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Abstract

Several empirical studies suggest that advanced economies experi-
ence a growth regime switch from factor accumulation to knowledge
accumulation. To investigate the mechanism of such a regime switch,
this study develops a concise and flexible dynamic model based on
Romer (1990) by introducing two types of endogenously supplied R&D
input capital. The model replicates the growth patterns of developed
and underdeveloped nations, clarifies the important role that capital
plays in the difference between them, and presents several implica-
tions for interest-rate subsidies and official development assistance.
Further, it shows that if a country enjoying long-run growth has lit-
tle initial capital, its initial economic development will be based on
capital accumulation. When the capital stock becomes sufficient for
supporting R&D, the economy will achieve long-run growth through
R&D.
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1 Introduction

This study focuses on the mechanism of regime switch that underlies eco-

nomic development. Since Solow (1957), total factor productivity (TFP)

growth and growth in human capital through R&D activities have been con-

sidered as a central factor in the determination of long-run growth. How-

ever, some studies imply that physical capital too plays an important role

in economic growth: Howitt and Aghion (1998) emphasize complementarity

between capital accumulation and long-run growth, and present some (indi-

rect) evidence of this property. Howitt and Aghion (1998) construct a model

with this complementarity, and Chandler (1990) demonstrates that the scale

expansion of enterprises generates R&D and product diversification. Fur-

thermore, some empirical works show that the level of capital accumulation

affects the capability and/or profitability of R&D activities. Abramovitz and

David (1973) show that America’s economic growth in the early nineteenth

century was more dependent on capital accumulation than on TFP growth.

Hayami and Ogasawara (1999) report similar results from Japanese pre-war

data. These works reveal that economies in the early stages of development

grow as a result of capital accumulation, but they subsequently pursue a

growth regime that is driven by R&D. On these perspectives, some empir-

ical works report that newly industrializing countries in Asia grow mainly

through capital accumulation (as reported by Krugman (1994) and Young

(1995)), but as Matsuyama (1999) discusses, these results are not itself neg-

ative for long-run growth. The important question is whether economies can

make a regime switch.

Thus, the main purpose of the present study is to analyze the dynami-

cal properties of economic development with a regime switch, and as such,

we construct a model that directly relates R&D activities and capital ac-

cumulation by assuming that both human capital and physical capital are

accumulated and invested into R&D activities. We then replicate the dynam-

ics of a regime switch: namely, we change the growth regime from capital-

accumulation-based growth to R&D-based growth.

In this regard, we extend Romer’s (1990) model that contains endogenously-

driven R&D activities, yields steady-growth and no-growth steady states, and

gives a framework on optimal economic policies.1

1Dynamical analysis and proof of stability were given by Arnold (2000).
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Regime change and the realization of long-run growth have attracted at-

tention in this decade because of their connection with the endogenous growth

theory. Some theoretical works produce models for describing the regime

change from capital-based growth with decreasing returns to long-run posi-

tive growth (Zilibotti 1995; Matsuyama 1999; Funke and Strulik 2000; Galor

and Moav 2004; Irmen 2005; Kuwahara 2007). The present study shares

its purpose and structure with those of Zilibotti (1995), Matsuyama (1999,

2001), Irmen (2005) and Kuwahara (2007), who focus on the regime switch

from capital-based growth to R&D-based growth. While Zilibotti (1995) and

Irmen (2005) conduct an analysis by using the model of a competitive econ-

omy, Matsuyama (1999, 2001), Kuwahara (2007), and the present study use

models with monopoly power, which stems from the intellectual proprietary

right created by R&D activities. While Matsuyama (1999) and Kuwahara

(2007) assume instantaneous monopoly power in the R&D sector and focus

on the multiplicities of the economic path,2 the present study focuses on

long-run growth with the regime change as a one-off, epoch-making event in

economic development. In our study, the obtained growth path is a unique

saddle-stable one, and no multiple equilibrium is obtained. However, this

uniqueness makes it possible to definitely analyze economic welfare.

Our main modification to Romer’s (1990) model is the consideration that

both human capital and physical capital are used in R&D. This transforma-

tion of assumptions yields a regime switch in economic growth. The models of

Romer (1990) and this paper encompass two growth phases—growth without

R&D (capital accumulation phase) and growth based on R&D—and have the

property that a sufficient stock of R&D input is necessary for growth based on

R&D. Romer (1990) assumes that R&D is executed by an exogenously given

human capital endowment,3 whereas we assume that endogenously supplied

capital is used for R&D activities; hence, the determination of whether or

2Matsuyama (1999) focuses on the fluctuations between the two economic regimes—
capital-based and R&D-based growth—and Kuwahara (2007) concentrates on the multiple
steady states derived by expectations.

3As early R&D-based growth models, see Romer (1990), Grossman and Helpman
(1991), and Aghion and Howitt (1992), who assume that exogenously endowed human
resources and exogenously given R&D resources uniquely determine the long-run growth
(or no growth). Furthermore, in these frameworks, if the R&D input factor grows, it yields
a drastic rise in the economic growth rate, as Jones (1995a, 1995b) critiques. In addition,
some studies along this line conclude that introducing capital would not alter the essential
outcome (Grossman and Helpman 1991 Ch. 5; Aghion and Howitt 1998 Ch. 3).
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R&D exists is endogenized. Because economic growth accumulates capital,

an economy with sufficient capital can shift from growth through only capital

stock to R&D-based growth. This is the brief sketch of the mechanism of the

regime switch in our study.

Next, because we obtain a saddle stable path, we can derive optimal

policy rules in our model. As Jones (2002, p118) points out, resource allo-

cation for R&D is distorted by three channels: (i) the “knowledge spillover”

effect that is caused by missing the market on R&D input for future contri-

bution on improving productivity, (ii) the “stepping on toes” effect that is

classical externality, and (iii) the “consumer surplus” effect that stems from

monopoly pricing. Because our model shares properties, such as a distor-

tion of intermediate goods pricing and freely used public knowledge capital,

with the Romer model, it causes a deviation in optimal resource allocation

and thus the equilibrium capital stock to be excessively small, and because

of a positive relationship between the GDP growth rate and capital stock,

a lower GDP growth rate is engendered by a smaller capital stock. This

under-accumulation of capital can be eliminated by (only) interest subsi-

dies. Whereas Romer (1990)’s policy analysis provides the result that the

determination of the long-run growth regime depends on the endowment of

R&D input, we go one step ahead by endogenizing R&D input factor accu-

mulation, and as a result, obtain the result that the determination of the

long-run growth regime is a deep parameter, such as R&D efficiency, rather

than an endowment. Therefore, our study concludes that any policy—that

adds factor endowment—has no effects on the long-run growth phase. Thus,

this optimal policy can enhance economic welfare, and affect the economic

growth rate. However, this optimal path for an economy with low efficiency

leads to a steady state with no growth path. In such a case, it is impossible

to set the economy on a long-run growth path through an optimal subsidy

policy. Namely, it is impossible to set such an economy toward long-run pos-

itive growth through extending knowledge, human or physical capital stock.

Thus, our study concludes that the effectiveness of official development assis-

tance (ODA) is restrictive and conditional, which is also confirmed by some

previous empirical studies; for example, Boone (1996) asserts that foreign aid

does not increase growth rates in poor countries, and Burnside and Dollar

(2000) report that the effectiveness of an aid policy is conditional.

The rest of the paper is organized as follows. Section 2 establishes the

model of a decentralized economy. The existence of the two types of steady
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states and their determinants is explained in Section 3. The dynamic prop-

erty of the model is analyzed in Section 4, and Section 5 presents a welfare

analysis. Finally, Section 6 concludes the paper.

2 The Model

There is a competitively supplied final good which can either be consumed

as a consumption good (aggregate consumption is denoted by C) or invested

for physical or human capital accumulation (aggregate physical and human

capital stocks are denoted as K and H, respectively). Denoting final goods

production by Y , we have the resource constraint on final goods as Y =

K̇ + Ḣ + C. Physical capital is used as an intermediate good for supplying

to the final goods sector (KY ) and for investment to create new intermediate

goods; that is, R&D (KA). The market-clearing condition for capital imposes

K = KY + KA, where K is the amount of physical capital in the economy.

R&D is also assumed to be necessary for the input of human capital (H).

Both physical capital and human capital are accumulated by investing in final

goods. The economy is populated by infinitely lived representative agents; its

population is given by N and its growth rate is assumed to be exogenously

given at a constant n. One unit of population is assumed to inelastically

supply one unit of labor; thus, aggregate labor supply can be identified with

the economy’s population scale. We assume that the economy is closed, final

goods are numéraire, and time is continuous.

The present study adopts a Romer-type production structure adopted in

Arnold (2000)—there are three primary factors of production: capital (K),

labor (N), and knowledge (A). Labor goes directly into the production of

final goods, and the capital used in production is first converted into a va-

riety of differentiated and patented intermediate goods, which are indexed

by i. The number of intermediate goods is denoted by A. These interme-

diate goods are aggregated by a symmetric CES, which in turn is combined

with labor by means of a Cobb-Douglas technology. Thus, A denotes the

scale of the cluster of the variety of intermediate goods, which gives the tech-

nological level in the economy, and A can consequently be regarded as the

level of knowledge accumulation, or knowledge capital. Then, the production
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function is specified as

Y = N1−α

∫ A

0

x(i)αdi, 0 < α < 1, (1)

where x(i) denotes the amount of intermediate good i, and [0, A] represents

the range of intermediate goods available in the current marketplace.

One unit of an intermediate good is assumed to be produced by η units of

capital. Therefore, the capital allocated to the production of final goods KY

is quantified as KY ≡
∫ A

0 ηx(i)di. In a symmetric configuration regarding

intermediate goods, the equation x = x(i) converts the definition equation of

KY into KY = ηAx, or equivalently, x = (1/η)(KY /A). Since we assume that

final goods Y are consumed as consumption goods or invested in physical or

human capital accumulation, the following resource constraint for final goods

holds:

(Y =)η−αN1−αHβ
Y A1−αKα

Y = K̇ + Ḣ + C, (2)

where Ż denotes an increment in the value of Z.

The final goods sector is competitive, and Eq. (1) yields the first-order

conditions (FOCs) of the production of final goods. These are given as ∂Y
∂N =

w and ∂Y
∂x(i) = p(i), where w and p(i) denote the real wage and the price of

the ith sector intermediate goods, respectively. In this setting, the rental

price of human capital rH is equalized to be that of physical capital r if the

human capital investment is executed.

In our model, all intermediate goods are protected by non-perishing patents

and the ith firm innovates the idea of ith intermediate good, holds the patent

for the ith intermediate good, and is a monopolistic supplier of the ith in-

termediate good. From the necessary condition that η units of capital are

required to produce one unit of intermediate goods, the profit of the firm

producing the ith intermediate good is given as Π(i) ≡ p(i)x(i) − rKηx(i),

where rK is the rental price of capital, and the firm producing the in-

termediate good maximizes this profit subject to the demand restriction
∂Y

∂x(i) = p(i). Under the symmetric configuration, this optimization condi-

tion yields the following: x(i) = x̄ =
(

α2

rKη

) 1
1−α

N, and p(i) = p = η rK

α .

From Eq. (2) and the FOCs, wage rate w and interest rate r, and the profit

from the production of intermediate good Π̄ are, respectively, obtained as

w = (1 − α) Y
N , rK = α2 Y

KY
, and Π̄ = Π(i) = α(1 − α)Y

A , where, in equilib-

rium, the profit of each firm producing an intermediate good is equalized.
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Therefore, Π̄ = Π(i).

R&D firms create new intermediate goods, and their patents stream per-

petual monopoly profits Π̄, which comprise the revenue of R&D. Thus, the

present value of this stream represents the value of R&D:V̄ (t) ≡
∫ ∞

t Π̄(τ)e−
R τ

t r(s)dsdτ .

Free entry of R&D is assumed. Therefore, if revenue from R&D exceeds its

costs, an infinite amount of capital would be allocated to R&D. Thus, revenue

from R&D cannot exceed the cost in equilibrium. If revenue from R&D does

not exceed its cost, investment in R&D is unprofitable, and no resources are

allocated to R&D. In this case, an equilibrium without R&D (KA = H = 0)

occurs. Thus, if the economy is in equilibrium with positive R&D investment,

the revenues generated by R&D must be equated to its cost.

Since we assume that both human capital and physical capital are invested

to undertake R&D, firms that engage in R&D must pay a rental cost r for

their R&D activities in the process of innovation. Furthermore, innovation

is assumed to be the discovery of new intermediate goods that are added to

the existing set of intermediate goods; therefore, the expansion of the variety

of intermediate goods can be shown by the time derivation of knowledge

capital, Ȧ.

Finally, we assume that each R&D firm has one innovation; conversely,

each innovation has one patent. Therefore, the value of such a firm comprises

the “value” of one innovation. Then, the aggregate value in the macroecon-

omy is the summation of the values of all these firms, V̄ A; the aggregate

innovated value by R&D and its input cost are given as V̄ Ȧ and rKA+rH, re-

spectively. Thus, the profit from R&D firm is given as Π̄R = ȦV̄ −r(KA+H)

and the free entry condition on R&D activities yields the following relation-

ships between market equilibrium and capital allocation:

Solow Regime: KA = H = 0

Romer Regime: KA, H > 0

}
⇐⇒ r(KA + H)

{
>

=

}
V̄ Ȧ. (3)

Whether an economy conducts R&D depends on condition (3). When KA >

0, R&D occurs, causing the economy to grow through endogenous techno-

logical change. Following Matsuyama (1999), we term this regime as the

Romer regime. Condition (3) states that the equality rKA = Ṽ Ȧ holds in

the Romer regime. When KA = 0, no R&D occurs, and the economy grows

only by capital accumulation. Following Matsuyama (1999), we term this

regime as the Solow regime. In the Solow regime, the system yields the

inequality r(KA + HA) > Ṽ Ȧ for KA, H > 0.
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On the Romer regime, differentiating Ṽ with respect to time provides the

following asset equation:

rV̄ = Π̄ + ˙̄V. (4)

Here, we introduce an R&D function—a function of increment of new variety

(Ȧ) for the R&D input of physical and human capital (KA and H)—where

we assume an R&D input and that the function deceases with Ω(t), which

captures the increment in R&D difficulty. More specifically, we assume the

following R&D technology:

Ȧ(t) = δ
A(t)KA(t)1−γHA(t)γ

Ω(t)
, 0 < γ < 1, δ > 0, (5)

where γ and δ denote the input efficiency share between physical and hu-

man capital and the total R&D efficiency parameter, respectively. Following

Romer (1990)’s setup, the R&D function linearly depends on existing knowl-

edge capital A(t), and value of R&D is attributed to R&D input, (human

capital in the Romer model) with no R&D firm residual. Consequently, in the

present model, where physical capital and human capital are R&D inputs,

we assume that the R&D function is homogeneous of degree one in human

capital and physical capital, which gives that value of R&D is attributed to

both human capital and physical capital with no R&D firm residual. Fur-

thermore, Ω is introduced as in Segerstrom (1998). We need to impose the

properties of Ω as follows: (i) although we need not specify the entire path of

Ω, but the growth rate of Ω in the steady state must be determined (which

is done in the next section); (ii) rational agents in this economy are assumed

to know the entire path of Ω.

Combining Eqs. (4) and (5), the R&D firm’s profit Π̄R yields the FOCs

of the R&D firm as follows: ∂Π̄
∂KA

= 0 and ∂Π̄
∂H = 0. These conditions give the

following relationship on optimal R&D inputs: H = γ
1−γ KA. Therefore, we

have the capital composition ratio on R&D as follows: ξ ≡ H
KA

= γ
1−γ . This

is given as the rate of human capital against the physical capital devoted

to R&D, which is given by a deep parameter γ and therefore is a constant.

Using this relationship, the dynamics of A are given as

Ȧ = δA
KAξγ

Ω
= δA(k̃ − k̃Y )ξγ, or gA = δ(k̃ − k̃Y )ξγ, (6)

where k̃, k̃Y , and gA denote the R&D-efficiency-cost-unit-adjusted (hence-

forth, R&D-difficulty-adjusted) values of K and KY and the growth rate of
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A, respectively. More generally, z̃ denotes the R&D-difficulty unit value of

an aggregate variable Z; that is, z ≡ Z/Ω). We define the growth rate of

variable Z as gZ ; that is, gZ ≡ Ż/Z.

Under the regime with positive R&D, using Eqs. (3) and (6) gives the

value of R&D as follows:

δ
V

Ω
ξγ = r(1 + ξ), and therefore δ ṽ Γ(γ) = r, (7)

where V (≡ V̄ A =
∫ A

0 Π(i)di) denotes the aggregate value of the R&D firm,

and ṽ ≡ V/Ω and Γ(γ) ≡ ξγ

1+ξ = γγ(1 − γ)1−γ . Because δ and γ are constant

parameters and r is a constant in the steady state, (7) implies that V grows

at the same rate as Ω in the steady state. Because we can write V = Π
r−gV

,

where Π ≡ Π̄A and where Π = α(1−α)Y is derived from Π̄ = (1−α)αY
A , it

is found that V grows at the same rate as Y at least in the steady state. We

specify this in the next section where steady state growth rates are derived.

To conclude the model, we examine the consumption decision of house-

holds. It is assumed that a representative household maximizes the utility

defined by

U =

∫ ∞ c(t)1−θ − 1

1 − θ
e−ρtdt, θ > 0, (8)

subject to a budget constraint, where variable c denotes per capita value of

consumption C, and deep parameters ρ and θ denote the subjective discount

rate and constant relative risk aversion (CRRA), respectively. Furthermore,

we assume that this household also has a rational expectation. Namely, since

the economic path in this study includes a regime switch, the household ac-

curately expects the period of regime switch and the entire sequence of factor

price on the super-long-run economic development process. Under these as-

sumptions, we have an ordinary optimal condition regarding consumption

called the Keynes-Ramsey rule:

θ
ċ(t)

c(t)
= r(t) − ρ − n. (9)

3 Two Types of Steady States

We now analyze an economy in a steady state, wherein all variables grow

at constant rates. As shown below, our model contains two types of steady

states: one with R&D (and therefore, positive growth) and the other without
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R&D (and therefore, no growth). We call these types of states the Romer

steady state (RSS) and the Solow steady state (SSS), respectively.

From the discussion in Section 2, we obtain the following. The first and

second terms in (2) give the growth rate of Y as gY (t) = (1 − α)gA(t) +

(1 − α)n + αgKY (t). HA = γ
1−γ KA implies that the growth rates of physical

capital and human capital are the same (namely, gs
KY

= gs
KA

= gs
K = gs

H),

where s denotes the index on the value in the steady state. The second and

third terms in (2) imply that gs
Y = gs

K = gs
KY

= gs
H = gs

HY
= gs

C must hold in

a steady state. The discussion in the previous section implies that g∗
Ω = g∗

Y

is necessary for the existence of the steady state. Uniting these properties,

we have that gs
Y = gs

K = gs
C = gs

A + n = gs
Ω, or that gs

y = gs
k = gs

c = gs
A(≡ gs).

For convenience, we assume that Ω(t) = A(t)N(t).

Substituting gs
c = gs

A into the Keynes-Ramsey rule given in Eqs. (9) and

(6), we have

rs = θδ(k̃s − k̃s
Y )ξγ + ρ + n. (10)

Applying the notation of R&D-difficulty-adjusted value to Y , r, Π̃, and

dynamics of V̄ , we obtain the following: ỹ(t) = η−αk̃Y (t)α+β, r(t) = α2η−αk̃Y (t)α−1,

π̃(t) = (1−α)αη−αk̃Y (t)α, and
{
r(t)−n

}
ṽ(t) = π̃(t)+ ˙̃v(t). These notations

imply that ỹ and r can be considered as functions of k̃Y , and that taking Eq.

(7) into account, the dynamics of ṽ can be represented by the dynamics of

k̃Y .

Thus, in the steady state, the determination of the type of steady state

can be summarized as follows:

Romer Steady States (RSS):

Solow Steady States (SSS):

}
⇐⇒ θδ(k̃s − k̃s

Y )ξγ + ρ

= r(k̃s
Y ) − n

{
=

>

}
(1 − α)δΓ(γ)

α
k̃s

Y . (11)

In RSS, the condition given by (11) holds with equality, which yields the

steady state value of k̃Y and k̃ in RSS that are, respectively, denoted as k̃∗
Y

and k̃∗, where index ∗ presents a steady state value in RSS. k̃∗
Y and k̃∗ cannot

be analytically solved but the relationship between these two can be derived

as follows:

k̃∗
Y =

δ θ ξγ k̃∗ + ρ

δ
(
θξγ + (1−α)Γ(γ)

α

)(≡ k̃∗
Y (k̃∗)). (12)
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Thus, we obtain the relationship between steady state R&D-difficulty-

adjusted capital stock of both the aggregate value and that devoted to final

goods, k̃ and k̃Y , respectively, and the growth rate of the economy in RSS as

follows:4

g∗ =
(1−α)δΓ(γ)

α k̃∗ − ρ

θ + (1−α)(1−γ)
α

. (13)

The variable A denotes the variety of intermediate goods; after these varieties

are introduced, they never become trite. Consequently, the increment in A

is irreversible and g∗(= g∗
A) cannot be negative. Thus, Eq. (13) immediately

gives the condition of positive growth as

k̃∗ >
α ρ

(1 − α)δΓ(γ)

(
≡ k̃

)
. (14)

Accordingly, the efficiency-unit capital stock in the steady state k̃∗ must be

larger than the threshold k̃ to satisfy the feasible condition for RSS. As is

shown later, this threshold of the R&D-efficiency-unit capital stock k̃ is also

derived in the necessary condition for SSS. Therefore, this threshold com-

prises the necessary condition on the determination of steady state (namely,

it determines whether the long-run growth regime is SSS or RSS). As is

shown later, this condition also determines whether the Solow or Romer

transitional regime is realized. As such, this value plays a central role in

regime determination in this model, and we describe the properties of this

value here. The threshold value increases with ρ and decreases with δ, with

the efficiency parameter of human capital allocated to final goods production

β being indifferent to it. Since α
1−α is increasing with α, a higher α, which

results in lower labor share and higher capital share, reduces the likelihood

of RSS being realized. Furthermore, because Γ(γ) is symmetric U-shaped

with the lowest value at γ = 0.5, a more deviating efficiency of either capital

(γ being nearer to 0 or 1) provides a smaller threshold value, which increases

the likelihood of RSS being realized.

We consider the mechanism for determining the steady-state capital stock

k̃∗. Substituting r = r(k̃Y ), k̃∗
Y = k̃∗

Y (k̃∗), and the definition of k̃ into the first

4It is noteworthy that this growth rate closely resembles that of Eq. (13) in Romer
(1990). One difference between the two is as follows. We have set the R&D input as
capital, which is endogenously accumulated. Therefore, (as derived below) we can endoge-
nously derive the total endowment of capital, which is the input factor for R&D and for
intermediate goods.
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and second terms in (11), we obtain the following condition that provides the

R&D-difficulty-adjusted per capita capital stock in the steady state:

n + ρ +
θ ξγρ(k̃ − k̃)

(δ θξγ k̃ + ρ)︸ ︷︷ ︸
≡L(k̃;α,γ,δ,ρ,n,θ)

= α2η−α

(
δ θξγ k̃ + ρ

δ θξγ k̃ + ρ
k̃

)α−1

︸ ︷︷ ︸
≡R(k̃;α,γ,δ,η,ρ,θ)

. (15)

By regarding k̃ as an argument of the two functions L(·) and R(·) defined in

condition (15), we can easily draw these two equations as a thin solid line and

a thick solid curve, respectively, as shown in Figure 1. The R&D-difficulty-

adjusted capital stock in a steady growth path k̃∗ is uniquely determined by

the intersection of the two equations.

From Eq.(15) or Fig. 1, it is found that a larger population growth

n yields a larger R&D-difficulty-adjusted knowledge stock in RSS (namely,

dk̃∗/dn > 0). Further, this result and Eq.(14) together yield that a larger

population growth n results in a larger growth rate in RSS (namely, dg∗/dn >

0). Specifically, population growth is negatively related to economic growth.

This conclusion is the opposite of the findings of semi-endogenous growth

models with labor R&D inputs. However, this is a desirable property of the

model in this study, because some empirical studies, such as Kelley (1988),

Kelley and Schmidt (1995), and Ahituv (2001), report a negative correlation

between population growth and economic growth. A rough sketch of this

mechanism is given as follows. Condition (11) is the no-arbitrage condition

between the production of goods (the profit rate is given by the middle term)

and R&D (given by the last term). Owing to the high population rate, a

lower kY is necessary for equating the middle and last terms in Eq. (11).

Combining this and Eq. (13), we get that a lower k̃Y leads to a lower growth

rate.

From Figure 1, the condition for k̃∗ to be a feasible solution—namely,

(14)—holding is equivalent to L(k̃) < R(k̃) holding at k̃ = k̃, which yields

the condition required in RSS: δ > Ψ(α, γ, η, ρ, n) where Ψ ≡ α− 1+α
1−α η

α
1−α (n+

ρ)
1

1−α ρ
(1−α)Γ(γ) .

Next, we now characterize SSS. In SSS, Eq. (11) holds with inequality,

and all capital is devoted to the production of final goods; therefore, k̃∗∗
A = 0.

That is, k̃∗∗ = k̃∗∗
Y , where ∗∗ denotes the steady state value in SSS. Therefore,
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substituting k̃∗∗ = k̃∗∗
Y into (11) yields the equilibrium capital stock in SSS:

k̃∗∗ = k̃∗∗
Y =

[
α2η−α

ρ + n

] 1
1−α

. (16)

The inequality constituted by the second and third terms of Eq. (11) gives

k̃Y ≤ k̃. Uniting this and the inequality in Eq. (16), we have the pa-

rameter condition for SSS as L(k̃) > R(k̃). Since this condition is mutu-

ally exclusive to that of RSS, the condition can also be written as follows:

δ < Ψ(α, γ, η, ρ, n).

Note that the conditions for RSS and SSS obtained above are mutually

exclusive. Accordingly, the steady state is uniquely determined by the econ-

omy’s parameter set, and an economy with δ > Ψ has RSS, and that with

δ < Ψ does SSS. Thus, we summarize these results as follows.

Proposition 1. An economy has a unique long-run steady state—either

positive or no growth—that is determined by the following parameter condi-

tion:

δ

{
>

<

}
Ψ(α, γ, η, ρ, n) ⇔

{
RSS

SSS

That is, the parameter set {α, γ, η, n, ρ, δ} uniquely determines either of the

steady states.

Intuitively, these results imply that a country with higher R&D efficiency

and more patience realizes RSS, that is, long-run R&D-based growth, and

that a country with lower R&D efficiency and less patience realizes SSS,

that is, no-growth steady state. In contrast to the Romer model, initial

endowment does not affect the long-run growth phase.

4 Transition Dynamics and Steady States

In this section, we analyze the transition dynamics. On the transition path,

we have two regimes, characterized as KA > 0 or KA = 0. We call these

the Romer regime and the Solow regime, respectively. We denote the ini-

tial R&D-difficulty-adjusted physical capital as k̃(0) = k̃0. Furthermore,

we assume—for simplicity of discussion—zero initial endowment of human

13



capital (h̃(0) = 0).5

4.1 Local Transition Dynamics

A (decentralized) economic system comprises Eqs. (2), (4), (6), and (9).

This system is reconstructed as a system constituted by k̃, c̃, and k̃Y .

Substituting gc̃ + gΩ = gc + n(= gC) and r = α2η−αk̃α−1
Y in Eq. (9), we

obtain the dynamics of c̃ as follows:

˙̃c(t) =
1

σ

{
α2η−αk̃Y (t)α−1 − ρ − n − σδ(k̃(t) − k̃Y (t))ξγ

}
c̃(t). (17)

This dynamic equation is common to the two regimes. Regarding the dy-

namics of k̃ and k̃Y , each regime follows different dynamics as described

below.

4.1.1 Dynamics of the Economy in the Romer Regime

First, we examine the Romer regime. Here, we derive the dynamics of k̃ in

the Romer regime. From K̇(t)+ Ḣ(t) = Y (t)−C(t), K(t) = KY (t)+KA(t),

H(t) = γ
1−γ KA(t), the definition of k̃Y , and the assumption on Ω(t), we have

˙̃k(t) = (1 − γ)
{
ỹ(k̃Y (t)) − c̃(t)

}
−

{
n + δ(k̃(t) − k̃Y (t))ξγ

}
k̃(t) (18)

+ γ

{
˙̃kY (t)

k̃Y (t)
+

(
n + δ(k̃(t) − k̃Y (t))ξγ

)
}

k̃Y (t).

By using ṽ(t) = r(k̃Y (t))
δΓ(γ) and gṽ = r(t) − n − δΓ(γ)π̃(t)

r(t) , we obtain the

dynamics of k̃Y as

˙̃kY (t) =
δΓ(γ)

α
k̃Y (t)2 +

n

1 − α
k̃Y (t) − α2η−α

1 − α
k̃Y (t)α. (19)

Thus, Eqs. (17), (18), and (19) comprise the system in the Romer regime.

Because the dynamics of k̃Y guided by Eq. (19) are the function that

contains only k̃A as a variable, the dynamic properties of k̃Y are directly

obtained from Eq. (19). The dynamics of k̃Y around the steady state value

denoted by k̃∗
Y are found to be unstable; the phase diagram of k̃Y is given

5See Appendix 1, which demonstrates that the case of h̃(0) > 0 has asymptotically
same properties.
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in Figure 2. Therefore, in order to realize RSS, it is necessary that k̃Y (t) =

k̃∗
Y must be satisfied in, at least, the neighborhood of the steady state. If

k̃Y (t) < k̃∗
Y , k̃Y (t) decreases following the dynamics of Eq. (19).

Thus, the dynamic system in the Romer regime must exist on the plane

k̃Y (t) = k̃∗
Y , which we term the Romer plane. Consequently, the system is

reduced to a two-dimensional system comprising k̃ and c̃. Because the system

exhibits properties similar to the dynamic properties of the Ramsey model,

it can be easily verified that it has saddle stability.

4.1.2 Dynamics of the Economy in the Solow Regime

We now investigate the Solow regime where k̃A = 0 (which directly leads

to k̃(t) = k̃Y (t)) and where there is no demand for human capital. Thus,

the Solow regime also exists on the two-dimensional {c̃− k̃} plane, which we

call the Solow plane. Under this condition, by using K̇(t) = Y (t) − C(t),

K(t) = KY (t), and KA = H = 0, the dynamics of k̃ can be given as

˙̃k(t) = α2η−αk̃(t)α − c̃(t) − nk̃(t). (20)

Under gA = 0, (17) can be written as

˙̃c(t) =
1

σ

{
α2η−αk̃Y (t)α−1 − ρ − n

}
c̃(t),

Thus, the dynamic system in this case is similar to that in the normal Ramsey

model. One difference is the interest rate, which reflects the monopoly pricing

in the intermediate goods sector, in which capital is one input and human

capital investment is the other. A Romer-type R&D-based growth model

contains distortional intermediate goods pricing, and our model assumes that

intermediate goods are produced using capital. Therefore, the interest rate

(the capital rental price) is α times smaller than that in the normal Solow

model. Other than the above, this system has the same properties as the

Solow model: it has a saddle stable steady state.

4.2 Global Transitional Dynamics and Steady States

Combining the local transition dynamics discussed in the previous subsection

and the steady state condition discussed in the previous section, we derive

the global dynamics in the present study. Because we have two types of
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steady states, RSS and SSS, we obtain two types of growth patterns related

to them. The phase diagrams related to these growth patterns are depicted

as Figures 3 and 4, respectively.

From Proposition 1, if an economy has RSS (that is, this economy sat-

isfies δ > Ψ), then RSS is the economy’s unique steady state. In this case,

if the economy has sufficiently large R&D-difficulty-adjusted capital stock—

k̃(t) ≥ k̃∗
Y —the economy is on the Romer regime, and converges to RSS as

guided by the saddle stable path on the Romer plane (k̃Y = k̃∗
Y ), which is

drawn by the dotted region in Figure 3 (the transition path is drawn by a

bold line). If an economy has a sufficiently high R&D efficiency parameter,

but very small initial knowledge-adjusted capital stock—k̃(t) < k̃∗
Y —then

the economy cannot start its growth process on the Romer regime because

the path that directly converges to RSS cannot be traced while satisfying the

no-arbitrage condition. Therefore, the economy rides on the Solow regime

and grows by only capital accumulation until the economy has capital stock

k̃∗
Y . The rational expected transition path on the Solow plane in this case

is the path that connects to the saddle stable path on the Romer regime.

Saddle stability of the Solow regime implies that this is the unique path

that is consist with long-run feasibility, and this path always exist in this

case.6 Thus, the assumption of initial capital stock derives the whole eco-

nomic path with RSS, as is shown below. If an economy has efficient R&D

(δ > Ψ) and a sufficiently small initial capital stock (k̃(0) < k̃∗
Y ), it grows

without R&D until it reaches k̃ = k̃, and then, starts R&D activities, grow-

ing with TFP. Therefore, it experiences a switch from the Solow regime to

the Romer regime, which is the regime switch described in the present study.

If the economy has efficient R&D (δ > Ψ) and a sufficiently large initial

capital stock (k̃(0) > k̃∗
Y ), it grows with R&D in the first stage of economic

development.

On the other hand, if an economy has lower R&D efficiency, and therefore,

is SSS (i.e., it satisfies δ < Ψ), Proposition 1 implies that SSS is the economy’s

unique steady state. In this case, the economy fails to initiate R&D even if

it contains more initial capital or knowledge stock than the threshold value

(k̃(t) > k̃∗
Y ). This mechanism is explained as follows. Because the parameter

condition δ < Ψ implies that the unique steady state of this economy is SSS,

6It should be noted that the ˙̃k = 0 lines of both the Romer and Solow regimes intersect
at k̃ = k̃Y = k̃∗

Y .
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the equation in the condition (11)—derived from the arbitrage condition

between capital and the R&D firm—cannot hold after a finite period of time

in the future. This expectation leads rational agents to refrain from investing

in R&D. Thus, this economy grows without R&D and falls into SSS. This is

the mechanism underlying the no-growth trap in this study. Some moderately

developed economies fail to transit into long-run growth in the polarization

process; the mechanism presented here may explain the underlying cause.

The phase diagram of such an economy is depicted in Figure 4. In this case,

for any initial capital endowment (k̃0 ∈ (0,∞)), the economy converges to

SSS on the Solow plane. It should be noted that the intermediate goods are

also monopolized in this case, and that this system is a Ramsey model with

imperfect competition. The distortion is summarized in the higher interest

rate: consumption growth rate is higher through the Keynes-Ramsey rule,

and therefore the speed of convergence is high, but equilibrium capital stock

is lower through the decreasing return properties of capital.

Proposition 2. An economy has a unique steady state and a perfect-foresight

saddle-stable transition path that is convergent to the steady state. The long-

run growth phase, showing either steady growth or poverty traps, is deter-

mined uniquely according to technological parameters (α, η, and δ) and pref-

erence parameter (ρ). The economy with RSS (and low initial capital endow-

ment) experiences a regime switch from capital-accumulation-based growth

to R&D-based growth and realizes long-run growth. The economy with SSS

lacks the profitability for R&D investment and persistently stays in the Solow

regime, and is thus caught in poverty traps.

5 Optimal Growth and Economic Policy

The previous section shows the results of the present model with regard to

decentralized economic growth. Following the perfect foresight path deter-

mined by the given parameters, an economy converges to a steady state with

either long-run growth or no growth. However, the present model contains

a distortion in intermediate goods pricing and an unfavorable equilibrium

termed as SSS. This section examines the possible roles that a government

plays in developing policies to promote economic welfare and development.
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5.1 Command Economy

To obtain the welfare properties of a decentralized solution, consider the

social planner formulation of the growth model treated above. A benevolent

government is assumed to maximize the representative household’s utility

function (8).

From the optimal conditions,7 we have the optimal capital allocation in

steady state k̃∗op
Y and the optimal growth rate of economy g∗op, respectively,

as

k̃op
Y =

δ θ ξγ k̃op + ρ

δ
(
θξγ + (1−α)Γ(γ)

α

)(≡ k̃op
Y (k̃op)), (21)

g∗ =
(1−α)δΓ(γ)

α k̃op − ρ

θ + (1−α)(1−γ)
α

. (22)

Eqs. (21) and (22) imply that in steady states, the determining relationship

between the economic growth rate and R&D-difficulty-adjusted capital in a

command economy accords with that in a decentralized economy.

From Eqs. (21) and (22), the condition of feasible positive growth g∗(k̃op) >

0 is given as k̃opSS > k̃. It should be noted that this condition is the same

as that in a decentralized economy. Thus, we obtain the following result.

In a command economy, the R&D-difficulty-adjusted capital stock, k̃op∗, in

the steady state must be larger than the threshold k̃ to satisfy the feasible

condition for RSS. This property is the same as that in a market economy.

This property implies that sufficient capital is necessary for steady growth.

Lacking this condition, no R&D investment (i.e., KA = gA = 0) is optimal.

For the no-growth case, R&D-difficulty-adjusted capital stock in a command

economy k̃∗∗op is given as follows. The poverty-trap R&D-difficulty-adjusted

per capita capital stock in a command economy k̃∗∗op is given as

k̃∗∗op =

[
αη−α

n + ρ

] 1
1−α (

= α− 1
1−α k̃∗∗

Y > k̃∗∗
Y

)
. (23)

Further, we derive the R&D-difficulty-adjusted per capita capital stock for

the steady state under the case with positive R&D k̃op∗. The counterpart of

Eq. (15)—that is, the equation providing the steady-growth R&D-difficulty-

adjusted per capita capital stock in a command economy k̃∗op—is obtained
7See Appendix A2 for detailed derivations.
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as follows:

n + ρ +
θ ξγρ(k̃ − k̃)

(δ θξγ k̃ + ρ)︸ ︷︷ ︸
≡L(k̃;α,γ,δ,ρ,n,θ)

= αη−α

(
δ θξγ k̃ + ρ

δ θξγ k̃ + ρ
k̃

)α−1

︸ ︷︷ ︸
≡Rop(k̃;α,γ,δ,η,ρ,θ)

. (24)

L(k̃; α, γ, δ, ρ, n, θ) is identical to the case of a market economy, and Rop(k̃; α, γ, η, ρ, θ)

is α times the R in Eq. (15), R(k̃; α, γ, δ, η, ρ, θ). Rop is drawn in Figure 1 as

a broken line. Because the difference between a decentralized economy and

a command economy is that R is α times Rop, the properties of the steady

state are similar in both cases. In the steady state of an optimal economy,

lower ρ, η, and n lead to a higher per capita GDP growth rate. This is the

same as in the steady state in a decentralized economy. However, equilibrium

capital stock in a command economy is larger than that in a decentralized

economy. Therefore, the growth rate of this economy is higher than that in

a decentralized economy.

Because L(k̃) and Rop(k̃) are monotonous increasing and decreasing func-

tions, respectively, the condition k̃opSS > k̃ is equivalent to

L(k̃) < Rop(k̃). (25)

Substituting k̃ into L(k̃) and R(k̃), we obtain the following inequality:

δ > Ψop(n, η, ρ,α), (26)

where Ψop ≡ α
1

1−α Ψ.

Summarizing the above discussions, we obtain the equilibrium capital

stock in a command economy k̃op as follows:

Proposition 1’. An economy has a unique optimal long-run steady state

of positive growth or no-growth traps that is determined by the following con-

dition:

k̃op =

{
k̃∗op if δ > Ψop

k̃∗∗op if δ < Ψop

}

⇒ Long-run optimal growth is

{
positive growth (RSS)

no growth (SSS)
. (27)

Because 0 < α
1

1−α < 1 for 0 < α < 1, it should be noted that Ψop < Ψ,

which implies that the necessary condition for RSS is less restrictive in a

command economy than in a decentralized economy.
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5.2 Effects of Economic Policies

In this section, we introduce subsidies and taxes into our model and discuss

the effectiveness of economic policies. We propose that a constant rate sub-

sidy s > 0 (or a tax if s < 0) is levied (or provided) for interest (rental price

of capital) and the profit of the intermediate sector, as below:

rs ≡ (1 + sr)r = (1 + sr)α
2 Y

KY
,

πs ≡ (1 + sπ)π = (1 + sπ)α(1 − α)
Y

A
,

where sr and sπ represent the rate of interest and profit subsidies, respec-

tively.

The existence of distortion in the intermediate goods market leads the

decentralized economy to accumulate less R&D-difficulty-adjusted capital

stock than a command economy. For this reason, policies that promote cap-

ital accumulation by subsidizing the interest rate always improve economic

welfare.

The government is assumed to finance these subsidies using lump-sum

tax revenues; total tax revenue is expressed as TLS. We assume that the

government maintains a balanced fiscal policy: the budget constraint srK +

sπA = TLS is always satisfied. Translating r and π in Eqs. (17) and (19) to

rs and πs, we determine both dynamics after taxation (or subsidy) as follows:

˙̃c =
1

σ

{
(1 + sr)α

2η−αk̃α−1
Y − ρ − n − σδ(k̃ − k̃Y )

}
c̃, (28)

˙̃kY =
δ

α
(1 + sπ)k̃2

Y +
n

1 − α
k̃Y − (1 + sr)

α2η−α

1 − α
k̃α

Y . (29)

For optimal growth, Eqs. (28) and (29) must correspond with Eqs. (39) and

(40) (in Appendix), respectively.

Thus, we obtain the result that optimal growth and capital allocation are

realized by the following subsidy policy:

s∗r =
1

α
− 1 > 0, s∗π = 0. (30)

Because α ∈ (0, 1), s∗r is always constant and negative, implying that this

policy is perennially effective and that it increases economic welfare.

The above part showed that a governmental policy of interest rate sub-

sidies can increase the economy’s welfare. However, can an optimal subsidy
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deliver an economy from a poverty trap onto steady growth? The answer, at

least partially, is affirmative.

To answer this question, we provide Table 1 that summarizes the results

of the determination of steady states on market and command economies, de-

rived in Propositions I and I’. For both market and command economies, the

steady states are determined by R&D efficiency δ and other deep parameters

n, η, ρ, and α that are contained in Ψ and Ψop. This table implies that the

necessity of R&D efficiency for RSS is less restrictive in a command economy

than in a market economy, and as such, if a country has the parameter set

Ψop < δ < Ψ and a market economy without a subsidy, the country is stuck

in SSS although the optimal steady state of the economy is long-run posi-

tive growth (RSS). In this case, the country is capable of long-run positive

growth, but monopoly power exercised in the decentralized economy draws

the economy into a no-growth trap. In this situation, the optimal subsidy

policy transforms the economy’s steady state from SSS to RSS. In this man-

ner, the economy with Ψop < δ < Ψ can shift from a poverty trap to long-run

growth through relevant subsidy policies. Thus, the necessity of R&D effi-

ciency for RSS is less restrictive in a command economy than in a market

economy. As a result, an economy with middle-range R&D efficiency fails

to realize market-economy-driven R&D-based long-run growth, but relevant

subsidizing policies can enable it to experience long-run growth.

If an economy’s parameter set is δ < Ψop, its situation is worse. In this

case, the economy has SSS as the optimal steady state for any stock variable

endowments; therefore, convergence to a no-growth equilibrium (SSS) is the

economy’s welfare maximizing path, and consequently, even if the govern-

ment provides relevant subsidies derived above, SSS stays. If this country

desires long-run growth, relevant parameters (for example, R&D efficiency δ)

must be improved. Further, any ODA, such as licensing technology (which

implies an increment in knowledge A in our model), capital contribution

(which implies an increment in capital stock K), and setting up of an ed-

ucational institute (which tries human capital accumulation H), makes no

change in the determination factor of the steady state because the condition

given in Proposition I’ contains only deep parameters and does not endow hu-

man or physical capital stock or knowledge accumulation. Thus, the steady

states of the aided countries remain completely unaffected (if such accumu-

lation has no external positive effects on the efficiency condition of R&D

through deep parameters). The only result of such ODA is a jump in the
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same transition path. Consequently, the economy will fall into a no-growth

path in the long run by adjusting the stock of A or K. Therefore, for effec-

tive ODA, it is necessary to aid an economy to make structural changes that

improve deep parameters, for example, enhancing efficiency parameters such

as the cost of the production of intermediate goods η or R&D efficiency δ.

Thus, the above results can be summarized as follows.

Proposition 3. Social welfare increased with the interest-rate subsidy rate

s∗r which increases the long-run growth rate along a steady growth path. More-

over, the subsidy s∗r extricates an economy from poverty traps if its RSS path

is optimal (that is, if condition δ > Ψop is satisfied). Setting an economy with

SSS on a long-run growth path requires structural improvement. Technology

licensing or capital stock will not be effective for this purpose.

6 Conclusion

This study developed a model with endogenously-accumulated R&D inputs

and investigated the mechanics of the growth process with a regime switch.

It shows that the equilibrium (physical) capital stock is positively related

to the long-run growth rate. Capital stock depends negatively on the cost

of intermediate goods and the subjective discount rate, which determines

the steady state of the economy. Each economy has a unique steady state

and a unique transition path converging to it. To achieve long-run growth,

a country must have high R&D efficiency, low cost of intermediate goods,

and a subjective discount rate. An economy that does not satisfy these

conditions languishes in a no-R&D regime and a poverty trap. If the economy

has low initial endowment of (R&D-difficulty-adjusted) capital and a steady

state with a long-run positive growth, a regime switch occurs. Low capital

endowment lowers R&D profitability on R&D, and hence, no R&D takes

place. Further, when capital stock becomes sufficient for supporting R&D,

the economy will achieve long-run growth through R&D.

Because our model incorporates a monopoly on the production of interme-

diate goods, the economy contains a distortion, and therefore, the economic

policy is effective. This distortion appears in the economy’s interest rate

and results in lesser long-run capital stock. Therefore, governmental poli-

cies for subsidizing the interest rate and augmenting steady-state capital can
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steer the economy to an optimal path. Economic welfare can always be im-

proved through this subsidization. However, under some parameter sets, the

economy’s optimal path is a no-growth path. In this case, some policies for

guiding the economy toward long-run growth by increasing physical capital

or knowledge capital will not enhance economic welfare. Effective aid should

improve the economic environment for R&D by, for example, enhancing the

productivity of intermediate goods or the efficiency of R&D investment. A

patent is regarded as a written or a formal knowledge, whereas deep param-

eters such as R&D efficiency and the productivity of intermediate goods are

considered non-written or implicit knowledge. Future research should focus

on economic analysis and foreign aid in order to gain a deeper sight into this

topic.

7 Appendix

A1. Positive Initial Endowment of Human Capital

In this appendix, we consider the case of H(0) = H0 > 0. If the profit rate

of human capital is equated with physical capital, it is simply the Romer

regime, and as such, in this section, we consider the case wherein the profit

rate of human capital is smaller than that of physical capital. In this case,

Ḣ = 0 and r > rH hold, and therefore, human capital endowment is fixed

at the initial endowment H0, and R&D is executed to hold the no-arbitrage

condition on capital profit rate r. Then rH is determined at the level that

satisfies the zero-profit condition on R&D.

Therefore, the equilibrium condition on this regime is given by

∂Π

∂KA
= (1 − γ)δ

ξ−γ
A

N(t)
V̄ − r = 0,

∂Π

∂H
= γ δ

ξ1−γ
A

N(t)
V̄ − rH = 0,

where ξA(t) ≡ KA
H . From these two equations, we have

ṽ =
ξγ
A

(1 − γ)δ
r, and rH =

γξA

1 − γ
r.

Thus, for the steady state, ξA = (const) is also necessary in this case. Because

H0 is constant, KA also is constant, and we denote it as K̄A. However, the
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growth rate under K̄A is given as

gA(t) =
K̄A

A(t)N(t)
ξγ
A.

Therefore, after the long run, the growth rate converges to limt→∞ gA(t) = 0;

namely, the system asymptotically deceases the growth rate and converges

to the Solow regime.

A2. Command Economy and Optimal Conditions

To obtain the welfare properties of the decentralized solution, we consider the

social planner formulation of this growth model. A benevolent government

is assumed to maximize the representative household’s utility function Eq.

(8). Therefore, the Hamiltonian of this government can be written as

H(t) =
c(t)1−σ − 1

1 − σ
+ λ(t)(η−αKY (t)αN(t)1−αA(t)1−α

︸ ︷︷ ︸
Y

−c(t)N(t) − IH(t))

+ µ(t)δ
(K(t) − KY (t))1−γH(t)γ

N(t)
+ λH(t)IH(t),

where λ, µ, and λH are the shadow prices of per capita capital stock, knowl-

edge, and human capital, respectively. The optimal conditions are obtained

as follows:

λ(t)N(t) = c(t)−σ, (31)

λ(t) = λH(t), (32)

λ(t)αη−αKY (t)α−1
{
A(t)N(t)

}1−α
=

(1 − γ)µ(t)δ
(K(t) − KY (t))−γH(t)γ

N(t)
, (33)

ρλ(t) − λ̇(t) = (1 − γ)µ(t)δ
(K(t) − KY (t))−γH(t)γ

N(t)
, (34)

ρλH(t) − λ̇H(t) = γµ(t)δ
(K(t) − KY (t))1−γH(t)γ−1

N(t)
, (35)

ρµ(t) − µ̇(t) = λ(t)(1 − α)η−αKY (t)αN(t)1−αA(t)−α. (36)
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Using Eqs. (31), (34), and (36) and the notation k̃Y , we derive the following

equations:

ρ − gλ(t) = αη−αk̃Y (t)α−1, (37)

ρ − gµ(t) =
1 − α

α
δΓ(γ)k̃Y (t). (38)

(34) and (35) yield the optimal rate between physical capital KY and

human capital H as H = γ
1−γ KY ; namely, we have the rate between physical

capital and human capital, ξ, in both the market and command economies in

this study. Using ξ, the growth rate can also be written as gA = δ(k̃− k̃Y )ξγ.

From Eqs. (31) and (37) and the definitions of c̃ and k̃, the following

Euler equation is obtained:

gc̃(t) =
1

σ

{
αη−αk̃Y (t)α−1 − ρ − n − σδ

(
k̃(t) − k̃Y (t)

)
ξγ

}
. (39)

From Eqs. (33), (37), and (38), eliminating λ and µ yields

gk̃Y
(t) =

1

1 − α

[
δ(1 − α)Γ(γ)

α
k̃Y (t) + n − αη−αk̃Y (t)α−1

]
. (40)

The system consists of the following dynamic equations: (2), (39), and

(40). These equations imply that gk̃Y
= gk̃ and gA = gk = gc = δ(k̃ − k̃Y )

must hold in a steady state. Substituting these conditions into Eqs. (2),

(39), and (40), we obtain the following equations denoting the steady state

of the command economy:

ρ + σδ(k̃∗op − k̃∗op
Y )ξγ = αη−αk̃∗op α−1

Y − n, (41)

η−αk̃∗op α
Y − c̃∗op −

{
n + δ(k̃∗op − k̃∗op

Y )ξγ
}
k̃∗op = 0 (42)

αη−αk̃∗opα−1
Y − n =

(1 − α)Γ(γ)

α
δk̃∗op

Y . (43)

By eliminating αη−αk̃∗op α−1
Y −n from (41) and (43), we obtain the result that

optimal capital allocation in the steady state in a command economy is the

same as that in a market economy given by (12). Furthermore, the growth

rate for given R&D-difficulty-adjusted capital stock in a command economy

is the same as that in a market economy given by (13).
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Steady Growth
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Figure 2: Dynamics of k̃Y
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