Non-vanishing elements in finite groups

Masahiko Miyamoto*
Institute of Mathematics
University of Tsukuba
Tsukuba, 305 Japan

Abstract

We show that if A is an elementary abelian normal p-subgroup of a finite group G and P is a Sylow p-subgroup of G, then no irreducible character of G vanish on any element of $Z(P) \cap A$.

Let G be a finite group. A well-known result of W. Burnside asserts that for each nonlinear irreducible character χ of G, then there is an element $g \in G$ such that $\chi(g)=0$. It is a natural question to determine elements of G which vanish for some irreducible character. Equivalently, we want to determine elements which do not vanish on any irreducible characters of G. Such an element is called a non-vanishing element. Nontrivial non-vanishing elements are not common. If G has a p-block of defect zero, then the order of confining element is prime to p. For example, none of simple group of Lie type has nontrivial non-vanishing elements.

Recently, I. M. Isaacs, G. Navarro and T. R. Wolf [1] have shown that if G is solvable, then the images of non-vanishing elements in $G / F(G)$ are 2-elements. They have also shown that if G has a normal Sylow p-subgroup P, then all elements of $Z(P)$ are nonvanishing in G as an easy result. We slightly extend this result.

Theorem 1 If a finite group G possesses a nontrivial elementary abelian normal psubgroup A and P is a Sylow p-subgroup of G, then all elements of $Z(P) \cap A$ are nonvanishing in G.

Proof Let χ be an arbitrary irreducible character of G. Then we have

$$
\chi_{\mid A}=e\left(\zeta_{1}+\zeta_{2}+\cdots+\zeta_{r}\right)
$$

with some integer e, where $\chi_{\mid A}$ is the restriction of χ to A and $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{r}\right\} \subset \operatorname{Irr}(A)$ is the set of all distinct conjugate characters for some $\zeta=\zeta_{1} \in \operatorname{Irr}(A)$ under the action of G. Let $H=\left\{g \in G \mid \zeta^{g}=\zeta\right\}$ be the inertia subgroup of ζ, where we define $\zeta^{g}(x)=\zeta\left(g x g^{-1}\right)$. We have $r=|G: H|$.

[^0]Now, by way of contradiction, suppose $\chi(x)=0$ for $x \in Z(P) \cap A$. Note that $\operatorname{deg}\left(\zeta_{j}\right)=1$ and the character values $\zeta_{j}(x)$ are p-th roots of 1 . Pick a primitive p-root of unity ξ. It is well known that any $p-1$ elements subset of $\left\{1, \xi, \ldots, \xi^{p-1}\right\}$ is linearly independent over \mathbb{Q} and $1+\xi+\cdots+\xi^{p-1}=0$. Then, in the expression :

$$
\chi(x)=e\left(\zeta_{1}(x)+\zeta_{2}(x)+\cdots+\zeta_{r}(x)\right)
$$

all p roots of $X^{p}-1=0$ must appear with the same multiplicity $\frac{r}{p}=p^{m-1} q$. In particular, r is divisible by p.

We next consider the action of P on the set $\left\{\zeta^{g} \mid g \in H \backslash G\right\}=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{r}\right\}$. For each $g \in H \backslash G$, the size of the P-orbit of ζ^{g} is

$$
\left|P: P \cap H^{g}\right|=\left|G: P \cap H^{g}\right|_{p}=\left(\left|G: H^{g}\right|\left|H^{g}: P \cap H^{g}\right|\right)_{p}=|G: H|_{p}\left|H^{g}: P \cap H^{g}\right|_{p},
$$

which is divisible by $|G: H|_{p}$, where $|S|_{p}$ denotes the highest power of the prime p that divides $|S|$.

Finally we consider the value $\zeta^{g}(x)$ on each orbit of P. That $x \in Z(P)$ implies $\zeta^{g y}(x)=\zeta^{g}\left(y x y^{-1}\right)=\zeta^{g}(x)$ for all $y \in P$. This implies that on each P-orbit of $\left.{ }_{r} \zeta^{g} \mid g \in H \backslash G\right\}$, the element x takes on the same value $\zeta^{g}(x)$. Hence the multiplicity $\frac{r}{p}$ must be divisible by $|G: H|_{p}$, which is obviously impossible. This completes the proof.

As a corollary, we have
Corollary 2 If $G \neq\{1\}$ is solvable, then G possesses a nontrivial non-vanishing element.
Proof Let A be a minimal normal subgroup of G. Then A is an elementary abelian p-group for some prime p. Also, $A \subseteq P$, where P is any Sylow p-subgroup of G. Now, $A \triangleleft P, Z(P) \cap A>1$ and every $x \in Z(P) \cap A$ is non-vanishing.

Acknowledgements. The author wishes to thank Koichiro Harada for helpful information. This work was inspired by his talk at Kusatsu seminar in 2008.

References

[1] M. Isaacs, G. Navarro and T. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999) 413-423.

[^0]: *Supported by the Grants-in-Aids for Scientific Research, No. 22654002, The Ministry of Education, Science and Culture, Japan

