ikeda sum rule
by the fully renormalized pn-QRPA [12], inclusion of the pn-
pairing correlations [13], and extension to the deformed states
[14]. Nevertheless, the nuclear matrix elements calculated by
various approaches including the pn-QRPA are distributed in
a range of a factor of 2 [3,15].

We calculate the nuclear matrix elements of the 0νββ decay
by employing the like-particle QRPA [16,17], which can be
applied after the closure approximation [9,10,18–20] is used.
The advantage of this approach is that the intermediate states
are free from the problem of how to treat the odd particle
without any modification because they are states of even-even
nuclei. In addition, we calculate the overlap of the intermediate
states obtained by the like-particle QRPA with greater accuracy
than that in the previous studies [7,14,21–23]. It is emphasized
that the importance of the overlap of the intermediate states
has been pointed out in Ref. [14] in terms of deformation. The
purpose of this study is to demonstrate the feasibility of the
overlap calculation using the ground-state wave function of
the like-particle QRPA explicitly. The equation of the QRPA
ground state has been known for decades, e.g., Ref. [24]. To
the best of our knowledge, however, this is the first time that a
numerical calculation has been carried out rigorously.

The axial and parity symmetries of the nuclei are assumed
throughout this paper. The z component of the angular
momentum is denoted by jz

α for nucleon state α and by Km

for nuclear state m. πα and πm are used to denote the parity.
Hereafter, we refer to the like-particle QRPA as simply QRPA.
After the closure approximation is applied to the nuclear matrix
elements of the 0νββ decay (e.g., Refs. [2,10,25]), one of
those matrix elements, the Gamow-Teller type as an example,
is written as

M
(0ν)
GT = 〈F |

∑
ij

h+(rij , Ēa)σ (i) · σ (j )τ+(i)τ+(j )|I 〉

=
∑
αβ

∑
α′β ′

〈αα′|h+(r12, Ēa)σ (1) · σ (2)

× τ+(1)τ+(2)|ββ ′〉
∑
mm′

〈F |c†αc
†
α′O

F †
m |F 〉

× 〈F |OF
mO

I†
m′ |I 〉〈I |OI

m′cβ ′cβ |I 〉, (1)

where |F 〉 and |I 〉 denote the final and initial nuclear states
of the decay, and the ground states of the QRPA are used.
h+(rij , Ēa) is the neutrino potential [2] with rij = |r i − rj |,
and Ēa is the average energy of the intermediate nuclear states.
i (j ) indicates a nucleon, σ denotes the spin-Pauli matrix, and
τ+ is the raising operator of the z component of the isospin.
An arbitrary single-particle basis {α} is introduced, and the
creation and annihilation operators of the single-particle state
are denoted by c†α and cα , respectively. The creation and
annihilation operators of the excited state m of the QRPA based
on the initial state are denoted by O

I†
m and OI

m, respectively,
and those based on the final state are denoted by O

F †
m and

OF
m , respectively. The completeness using these operators is

used in Eq. (1). There is no selection rule for the intermediate
states with respect to (Kmπm). Simplified notations K = Km

and π = πm are used hereafter.
We express |I 〉 in the form [24]

|I 〉 = 1

NI

∏
K ′π ′

exp
[
v̂

(K ′π ′)
I

]|i〉, (2)

where |i〉 is the Hartree-Fock-Bogoliubov (HFB) ground state
of the same nucleus as the one |I 〉 describes, and v̂

(K ′π ′)
I is a
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generator of the QRPA ground state. NI is the normalization
factor. In this paper, for any equation only referring to the
initial state denoted by I or i, we have also provided the
corresponding equation referring to F or f . Latter equations
are omitted. We have [OI†

m ,OI
m′ ] = 0 in the QRPA, if (Kπ ) �=

(Km′πm′); hence, v̂
(K ′π ′)
I ’s with different (K ′π ′) are separately

determined by

OI
m′ exp

[
v̂

(Km′ πm′ )
I

]|i〉 = 0. (3)

A general quasiparticle basis {μ} based on the initial state
is introduced by aI

μ|i〉 = 0, where the aI
μ is the annihilation

operator, μ = (qμ, πμ, j z
μ, iμ) being the label of a general

quasiparticle state. qμ denotes a proton or neutron, and iμ
is the label specifying a state in the subspace (qμ, πμ, j z

μ).
Notation −μ is used for expressing (qμ, πμ,−jz

μ, iμ). We use
the canonical-quasiparticle basis [17] {μ} for efficiency of the
QRPA calculation [26]. v̂

(K ′π ′)
I is expressed as

v̂
(K ′π ′)
I =

∑
μνμ′ν ′

C
(K ′π ′)I
μν,μ′ν ′ a

I†
μ aI†

ν a
I†
μ′ a

I†
ν ′ . (4)

aI†
μ aI†

ν and a
I†
μ′ a

I†
ν ′ in Eq. (4) are the fermion image of the

boson [24]; a condition is introduced that C
(K ′π ′)I
μν,μ′ν ′ does not

vanish, only if jz
μ + jz

ν = K ′, jz
μ′ + jz

ν ′ = −K ′, and πμπν =
πμ′πν ′ = π ′. We order the canonical-quasiparticle states and

restrict μ < ν, μ′ < ν ′ in C
(K ′π ′)I
μν,μ′ν ′ without loss of generality.

The solution of the QRPA equation gives us

O
I†
m′ =

∑
μ<ν

(
XIm′

μν aI†
μ aI†

ν − Y Im′
−μ−νa

I
−νa

I
−μ

)
, (5)

where jz
μ + jz

ν = Km′ and πμπν = πm′ . We define matrices

C(K ′π ′)I =

⎛
⎜⎝

C
(K ′π ′)I
11,−1−1 · · · C

(K ′π ′)I
11,−n−n′

· · ·
C

(K ′π ′)I
nn′,−1−1 · · · C

(K ′π ′)I
nn′,−n−n′

⎞
⎟⎠ , (6)

X(K ′π ′)I =

⎛
⎜⎝

XI1
11 · · · XIM

11

· · ·
XI1

nn′ · · · XIM
nn′

⎞
⎟⎠ , (7)

where the QRPA solutions having (K ′π ′) are used. The
negative integers of the index correspond to −μ. Matrices
Y (K ′π ′)I , C(K ′π ′)F , X(K ′π ′)F , and Y (K ′π ′)F are also introduced in
the same way. C(K ′π ′)I is obtained by ignoring the exchange
terms (the quasiboson approximation) as follows:

C(K ′π ′)I = 1

1 + δK0

(
Y (K ′π ′)I 1

X(K ′π ′)I

)T

, (8)

where suffix T stands for transpose. Practically, 1/X(K ′π ′)I

does not have a singularity.
The relation between the two HFB states can be written

as [17]

|i〉 = 1

Ni

exp

[∑
μν

Dμνa
F †
μ aF †

ν

]
|f 〉, (9)

Ni = 1

〈f |i〉 =
√

det(I + D†D). (10)

I is the unit matrix of the size of matrix D, which is defined by

(D)ij = Dμi−μj
, i, j = 1, . . . , nT , (11)

nT is the dimension of the subspace (qμ, πμ, j z
μ). Dμν is not

equal to 0 only for those μ and ν that satisfy jz
μ + jz

ν = 0 and
πμπν = +. We restrict jz

μ > 0 in Eq. (9).
The unitary transformation from basis {aF †

μ , aF
−μ} to basis

{aI†
μ , aI

−μ} is given by

aI†
μ =

∑
μ′

(
T IF1

μμ′ a
F †
μ′ + T IF2

μ−μ′a
F
−μ′

)
, (12)

and its Hermite conjugate equation for −μ with jz
μ = jz

μ′ and
πμ = πμ′ . T IF1

μμ′ and T IF2
μ−μ′ can be obtained from the volume

integral of the product of the canonical-quasiparticle wave
functions [27] of the two bases. Dμ−ν is given by

D = −
(

1

T IF1
T IF2

)∗
, (13)

(T IF1)ij = T IF1
μiμj

, i, j = 1, . . . , nT . (14)

Matrix T IF2 is defined in the same way as matrix D.
Practically, again, 1/T IF1 does not have a singularity.

Now, we expand and truncate the overlap matrix element
with respect to v̂

(K ′π ′)
F and v̂

(K ′π ′)
I as

F 〈m|m′〉I ≡ 〈F |OF
mO

I†
m′ |I 〉

� 1

NINF

(
GFI0

mm′ + GFI1
mm′ + GFI2

mm′
)
, (15)

GFI0
mm′ = 〈f |OF

mO
I†
m′ |i〉, (16)

GFI1
mm′ =

∑
K1π1

(〈f |v̂(K1π1)†
F OF

mO
I†
m′ |i〉

+ 〈f |OF
mO

I†
m′ v̂

(K1π1)
I |i〉), (17)

GFI2
mm′ =

∑
K1π1

〈f |v̂(K1π1)†
F OF

mO
I†
m′ v̂

(K1π1)
I |i〉, (18)

NI �
[

1 +
∑
K1π1

{
〈i|v̂(K1π1)†

I v̂
(K1π1)
I |i〉

+ 1

4
〈i|(v̂(K1π1)†

I

)2(
v̂

(K1π1)
I

)2|i〉
}]1/2

. (19)

We test up to the second-order terms GFI2
mm′ , which use

both v̂
(K1π1)
F and v̂

(K2π2)
I , but only with (K1π1) = (K2π2) in

Eq. (15) (actually GFI2
mm′ is negligible in most of the overlap

matrix elements, as shown later). Up to the fourth-order terms
are included in normalization factors NI and NF , because its
convergence of the v̂ expansion is slow as compared to the
un-normalized overlap matrix elements (that is the result of
the numerical test). Equations (16)−(18) can be calculated
using XIm′

μν , Y Im′
−μ−ν , C(K ′π ′)I

μν,μ′ν ′ , those of F , T IF1
μμ′ , T IF2

μ−μ′ and Dμν .
The concrete equations will be given in the forthcoming full
paper.

We use the code of the HFB approximation [28] and that
of the QRPA developed by us [26]. The wave functions are
treated, in both the codes, on a mesh within the cylindrical
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TABLE I. Properties of the HFB ground states of 26Mg and 26Si
used in this paper. βp and �p denote, respectively, the quadrupole
deformation and the averaged pairing gap of the protons. βn and �n

denote the same for the neutrons.

Nucleus βp �p (MeV) βn �n (MeV)

26Mg −0.199 0.794 −0.195 1.510
26Si −0.224 0.865 −0.206 1.402

box and are discretized by the vanishing boundary condition
at the edge of the box. The HFB equation is solved using a
cutoff of the quasiparticle energy at 20 MeV for convenience
in performing the tests. We transform the wave functions of
the quasiparticle states to those of the canonical-quasiparticle
states before the QRPA calculation [29].

26Mg and 26Si are used in this paper for |i〉 (|I 〉) and
|f 〉 (|F 〉), respectively, with the Skyrme parameter set SkM∗
[30] and the volume pairing density functional [31]. The
properties of the HFB ground states are shown in Table I.
The total dimension of the HFB space is �330, including
those with negative jz. Strength of the volume pairing Gn =
−270 MeV fm3 is used for the neutrons of both 26Mg and 26Si,
and Gp = −150.0 and −270.0 MeV fm3 is used for the protons
of 26Mg and 26Si, respectively. These values were chosen so
that the mean fields of the ground states are similar between
the two nuclei.

We show the results of the calculation of (Kπ ) = (0+)
below. Let NF and NI be the number of the two-canonical-
quasiparticle states associated with |F 〉 and |I 〉, truncated by
the cutoff occupation probability for calculating Eqs. (17) and
(18) (those with larger occupation probabilities than the cutoff
are used). This is another truncation after the 20-MeV cutoff.
The convergence of the overlap matrix elements is shown with
respect to NF + NI in Fig. 1. The same value of the cutoff is
applied for the two bases, and we have NF � NI . It is seen that
NF + NI = 350 is sufficient for the convergence. The total
number without the truncation is �3300; thus, this truncation
is rather efficient. |I 〉 and |F 〉 have different configurations
at the Fermi surface; therefore, the high-energy components
of O

I†
m′ and O

F †
m leaving the configuration around the Fermi

surface intact do not contribute to the overlap matrix elements.
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 0  2  4  6  8  10  12  14

F
〈m

|m
〉 I

nF +nI
x100

FIG. 1. (Color online) Ten diagonal overlap matrix elements
having the largest absolute values, as functions of NF + NI .
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Zeroth
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FIG. 2. (Color online) Twenty largest absolute values of the
diagonal overlap matrix elements. Those up to the second order
with respect to v̂

(0+)
I and v̂

(0+)
F are shown in the descending order.

(K1π1) �= (0+) are not included in GFI1
mm′ (17) and GFI2

mm′ (18).
NF + NI = 134 was used; see Fig. 1.

On the other hand, it is necessary to calculate NI (19) and NF

without this truncation.
The major diagonal overlap matrix elements are shown in

Fig. 2, obtained with NF + NI = 134. It is observed that the
contribution of GFI2

mm′ [Eq. (18)] is negligible and that of GFI1
mm′

[Eq. (17)] is not significant for the small matrix elements.
GFI0

mm′ [Eq. (16)] is sufficient in most of the matrix elements
omitted in that figure.

The contribution of (K1π1) �= (0+) to the major overlap
matrix elements through GFI1 [Eq. (17)] is shown in Fig. 3,
calculated with NF + NI = 350 and max |K| = 4. We also
calculated the contribution of (K1π1) = (0−) and (1−) and
found that it was smaller than that of the positive parity by
at least an order of magnitude; thus, only the positive parity
is used. The contribution of (K1π1) �= (0+) is very small to
all of GFI1 except for m = 1, which is one of the spurious
states. Actually, our method should be applied only to the
cases that do not have large fluctuations of the particle number
so that the spurious states are not crucial to the nuclear matrix

 0
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 0  5  10  15  20

| F
〈m

|m
〉 I|

m

All terms
Kπ=0+ term

FIG. 3. (Color online) Twenty largest absolute values of the
diagonal matrix elements of the overlap. GFI1

mm′ (17) was calculated
with (K1π1) = (0+) − (4+) (all terms), and the terms with only (0+)
(Kπ = 0+ term). NF + NI = 350 is used. GFI2

mm′ is not included.
QRPA solution number m does not necessarily correspond to
that of Fig. 2.
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elements Eq. (1). NF and NI require |K| of up to 3 with both
parities.

In summary, the overlap matrix elements of the QRPA states
based on the ground states of different nuclei have been cal-
culated using the QRPA ground states explicitly for relatively
light nuclei with the Skyrme and the contact volume pairing
energy functionals. The most important finding of this study
is that the bold truncations are allowed in the calculation of
the un-normalized overlap matrix elements. The normalization
factors need a less-truncated calculation; however, the amount
of this calculation is reduced tremendously by identifying |f 〉
and |i〉 in each factor. Considering this advantage and the
performance of the modern parallel computers, we believe
that there is no reason to avoid the explicit wave function of
the QRPA ground states.
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