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Abstract. A condition for a closed one-form to be exact, the one-form
having values in Euclidean space, on a compact surface without bound-
ary, is given in the case where the surface has suitable differentiable
automorphisms. Tori and hyperelliptic curves, with holomorphic auto-
morphisms, are in this case. A local representation formula for surfaces
in Euclidean space is then globalized. A condition for a local surface of
constant mean curvature to be global, can be written using a harmonic
Gauss map.

Mathematics Subject Classification (2010). Primary 58A10; Secondary
53A10.

Keywords. Exact one-form, closed one-form, differentiable automorphism,
period.

1. Introduction

The theory of de Rham cohomology is related to the theory of surfaces in
Euclidean space. A surface is a smooth map f , from a smooth orientable con-
nected two-dimensional manifold M without boundary, to an n-dimensional
Euclidean space Rn. The differential df is an exact one-form onM with values
in Rn. Hence, a surface represents a boundary of the first de Rham cohomol-
ogy group of one-forms on M , with values in Rn. The f is reconstructed from
its differential by the integral formula

f(p) =
∫

γ

df + f(p0),

with a curve γ starting at p0 ∈M and ending at p ∈M .
If M is simply connected, then a one-form is exact if and only if the one-

form is closed. In this case, there are several ways to construct differentials
of surfaces. For example, the Weierstrass-Enneper representation formula for
minimal surfaces in R3 constructs a differential of a minimal surface in R3,
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from a meromorphic function and a holomorphic one-form on a Riemann sur-
face (see Osserman [13]). The Kenmotsu formula constructs a differential of a
surface in R3, from a non-zero mean curvature function and a Gauss map (see
Kenmotsu [8]). These researches have been taken over by many researchers
and developed in a variety of methods (see, for example, Hoffman and Os-
serman [6], Konopelchenko [12], Taimanov [18], [17], [16], [15], Friedrich [4],
Pedit and Pinkall [14], and Burstall, Ferus, Leschke, Pedit and Pinkall [2]).
Except [6], these researches are related with the spinorial or twistorial for-
mulation of the theory of surfaces (see, for example, Bryant [1], Friedrich [5],
Kamberov, Norman, Pedit, and Pinkall [7]).

In the case where the topology of M is more complicated, these formulae
do not construct an exact one-form in general, but a closed one-form. This
motivates us to study a condition for a closed one-form to be exact.

We assume that M is compact without boundary and of genus g. We
embed Rn into the Clifford algebra C`n. We denote the first de Rham co-
homology group of C`n-valued one-forms on M by Rh1, and the cohomol-
ogy class where a closed one-form η belongs by [[η]]. We define a pairing
( , ) : Rh1 ×Rh1 → C`n by

([[η]], [[ξ]]) :=
∫

M

η ∧ ξ.

The dimension of Rh1 is 2g. Let δ1, . . . , δ2g be a basis of Rh1. It is well-known
that a closed one-form ω on M is exact, if and only if

([[ω]], δi) = 0

for all δ1, . . . , δ2g ∈ Rh1. In general, it is difficult to find δ1, . . ., δg and
calculate the above 2g integrals.

To ease this difficulty, we assume that M has suitable differentiable
automorphisms. We denote by H1(M,Z) the first homology group of M with
integer coefficients. For a closed curve γ in M , we denote by [[γ]] the homology
class where γ belongs. Let a1,. . .,ag, b1,. . .,bg be closed curves in M such that
[[a1]],. . .,[[ag]], [[b1]],. . .,[[bg]] is a canonical basis of H1(M,Z). We denote by Eg

the g by g unit matrix. Let J2g be the 2g by 2g matrix defined by

J2g :=
(

O Eg

−Eg O

)
.

We denote by Sp(g,Z) the symplectic group of 2g by 2g matrices with entries
in Z. For a matrix N , we denote its transpose by NT . Then Sp(g,Z) ={
X
∣∣XJ2gX

T = J2g

}
. Let A be the group of differentiable automorphisms of

M . A representation h = (hjk) : A → Sp(g,Z) is defined by the equation(
[[µ(a1)]] . . . [[µ(ag)]] [[µ(b1)]] . . . [[µ(bg)]]

)
=
(
[[a1]] . . . [[ag]] [[b1]] . . . [[bg]]

)
h(µ).

We decompose the matrix J2gh
T − hJ2g into a diagonal matrix B(µ) =

(bij(µ)), and a matrix C(µ) = (cij(µ)) such that the entries of the main
diagonal are zero. Then, J2gh

T (µ) − h(µ)J2g = B(µ) + C(µ). Let C̃(µ) =
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(c̃ij(µ)) = (|cij(µ)|) and Φ: C`n → R1 be the projection. Then we have the
following condition.

Theorem 1.1. We assume that there exist µ1, . . . , µm ∈ A and r1, . . . , rm ∈
R \ {0}, satisfying one of the following conditions:

1.
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite,

2.
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite.

Let ω be a one-form on M with
m∑

l=1

rl (ω ∧ µl
∗ω − µl

∗ω ∧ ω) 6= 0.

A one-form ω with values in Rn is exact, if and only if ω is closed and

Φ

(
m∑

l=1

rl[([[ω]], [[µl
∗ω]]) − ([[µl

∗ω]], [[ω]])]

)
= 0.

If
∑m

l=1 rl (ω ∧ µl
∗ω − µl

∗ω ∧ ω) is a non-zero exact one-form, then we
understand that ω is an exact one-form, without integration. We see examples
in the case where M is a square torus (Corollary 4.1), a hexagonal torus
(Corollary 4.2), and a hyperelliptic curve with affine plane model{

(z, w) ∈ C × C
∣∣∣w2 = z2(g+1) − 1

}
(Corollary 5.1).

We identify R4 with quaternions H. For a ∈ H, we denote its conjugate
by ā. Then we have the following similar condition.

Theorem 1.2. We assume that there exist µ1, . . . , µm ∈ A and r1, . . . , rm ∈
R \ {0}, satisfying one of the following conditions:

1.
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite,

2.
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite.

Let ω be a one-form on M with
m∑

l=1

rl (ω ∧ µl
∗ω̄ − µl

∗ω ∧ ω̄) 6= 0.

A one-form ω with values in H is exact, if and only if ω is closed and
m∑

l=1

rl[([[ω]], [[µl
∗ω̄]]) − ([[µl

∗ω]], [[ω̄]])] = 0.

By Theorem 1.2, we have a property of a period of a one-form. We
denote the inner product of R4 by 〈 , 〉. Let η be a one-form with values in
Im H, such that∫

a1

η 6= 0,
∫

a2

η = · · · =
∫

ag

η =
∫

b1

η = · · · =
∫

bg

η = 0.

We can consider η as a differential of a singly-periodic surface in R3.
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Corollary 1.3. We assume that there exist µ ∈ A and r ∈ R \ {0}, satisfying
one of the following conditions:

1. rB(µ) − |r|C̃(µ) is positive definite,
2. rB(µ) + |r|C̃(µ) is negative definite.

Let η be an Im H-valued one-form such that∫
a1

η 6= 0,
∫

a2

η = · · · =
∫

ag

η =
∫

b1

η = · · · =
∫

bg

η = 0.

We assume that

r(η ∧ µ∗η̄ − µ∗η ∧ η̄) 6= 0.

Then 〈∫
a1

η,

∫
b1

µ∗η

〉
6= 0.

Returning the initial motivation, we combine Theorem 1.2 and the con-
struction of a closed one-form for a surface in R4 in [2]. We denote the complex
structure of M by J . For a one-form ω on M , we define ∗ω := ω ◦ J . We
denote the set of real parts of quaternions by Re H and the set of imagi-
nary parts of quaternions by Im H. If f is an immersion, then there exists
a map N : M → S2 ⊂ Im H such that ∗ df = N df . We call a non-constant
map f : M → R4 a surface if there exists N : M → S2 ⊂ Im H such that
∗ df = N df . Then we have the following condition.

Corollary 1.4. We assume that there exist µ1, . . . , µm ∈ A and r1, . . . , rm ∈
R \ {0}, satisfying one of the following conditions:

1.
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite,

2.
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite.

We assume that maps N : M → S2 ⊂ Im H and H : M → H \ {0}, and a
non-zero one-form ω on M satisfy

−2ω H̄ = ∗ dN +N dN, 2ω ∧ dH̄ = d ∗ dN + dN ∧ dN,
m∑

l=1

rl (ω ∧ µl
∗ω̄ − µl

∗ω ∧ ω̄) 6= 0,

m∑
l=1

rl[([[ω]], [[µl
∗ω̄]]) − ([[µl

∗ω]], [[ω̄]])] = 0.

Then there exists a surface f : M → R4 with mean curvature vector field H,
such that df = ω and ∗ df = N df .

If f takes values in Im H ∼= R3, then ∗ df = N df = −df N . Applying
Corollary 1.2 to surfaces of constant mean curvature, we have the following
condition.

Corollary 1.5. We assume that there exist µ1, . . . , µm ∈ A and r1, . . . , rm ∈
R \ {0}, satisfying one of the following conditions:
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1.
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite,

2.
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite.

We assume that a non-conformal harmonic map N : M → S2 ⊂ Im H
m∑

l=1

rl (N ∗ dN ∧ µl
∗(N ∗ dN) − µl

∗(N ∗ dN) ∧ (N ∗ dN)) 6= 0,

m∑
l=1

rl[([[N ∗ dN ]], [[µl
∗(N ∗ dN)]]) − ([[µl

∗(N ∗ dN)]], [[N ∗ dN ]])] = 0.

Then there exists a surface f : M → Im H ∼= R3 of non-zero constant mean
curvature, such that ∗ df = N df = −df N .

2. Clifford algebra-valued one-forms

Throughout this paper, we assume that all manifolds, maps, and differential
forms are smooth. In this section, we show an analog of a relation between
the periods of two complex-valued, closed one-forms (see Farkas and Kra [3],
III.2.3. Proposition). Then we prove Theorem 1.1.

Let {e1, . . . , en} be an orthonormal basis of Rn. The Clifford algebra
C`n is the algebra generated by e1, . . . , en subject to the relation

eiej + ejei = −2δij .

We denote the projection C`n → R1 by Φ. Let 〈u, v〉 be the inner product
of u and v ∈ Rn and |u| := 〈u, u〉1/2 the norm of Rn. Let u :=

∑n
i=1 uiei,

v :=
∑n

i=1 viei ∈ Rn ⊂ C`n (u1, . . . , un, v1, . . . , vn ∈ R). Then

uv = −〈u, v〉 +
∑
i<j

∣∣∣∣ui uj

vi vj

∣∣∣∣ eiej

We identify the Clifford algebra and the exterior algebra in a natural manner.
Then uv = −〈u, v〉 + u ∧ v. Hence u and v are linearly independent over R,
if and only if uv − vu 6= 0. Let α : C`n → C`n be the automorphism which
extends α(u) = −u for u ∈ Rn. The map δ : C`2 → H, which extends

δ(1) = 1, δ(e1) = i, δ(e2) = j, δ(e1e2) = k,

is an isomorphism between C`2 and H.
Let M be a compact oriented two-dimensional manifold without bound-

ary. We assume that the genus of M is g. For closed curves γ1 and γ2 in M , we
denote γ1 · γ2 the intersection number of γ1 and γ2. Let π1(M) = π1(M,p0)
be the fundamental group of M with base point p0 ∈ M . For a closed curve
u with initial and end point p0 in M , we denote the inverse curve of u by
u−1, and the homotopy class that u represents by [u]. The map from π1(M)
to H1(M,Z) defined by [u] 7→ [[u]] is a surjective group homomorphism. We
fix simple closed curves

{a1, . . . , ag, b1, . . . , bg}
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in M with initial and end point p0 ∈ M , such that all curves are disjoint
from each other, except p0, that

ai · aj = bi · bj = 0, ai · bj = −bj · ai = δij (i, j = 1, . . . , g),

and that

[a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g ] = 1.

The ordered cycles

[[a1]], . . . , [[ag]], [[b1]], . . . , [[bg]]

form a canonical basis of H1(M,Z). We assume that [[γ]] ∈ H1(M,Z) and
[[η]] ∈ Rh1. Then we can define a map V[[γ]] : Rh1 → C`n by

V[[γ]]([[η]]) :=
∫

γ

η.

We set

P (η) =
(
P1(η) . . . Pg(η) Pg+1(η) . . . P2g(η)

)
:=
(
V[[a1]]([[η]]) . . . V[[ag ]]([[η]]) V[[b1]]([[η]]) . . . V[[bg ]]([[η]])

)
.

Lemma 2.1. Let η and ξ be closed one-forms on M with values in C`n. Then

([[η]], [[ξ]]) = P (η)J2gP (ξ)T (2.1)

Proof. Let ψ : U →M be the universal covering. Then there exists a simply
connected set M̃ with boundary ∂M̃ in U such that

∂M̃ = ã1b̃1ã
−
1 b̃

−
1 · · · ãg b̃gã

−
g b̃

−
g ,

ψ(ãi) = ai, ψ(ã−i ) = a−1
i , ψ(b̃i) = bi, ψ(b̃−i ) = b−1

i (i = 1, . . . , g).

(see Figure 1).

Figure 1. M̃ in the case where g = 2.

We fix a point z0 ∈ M̃ such that ψ(z0) = p0. We denote a curve with
initial point z0 and end point z in M̃ by γ. We can define a map f : M̃ → C`n
by

f(z) :=
∫

γ

ψ∗η.
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By Stokes’ theorem, we have

([[η]], [[ξ]]) =
∫

M

η ∧ ξ =
∫

M̃

ψ∗(η ∧ ξ) =
∫

M̃

df ∧ ψ∗ξ =
∫

∂M̃

fψ∗ξ

=
g∑

m=1

∫
am+bm+a−

m+b−m

fψ∗ξ.

(2.2)

For a point z ∈ ãm, we define z′ ∈ ã−m by ψ(z) = ψ(z′). Let γ̃ be a curve in
M̃ with initial point z0 and end point z′. Then∫

ãm+ã−
m

fψ∗ξ =
∫

ãm

(∫
γ

ψ∗η −
∫

γ̃

ψ∗η

)
ψ∗ξ

= −
∫

b̃m

ψ∗η

∫
ãm

ψ∗ξ = −
∫

bm

η

∫
am

ξ = −Pg+m(η)Pm(ξ).

Similarly, for a point z ∈ b̃m, we define z′ ∈ b̃−m by ψ(z) = ψ(z′). Then∫
b̃m+b̃−m

fψ∗ξ =
∫

b̃m

(∫
γ

ψ∗η −
∫

γ̃

ψ∗η

)
ψ∗ξ

=
∫

ãm

ψ∗η

∫
b̃m

ψ∗ξ =
∫

am

η

∫
bm

ξ = Pm(η)Pg+m(ξ).

By (2.2), we have (2.1). �

Proof of Theorem 1.1. For a closed curve γ in M , we have

V[[γ]]([[τ∗ω]]) =
∫

γ

τ∗ω =
∫

τ(γ)

ω = V[[τ(γ)]]([[ω]]).

Hence

P (µl
∗ω) = P (ω)h(µl).

Then

([[ω]], [[µl
∗ω]]) = P (ω)J2gP (µl

∗ω)T = P (ω)J2gh(µl)TP (ω)T .

We have

(P (ω)J2gh(µl)TP (ω)T )T = P (ω)h(µl)JT
2gP (ω) = −([[µl

∗ω]], [[ω]]).

Let P̃ (ω) =
(
|P1(ω)| . . . |P2g(ω)|

)
.

We assume that
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite. Then

0 = Φ

(
m∑

l=1

rl[([[ω]], [[µl
∗ω]]) − ([[µl

∗ω]], [[ω]])]

)

= Φ

(
P (ω)

m∑
l=1

rl
[
J2gh(µl)T − h(µl)J2g

]
P (ω)T

)

= Φ

(
P (ω)

m∑
l=1

rl [B(µl) + C(µl)]P (ω)T

)
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= −
m∑

l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 +
2g∑

i,j=1

rlcij(µl)〈Pi(ω), Pj(ω)〉


≤ −

m∑
l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 −
2g∑

i,j=1

|rl||cij(µl)||Pi(ω)||Pj(ω)|


= −P̃ (ω)

(
m∑

l=1

(
rlB(µl) − |rl|C̃(µl)

))
P̃ (ω)T ≤ 0.

Hence P̃ (ω) = 0.
We assume that

∑m
l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite. Then

0 = Φ

(
m∑

l=1

rl[([[ω]], [[µl
∗ω]]) − ([[µl

∗ω]], [[ω]])]

)

= −
m∑

l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 +
2g∑

i,j=1

rlcij(µl)〈Pi(ω), Pj(ω)〉


≥ −

m∑
l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 +
2g∑

i,j=1

|rl||cij(µl)||Pi(ω)||Pj(ω)|


= −P̃ (ω)

(
m∑

l=1

(
rlB(µl) + |rl|C̃(µl)

))
P̃ (ω)T ≥ 0.

Hence P̃ (ω) = 0.
A one-form ω is exact if and only if P̃ (ω) = 0. Hence, Theorem 1.1

holds. �

3. Quaternionic-valued one-forms

We have a similar condition for quaternionic-valued one-forms.

Proof of Theorem 1.2. We have

([[ω]], [[µl
∗ω̄]]) = P (ω)J2gP (µl

∗ω̄)T = P (ω)J2gh(µl)TP (ω̄)T ,

([[ω]], [[µl
∗ω̄]]) = (P (ω)J2gP (µl

∗ω̄)T )T

= −P (ω)h(µl)J2gP (ω̄)T = −([[µl
∗ω]], [[ω̄]]).

Then

2 Re([[ω]], [[µl
∗ω̄]]) = ([[ω]], [[µl

∗ω̄]]) + ([[ω]], [[µl
∗ω̄]])

= P (ω)J2gh(µl)TP (ω̄)T − P (ω)h(µl)J2gP (ω̄)T

= P (ω)
(
J2gh(µl)T − h(µl)J2g

)
P (ω̄)T

= P (ω)(B(µl) + C(µl))P (ω̄)T .
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We assume that
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite. Since 〈u, v〉 =

(uv̄ + v̄u)/2 for u, v ∈ H, we have

0 =
m∑

l=1

rl[([[ω]], [[µl
∗ω̄]]) − ([[µl

∗ω]], [[ω̄]])]

= P (ω)
m∑

l=1

rl [B(µl) + C(µl)]P (ω̄)T

= −
m∑

l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 +
2g∑

i,j=1

rlcij(µl)〈Pi(ω), Pj(ω)〉


≤ −

m∑
l=1

 2g∑
i=1

rlbii(µl)|Pi(ω)|2 −
2g∑

i,j=1

|rl||cij(µl)||Pi(ω)||Pj(ω)|


= −P̃ (ω)

(
m∑

l=1

(
rlB(µl) − |rl|C̃(µl)

))
P̃ (ω̄)T ≤ 0.

Hence P̃ (ω) = 0.

We assume that
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite. Then

0 =
m∑

l=1

rl[([[ω]], [[µl
∗ω̄]]) − ([[µl

∗ω]], [[ω̄]])]

= −
m∑

l=1

 2g∑
i=1

rlbij(µl)|Pi(ω)|2 +
2g∑

i,j=1

rlcij(µl)〈Pi(ω), Pj(ω)〉


≥ −

m∑
l=1

 2g∑
i=1

rlbij(µl)|Pi(ω)|2 +
2g∑

i,j=1

|rl||cij(µl)||Pi(ω)||Pj(ω)|


= −P̃ (ω)

(
m∑

l=1

(
rlB(µl) + |rl|C̃(µl)

))
P̃ (ω̄)T ≥ 0.

Hence P̃ (ω) = 0.
A one-form ω is exact if and only if P̃ (ω) = 0. Hence, Theorem 1.2

holds. �

Proof of Corollary 1.3. Since η is not exact, we have∫
M

r (η ∧ µ∗η − µ∗η ∧ η) 6= 0.

On the other hand,∫
M

r (η ∧ µ∗η − µ∗η ∧ η) = −r
(∫

a1

η

∫
b1

µ∗η +
∫

b1

µ∗η

∫
a1

η

)
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= −2r
〈∫

a1

η,

∫
b1

µ∗η

〉
by Lemma 2.1. Hence Corollary 1.3 holds. �

4. One-forms on tori

We review the classification of tori and their holomorphic automorphisms,
and consider Theorem 1.1 and Theorem 1.2 in the case where M is a torus.

Let M be a torus. We consider M as a Riemann surface. Then M is
biholomorphic to an orbit space C/Λλ with a lattice

Λλ := Z + Zλ, Imλ > 0, −1
2
< Reλ ≤ 1

2
,

{
|λ| ≥ 1 (Reλ ≥ 0),
|λ| > 1 (Reλ < 0).

The torus C/Λi is called a square torus. The torus C/Λeπi/3 is called a hexago-
nal torus. The projection ψλ : C → C/Λλ is the universal covering. We define
ã : [0, 1] → C and b̃ : [0, 1] → C by ã(t) := t and b̃(t) := λt respectively. Then
a := ψλ ◦ ã and b := ψλ ◦ b̃ are closed curves in C/Λλ subject to the relation
aba−1b−1 = 1. The fundamental group π1(C/Λλ, ψλ(0)) is generated by [a]
and [b].

A map τ : C/Λλ → C/Λλ is a holomorphic automorphism such that
τ2 is the identity map, if and only if (τ ◦ ψλ)(z) = ψλ(±z). There exists a
holomorphic automorphism τ such that τ2 is not the identity map, if and only
if C/Λλ is a square torus or a hexagonal torus. In fact, we define τ̃m,n : C → C
by

τ̃m,n(z) = e2πmi/nz (n = 4, 6, m = 0, 1, . . . , n− 1).

Then τm,6 : C/Λeπi/3 → C/Λeπi/3 is defined by τm,6 ◦ ψeπi/3 := ψeπi/3 ◦ τ̃m,6.
A map τm,6 is a holomorphic automorphism of a hexagonal torus. Similarly,
τm,4 : C/Λi → C/Λi is defined by τm,4 ◦ ψi := ψi ◦ τ̃m,4. A map τm,4 is a
holomorphic automorphism of a square torus.

Corollary 4.1. Let M be a square torus and ω a one-form on M with values
in Rn ⊂ C`n, satisfying ω ∧ τ1,4

∗ω̄ − τ1,4
∗ω ∧ ω̄ 6= 0. A one-form ω is exact,

if and only if ω is closed and

Φ (([[ω]], [[τ1,4
∗ω]]) − ([[τ1,4

∗ω]], [[ω]])) = 0.

Proof. Let M be a square torus. We see that

h(τ1,4) =
(

0 −1
1 0

)
.

Let m = 1, r1 = 1, and µ1 = τ1,4. Then

J2h(τ1,4)T − h(τ1,4)J2 =
(
−2 0
0 −2

)
= B(τ1,4),

C(τ1,4) = C̃(τ1,4) = 0,
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B(τ1,4) + C̃(τ1,4) =
(
−2 0
0 −2

)
.

Then Corollary 4.1 holds by Theorem 1.1. �
Corollary 4.2. Let M be a hexagonal torus and ω a one-form on M with
values in Rn ⊂ C`n, satisfying ω ∧ τ1,6

∗ω̄ − τ1,6
∗ω ∧ ω̄ 6= 0. A one-form ω is

exact, if and only if

Φ (([[ω]], [[τ1,6
∗ω]]) − ([[τ1,6

∗ω]], [[ω]])) = 0.

Proof. Let M be a hexagonal torus. We see that

h(τ1,6) =
(

0 −1
1 1

)
.

Let m = 1, r1 = 1, and µ1 = τ1,6. Then

J2h(τ1,6)T − h(τ1,6)J2 =
(
−2 1
1 −2

)
,

B(τ1,6) =
(
−2 0
0 −2

)
, C(τ1,6) =

(
0 1
1 0

)
, C̃(τ1,6) =

(
0 1
1 0

)
,

B(τ1,6) + C̃(τ1,6) =
(
−2 1
1 −2

)
.

Then Corollary 4.2 holds by Theorem 1.1. �
We collect statements for quaternionic-valued one-forms, which are ob-

tained in a similar fashion as above. We omit their proof.

Corollary 4.3. Let M be a square torus and ω a one-form on M with values
in R4 ∼= H, satisfying ω ∧ τ1,4

∗ω̄ − τ1,4
∗ω ∧ ω̄ 6= 0. A one-form ω is exact, if

and only if ω is closed and

([[ω]], [[τ1,4
∗ω̄]]) − ([[τ1,4

∗ω]], [[ω̄]]) = 0.

Corollary 4.4. Let M be a hexagonal torus and ω a one-form on M with
values in R4 ∼= H, satisfying ω ∧ τ1,6

∗ω̄ − τ1,6
∗ω ∧ ω̄ 6= 0. A one-form ω is

exact, if and only if

([[ω]], [[τ1,6
∗ω̄]]) − ([[τ1,6

∗ω]], [[ω̄]]) = 0.

5. One-forms on a hyperelliptic curve

We review a hyperelliptic curve and its automorphisms, and prove Corollary
5.1.

Let M be the hyperelliptic curve of genus g with affine model (5.1) and
τ be a holomorphic automorphism of M defined by (5.2). If g = 1, then M
is a square torus and τ = τ1,4.

We label two copies of a sphere, which is identified with Σ = C ∪
{∞}, sheet I and sheet II. On each sheet, we draw a smooth curve, joining
e(2k−1)πi/(g+1) and e2kπi/(g+1) (k = 1, . . . , g + 1). These curves are called
cuts. We assume that these cuts do not intersect each other. Each cut has
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two banks, called the N-bank and the S-bank. The surface M is constructed
by joining every S-bank on sheet I to an N-bank of the corresponding cut
on sheet II, and joining every N-bank on sheet I to an S-bank of the corre-
sponding cut on sheet II. We draw a simple closed curve ak, winding coun-
terclockwise once, around the cuts joining e(2k−1)πi/(g+1) and e2kπi/(g+1) on
sheet I (k = 1, . . . , g). We choose a curve bk starting from a point on the
cut from e(2g+1)πi/(g+1) to 1, going on sheet I, to a point on the cut from
e(2k−1)πi/(g+1) to e2kπi/(g+1), and returning on the sheet II (k = 1, . . . , g).
A map τ : M → M defined by τ(w, z) = (−w, eπi/(g+1)z) is a holomorphic
automorphism of M . We have a situation similar to a square torus, when a
Riemann surface is hyperelliptic. Let M be a hyperelliptic curve of genus g
with affine plane model{

(z, w) ∈ C × C
∣∣∣w2 = z2(g+1) − 1

}
. (5.1)

A holomorphic automorphism τ : M →M is defined by

τ(z, w) :=
(
eπi/(g+1)z,−w

)
. (5.2)

We have

h(τ) =
(

O Q(τ)
R(τ) O

)
,

Q(τ) =


−1 . . . . . . . . −1
0 −1 . . . −1
...

. . . . . .
...

0 . . . 0 −1

 ,

R(τ) =



1 0 . . . . . . . . . . . . . 0
−1 1 0 . . . . . . . . 0
0 −1 1 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 −1 1 0
0 . . . . . . . . 0 −1 1


.

Corollary 5.1. Let M be a hyperelliptic curve of genus two with affine model
(5.1), and τ a holomorphic automorphism defined by (5.2). Let ω be a one-
form with values in Rn ⊂ C`n, satisfying ω∧ τ∗ω− τ∗ω∧ω 6= 0. A one-form
ω is exact, if and only if ω is closed and

Φ (([[ω]], [[τ∗ω]]) − ([[τ∗ω]], [[ω]])) = 0.

Proof. We have

h(τ) =


0 0 −1 −1
0 0 0 −1
1 0 0 0
−1 1 0 0

 .
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Let m = 1, r1 = 1, and µ1 = τ1,6. Then

J4h(τ)T − h(τ)J4 =


−2 −1 0 0
−1 −2 0 0
0 0 −2 1
0 0 1 −2

 ,

B(τ) =


−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

 , C(τ) =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 ,

C̃(τ) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

B(τ) + C̃(τ) =


−2 1 0 0
1 −2 0 0
0 0 −2 1
0 0 1 −2

 .

Then Corollary 4.2 holds by Theorem 1.1. �

As in the previous section, we have a similar statement as above for
quaternionic-valued one-forms. We omit the proof.

Corollary 5.2. Let M be a hyperelliptic curve of genus two with affine model
(5.1), and τ a holomorphic automorphism defined by (5.2). Let ω be a one-
form with values in R4 ∼= H, satisfying ω ∧ τ∗ω̄ − τ∗ω ∧ ω̄ 6= 0. A one-form
ω is exact, if and only if ω is closed and

([[ω]], [[τ∗ω̄]]) − ([[τ∗ω]], [[ω̄]]) = 0.

6. Surfaces in Euclidean four-space

We prove Corollary 1.4 and Corollary 1.5.
Firstly, we review the theory of surfaces in terms of quaternions (see

[2]). Let f : M → H be a surface. Then there exists N : M → S2 ⊂ Im H such
that ∗ df = N df . Let H : M → H be the mean curvature vector of f . Then
the following equation holds.

−2 df H̄ = ∗ dN +N dN.

Differentiating this equation, we have

2 df ∧ dH̄ = d ∗ dN + dN ∧ dN.

Proof of Corollary 1.4. We assume that N , H, and ω satisfy the assumption.
Then

2 dω H̄ = 2 d(ωH̄) + 2ω ∧ dH̄ = 0.
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Hence ω is a closed one-form. By Theorem 1.1, the one-form ω is exact. Then
there exists a map f : M → H with df = ω. By the assumption for ω, we
have ∗ df = N df . Hence, f is a surface with ∗ df = N df and mean curvature
vector field H. �

The following is the case where a surface takes values in R3 ∼= Im H.

Corollary 6.1. We assume that there exist µ1, . . . , µm ∈ A and r1, . . . , rm ∈
R \ {0}, satisfying one of the following conditions:

1.
∑m

l=1

(
rlB(µl) − |rl|C̃(µl)

)
is positive definite,

2.
∑m

l=1

(
rlB(µl) + |rl|C̃(µl)

)
is negative definite.

We assume that maps N : M → S2 ⊂ Im H and H : M → R, and a non-zero
one-form ω on M satisfy

2ωH = N ∗ dN − dN, −2ω ∧ (dH N +H dN) = d ∗ dN + dN ∧ dN,
m∑

l=1

rl (ω ∧ µl
∗ω̄ − µl

∗ω ∧ ω̄) 6= 0,

m∑
l=1

rl[([[ω]], [[µl
∗ω̄]]) − ([[µl

∗ω]], [[ω̄]])] = 0.

Then there exists a surface f : M → Im H ∼= R3 with mean curvature H, such
that df = ω and ∗ df = N df = −df N .

Proof. For a surface f : M → Im H, we have ∗ df = N df = −df N with Gauss
map N : M → S2 ⊂ Im H. The mean curvature vector of f is H = HN with
mean curvature function H. Then this corollary follows from Corollary 1.4.

�

Proof of Corollary 1.5. A harmonic map N : M → S2 ⊂ Im H satisfies the
equation

d ∗ dN = N dN ∧ ∗ dN.

Let 2ωH = N ∗ dN − dN (H ∈ R \ {0}). Then

−2ω ∧ (dH N +H dN) = −(N ∗ dN − dN) ∧ dN
= −N ∗ dN ∧ dN + dN ∧ dN = d ∗ dN + dN ∧ dN.

Then Corollary 1.5 follows from Corollary 6.1. �
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