A $t t^{*}$-bundle associated with a harmonic map from a Riemann surface into a sphere

Sanae Kurosu ${ }^{\text {a }}$, Katsuhiro Moriya ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN
${ }^{b}$ Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8571, JAPAN

Abstract

A $t t^{*}$-bundle is constructed by a harmonic map from a Riemann surface into an n-dimensional sphere. This $t t^{*}$-bundle is a high-dimensional analogue of a quaternionic line bundle with a Willmore connection. For the construction, a flat connection is decomposed into four parts by a fiberwise complex structure.

Keywords: tt*-bundle, harmonic map, the Clifford algebra
2010 MSC: 53C43, 81R12

1. Introduction

A $t t^{*}$-bundle is a real vector bundle equipped with a family of flat connections, parametrized by a circle. The present paper delivers a $t t^{*}$-bundle derived from a harmonic map from a Riemann surface to an n-dimensional sphere.

The notion of $t t^{*}$-bundles is introduced by Schäfer [10] as a simple solution to a generalized version of the equation of topological-antitopological fusion, introduced by Cecotti and Vafa [2], in terms of real differential geometry. A topological-antitopological fusion of a topological field theory model is a special geometry structure on a Frobenius manifold. As a geometric interpretation of a special geometry structure on a quasi-Frobenius manifold, Dubrovin [6] showed that a solution to the equation is locally a pluriharmonic map from an n-dimensional quasi-Frobenius manifold to the symmetric space $\mathrm{GL}(n, \mathbb{R}) / \mathrm{O}(n)$.

Schäfer [10] showed that an admissible pluriharmonic map from a simply connected complex manifold M to a symmetric space $\mathrm{GL}(r, \mathbb{R}) / \mathrm{O}(p, q)$, and that to $\mathrm{SL}(r, \mathbb{R}) / \mathrm{SO}(p, q)$ with $p+q=r$, gives rise from a metric $t t^{*}$-bundle. A harmonic map from a Riemann surface to $\mathrm{SU}(1,1) / S(\mathrm{U}(1) \times \mathrm{U}(1)) \cong$ $\mathrm{SL}(2, \mathbb{R}) / \mathrm{SO}(2)$ is obtained by the generalized Weierstrass representation formula by Dorfmeister, Pedit, and Wu [5]. The Gauss map of a spacelike surface of constant mean curvature in the Minkowski space $\mathbb{R}^{2,1}$ is a harmonic map from a Riemann surface to $\operatorname{SL}(2, \mathbb{R}) / \mathrm{SO}(2)$. The Sym-Bobenko formula (Bobenko [1], Dorfmeister and Haak [4]) connects a surface and its Gauss map. Applying these formulae, Dorfmeister, Guest, and Rossman [3] gave the description of the quantum cohomology of $\mathbb{C} P^{1}$. The quantum cohomology of $\mathbb{C} P^{1}$ provides a solution to the third Painlevé equation.

A surface of constant mean curvature in \mathbb{R}^{3} is an interesting research subject in the theory of surfaces. Its Gauss map is a harmonic map from a Riemann surface to the two-dimensional sphere S^{2}. It is impossible to write S^{2} as a symmetric space $\mathrm{GL}(r, \mathbb{R}) / \mathrm{O}(p, q)$ or $\mathrm{SL}(r, \mathbb{R}) / \mathrm{SO}(p, q)$. This led the authors to find a $t t^{*}$-bundle for a harmonic map into S^{2}. The theory of a quaternionic line bundle with a Willmore connection by Ferus, Leschke, Pedit, and Pinkall [8] provides a way to construct a $t t^{*}$-bundle for a harmonic map from a Riemann surface into S^{2}. This method is extended and a $t t^{*}$ bundle associated with a harmonic map from a Riemann surface into S^{n} $(n \geq 2)$ is obtained (Theorem 4.1).

2. $t t^{*}$-bundles

We recall a $t t^{*}$-bundle (Schäfer [10]).
Let M be a complex manifold with complex structure J^{M}. For a one-form ω on M, we define a one-form $* \omega$ on M by $* \omega:=\omega \circ J^{M}$. Let E be a trivial real vector bundle of rank n over M, ∇ a connection on E, and S a one-form with values in the real endomorphisms of E. A one-form S is considered as a one-form with values in n-by- n real matrices. Define a family of connections $\left\{\nabla^{\theta}\right\}_{\theta \in \mathbb{R}}$ on E by

$$
\nabla^{\theta}:=\nabla+(\cos \theta) S+(\sin \theta) * S
$$

The curvature of ∇^{θ} is

$$
\begin{gathered}
d^{\nabla^{\theta}} \circ \nabla^{\theta} \\
=d^{\nabla} \circ \nabla+(\cos \theta) d^{\nabla} S+(\sin \theta) d^{\nabla} * S \\
+((\cos \theta) S+(\sin \theta) * S) \wedge((\cos \theta) S+(\sin \theta) * S) \\
=d^{\nabla} \circ \nabla+(\cos \theta) d^{\nabla} S+(\sin \theta) d^{\nabla} * S \\
+(\cos \theta)^{2} S \wedge S+\cos \theta \sin \theta(S \wedge * S+* S \wedge S)+(\sin \theta)^{2} * S \wedge * S \\
=d^{\nabla} \circ \nabla+(\cos \theta) d^{\nabla} S+(\sin \theta) d^{\nabla} * S \\
+\frac{1+\cos 2 \theta}{2} S \wedge S+\frac{\sin 2 \theta}{2}(S \wedge * S+* S \wedge S)+\frac{1-\cos 2 \theta}{2} * S \wedge * S \\
=d^{\nabla} \circ \nabla+\frac{1}{2} S \wedge S+\frac{1}{2} * S \wedge * S \\
\\
\quad+(\cos \theta) d^{\nabla} S+(\sin \theta) d^{\nabla} * S
\end{gathered}
$$

A vector bundle E with ∇ and S is called a $t t^{*}$-bundle if ∇^{θ} is flat for all $\theta \in \mathbb{R}$. By the preceding calculation, a vector bundle E with ∇ and S is a $t t^{*}$-bundle, if and only if

$$
\begin{gathered}
d^{\nabla} \circ \nabla+S \wedge S=0, \quad d^{\nabla} S=0, \quad d^{\nabla} * S=0 \\
S \wedge S=* S \wedge * S, \quad S \wedge * S=-* S \wedge S
\end{gathered}
$$

Indeed,

$$
\begin{gathered}
(S \wedge S-* S \wedge * S)(X, Y) \\
=S(X) S(Y)-S(Y) S(X)-S\left(J^{M} X\right) S\left(J^{M} Y\right)+S\left(J^{M} Y\right) S\left(J^{M} X\right) \\
=-S(X) S\left(J^{M} J^{M} Y\right)+S\left(J^{M} J^{M} Y\right) S(X) \\
-S\left(J^{M} X\right) S\left(J^{M} Y\right)+S\left(J^{M} Y\right) S\left(J^{M} X\right) \\
=-S(X) S\left(J^{M} J^{M} Y\right)+S\left(J^{M} Y\right) S\left(J^{M} X\right) \\
+S\left(J^{M} J^{M} Y\right) S(X)-S\left(J^{M} X\right) S\left(J^{M} Y\right) \\
=-(S \wedge * S+* S \wedge S)\left(X, J^{M} Y\right)
\end{gathered}
$$

for any tangent vectors X, Y of M. Hence, $S \wedge S=* S \wedge * S$ is equivalent to $S \wedge * S=-* S \wedge S$. Then, a vector bundle E with ∇ and S is a $t t^{*}$-bundle, if and only if

$$
d^{\nabla} \circ \nabla+S \wedge S=0, \quad d^{\nabla} S=0, \quad d^{\nabla} * S=0, \quad S \wedge S=* S \wedge * S
$$

(see Schäfer [10], Proposition 1).
Assume that E with ∇ and S forms a $t t^{*}$-bundle. Define F as the complexification of E, that is, $F:=\mathbb{C} \otimes E$. Denote the complex-linear extensions of ∇ and S by the same notations respectively. Define a family of connections $\left\{\nabla^{\mu}\right\}_{\mu \in \mathbb{C} \backslash\{0\}}$ of F by

$$
\begin{equation*}
\nabla^{\mu}=\nabla+\frac{1}{\mu} C+\mu \bar{C}, \quad C=\frac{1}{2}(S-i * S) \tag{1}
\end{equation*}
$$

Then C is a (1, 0)-form on M with values in complex linear endmorphisms of F. The $t t^{*}$-bundle E with ∇ and S is the real part of F with ∇^{μ} if and only if $|\mu|=1$.

Proposition 2.1. For each $\mu \in \mathbb{C} \backslash\{0\}$, the connection ∇^{μ} is flat.
Proof. As E with ∇ and S is a $t t^{*}$-bundle, it follows that

$$
\begin{gathered}
d^{\nabla} C=0, \quad d^{\nabla} \bar{C}=0, \\
C \wedge C=\frac{1}{4}(S \wedge S-i S \wedge * S-i * S \wedge S-* S \wedge * S)=0, \\
C \wedge \bar{C}=\frac{1}{4}(S \wedge S+i S \wedge * S-i * S \wedge S+* S \wedge * S)=\frac{1}{2}(S \wedge S+i S \wedge * S) .
\end{gathered}
$$

Then

$$
\begin{aligned}
d^{\nabla^{\mu}} \circ \nabla^{\mu}= & d^{\nabla} \circ \nabla+\left(\frac{1}{\mu} C+\mu \bar{C}\right) \wedge\left(\frac{1}{\mu} C+\mu \bar{C}\right) \\
= & d^{\nabla} \circ \nabla+C \wedge \bar{C}+\bar{C} \wedge C \\
& =d^{\nabla} \circ \nabla+S \wedge S=0
\end{aligned}
$$

Hence ∇^{μ} is flat.
Adding the assumption in Proposition 2.1, we assume that there exists a hermitian pseudo-metric h on F, and a metric connection ∇ with respect to h, such that

$$
h(C(X) a, b)=h(a, \bar{C}(\bar{X}) b),
$$

where $a, b \in \Gamma(F)$, and X is a vector field of type $(1,0)$ on M. Then $(F, \nabla, C, \bar{C}, h)$ becomes a harmonic bundle defined in Schäfer [11].

3. Decomposition of a connection

We obtain a condition for a map from a Riemann surface into a sphere, to become a harmonic map, by decomposing a flat connection into four parts.

Let $C \ell_{n}$ be the Clifford algebra associated with \mathbb{R}^{n} and the quadratic form $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ (see Lawson and Michelsohn [9]). The Clifford algebra $C \ell_{n}$ is the algebra generated by an orthonormal basis e_{1}, \ldots, e_{n} subject to the relation

$$
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j} .
$$

Then $C \ell_{n}$ is identified with $\mathbb{R}^{2^{n}}$. The set

$$
\left\{a \in \mathbb{R}^{n} \subset C \ell_{n} \mid a^{2}=-1\right\}
$$

is an $(n-1)$-dimensional unit sphere $S^{n-1} \subset \mathbb{R}^{n} \subset C \ell_{n} \cong \mathbb{R}^{2^{n}}$.
Let M be a Riemann surface with complex structure J^{M} and V be the trivial associate bundle of a principal $C \ell_{n}$-bundle, with right $C \ell_{n}$ action, over M. We denote the set of smooth sections of V by $\Gamma(V)$ and the fiber of V at p by V_{p}. Let $\Omega^{m}(V)$ be the set of V-valued m-forms on M for every non-negative integer m. Then $\Omega^{0}(V)=\Gamma(V)$. Let W be another trivial associate bundle of a principal $C \ell_{n}$-bundle, with right $C \ell_{n}$ action, over M. We denote by $\operatorname{Hom}(V, W)$ the $C \ell_{n}$-homomorphism bundle from V to W. Let N be a smooth section of the Clifford endomorphism bundle $\operatorname{End}(V)$ of V such that $-N_{p} \circ N_{p}$ is the identity map Id_{p} on V_{p} for every $p \in M$. The section N is a complex structure at each fiber of V. We have a splitting $\operatorname{End}(V)=\operatorname{End}(V)_{+} \oplus \operatorname{End}(V)_{-}$, where

$$
\begin{gathered}
\operatorname{End}(V)_{+}=\{\xi \in \operatorname{End}(V): N \xi=\xi N\}, \\
\operatorname{End}(V)_{-}=\{\xi \in \operatorname{End}(V): N \xi=-\xi N\} .
\end{gathered}
$$

This splitting induces a decomposition of $\xi \in \operatorname{End}(V)$ into $\xi=\xi_{+}+\xi_{-}$, where $\xi_{+}=(\xi-N \xi N) / 2 \in \operatorname{End}(V)_{+}$and $\xi_{-}=(\xi+N \xi N) / 2 \in \operatorname{End}(V)_{-}$.

Let $T^{*} M \otimes_{\mathbb{R}} V$ be the tensor bundle of the cotangent bundle $T^{*} M$ of M and V over real numbers. We set $* \omega=\omega \circ J^{T M}$ for every $\omega \in \Omega^{1}(V)$. We have a splitting $T^{*} M \otimes_{\mathbb{R}} V=K V \oplus \bar{K} V$, where

$$
K V=\left\{\eta \in T^{*} M \otimes_{\mathbb{R}} V: * \eta=N \eta\right\}, \quad \bar{K} V=\left\{\eta \in T^{*} M \otimes_{\mathbb{R}} V: * \eta=-N \eta\right\} .
$$

This splitting induces the type decomposition of $\eta \in T^{*} M \otimes_{\mathbb{R}} V$ into $\eta=$ $\eta^{\prime}+\eta^{\prime \prime}$, where $\eta^{\prime}=(\eta-N * \eta) / 2 \in K V$ and $\eta^{\prime \prime}=(\eta+N * \eta) / 2 \in \bar{K} V$.

Let C be the right trivial Clifford bundle over M with fiber $C \ell_{n}$. We identify a smooth map $\phi: M \rightarrow C \ell_{n}$ with a smooth section $p \mapsto(p, \phi(p))$ of C. The bundle $\operatorname{End}(C)$ is identified with C, by the identification of $\xi_{p} \in$ $\operatorname{End}(C)_{p}$ with $P_{p} \in C_{p}$ such that $\xi_{p}(1)=P_{p}$ for every $p \in M$. We assume that N takes values in $\mathbb{R}^{n} \subset C \ell_{n}$. Then N is considered as a map from M to $S^{n-1} \subset \mathbb{R}^{n}$. Then $T^{*} M \otimes_{\mathbb{R}} C$ decomposes as

$$
T^{*} M \otimes_{\mathbb{R}} C=(K C)_{+} \oplus(K C)_{-} \oplus(\bar{K} C)_{+} \oplus(\bar{K} C)_{-}
$$

According to this decomposition, a connection $\nabla: \Gamma(C) \rightarrow \Omega^{1}(C)$ of the Clifford bundle C decomposes as

$$
\begin{gathered}
\nabla=\partial^{\nabla}+A^{\nabla}+\bar{\partial}^{\nabla}+Q^{\nabla}, \\
\nabla^{\prime}: \Gamma(C) \rightarrow \Gamma(K C), \nabla^{\prime} \phi=(\nabla \phi)^{\prime}, \\
\nabla^{\prime \prime}: \Gamma(C) \rightarrow \Gamma(\bar{K} C), \quad \nabla^{\prime \prime} \phi=(\nabla \phi)^{\prime \prime}, \\
\partial^{\nabla}: \Gamma(C) \rightarrow \Gamma\left((K C)_{+}\right), \partial^{\nabla} \phi=\left(\nabla^{\prime} \phi\right)_{+}, \\
A^{\nabla} \in \Gamma\left(\operatorname{Hom}\left(C,(K C)_{-}\right)\right), \quad A^{\nabla} \phi=\left(\nabla^{\prime} \phi\right)_{-}, \\
\bar{\partial}^{\nabla}: \Gamma(C) \rightarrow \Gamma\left((\bar{K} C)_{+}\right), \quad \bar{\partial}^{\nabla} \phi=\left(\nabla^{\prime \prime} \phi\right)_{+}, \\
Q^{\nabla} \in \Gamma\left(\operatorname{Hom}\left(C,(\bar{K} C)_{-}\right)\right), \quad Q^{\nabla} \phi=\left(\nabla^{\prime \prime} \phi\right)_{-},
\end{gathered}
$$

where ϕ is any smooth section of C. We see that A^{∇} and Q^{∇} are tensorial, that is, $A^{\nabla} \in \Gamma\left(\operatorname{Hom}\left(C,(K C)_{-}\right)\right)$and $Q^{\nabla} \in \Gamma\left(\operatorname{Hom}\left(C,(\bar{K} C)_{-}\right)\right)$. The sections A^{∇} and Q^{∇} are called the Hopf fields of ∇^{\prime} and $\nabla^{\prime \prime}$ respectively.

We denote by d the trivial connection on C.
Lemma 3.1. A map $N: M \rightarrow S^{n-1} \subset \mathbb{R}^{n} \subset C \ell_{n}$ is a harmonic map, if and only if $d * A^{d}=0$.

Proof. The Hopf field A^{d} satisfies the equation

$$
\begin{aligned}
A^{d} \phi= & \frac{1}{2}\left[\left(d^{\prime}+J d^{\prime} J\right)\right] \phi \\
= & \frac{1}{4}[d-J * d+J(d-J * d) J] \phi \\
= & \frac{1}{4}\{(d \phi)-N *(d \phi) \\
& +[N(d N) \phi-d \phi]+[*(d N) \phi+N * d \phi]\} \\
= & \frac{1}{4}[N(d N)+*(d N)] \phi
\end{aligned}
$$

for every $\phi \in \Gamma(C)$. Hence

$$
d * A^{d}=\frac{1}{4}(d N \wedge * d N+N d * d N)
$$

Hence $d * A^{d}=0$ if and only if

$$
d N \wedge * d N+N d * d N=0
$$

For an isothermal coordinate (x, y) such that $x+y i$ is a holomorphic coordinate, a map $N: M \rightarrow S^{n-1} \subset \mathbb{R}^{n} \subset C \ell_{n}$ is a harmonic map if and only if

$$
\Delta N=-\left(N_{x x}+N_{y y}\right) d x \wedge d y=|d N|^{2} N
$$

(see Eells and Lemaire [7]). We have

$$
\begin{gathered}
d * d N=d *\left(N_{x} d x+N_{y} d y\right)=d\left(-N_{x} d y+N_{y} d x\right) \\
=-\left(N_{x x}+N_{y y}\right) d x \wedge d y=\Delta N, \\
d N \wedge * d N=\left(N_{x} d x+N_{y} d y\right) \wedge\left(-N_{x} d y+N_{y} d x\right)=\left(-N_{x}^{2}-N_{y}^{2}\right) d x \wedge d y \\
=\left(\left|N_{x}\right|^{2}+\left|N_{y}\right|^{2}\right) d x \wedge d y=|d N|^{2},
\end{gathered}
$$

where the Clifford multiplication is used. Hence, N is a harmonic map if and only if $d * A^{d}=0$.

4. Harmonic maps into a sphere

We construct a $t t^{*}$-bundle for a harmonic map from a Riemann surface to an n-dimensional sphere.

Let M be a Riemann surface with complex structure J^{M}. For a one-form ω on M, define a one-form $* \omega$ on M by $* \omega:=\omega \circ J^{M}$. For one-forms ω and η on M with values in $C \ell_{n}$, we have the relation

$$
* \omega \wedge * \eta=\omega \wedge \eta
$$

Indeed, for a basis E_{1}, E_{2} of a tangent space of M with $J^{M} E_{1}=E_{2}$, we have

$$
\begin{gathered}
(\omega \wedge \eta)\left(q E_{1}+r E_{2}, s E_{1}+t E_{2}\right) \\
=(q t-r s)\left(\omega\left(E_{1}\right) \eta\left(E_{2}\right)-\omega\left(E_{2}\right) \omega\left(E_{1}\right)\right), \\
(* \omega \wedge * \eta)\left(q E_{1}+r E_{2}, s E_{1}+t E_{2}\right)=(\omega \wedge \eta)\left(q E_{2}-r E_{1}, s E_{2}-t E_{1}\right) \\
=(q t-r s)\left(\omega\left(E_{1}\right) \eta\left(E_{2}\right)-\omega\left(E_{2}\right) \omega\left(E_{1}\right)\right),
\end{gathered}
$$

where $q, r, s, t \in \mathbb{R}$.
Let $F:=M \times \mathbb{R}^{2^{n}} \cong M \times C \ell_{n}$. For a map $N: M \rightarrow S^{n-1} \subset \mathbb{R}^{n} \subset C \ell_{n}$, define a one-form S on M with values in $C \ell_{n}$ by

$$
S:=\frac{1}{4}(* d N+N d N) .
$$

Lemma 4.1. N is a harmonic map if and only if the one-form S satisfies $d * S=0$.
Proof. Since we have

$$
4 d * S=d(-d N+N * d N)=d N \wedge * d N+N d * d N=4 d * A^{d}
$$

this lemma follows from Lemma 3.1.
Theorem 4.1. A vector bundle F with $\nabla:=d-S$ and S is a tt*-bundle.
Proof. We see that

$$
\begin{gathered}
4 d S=d * d N+d N \wedge d N=d N \wedge d N+N d N \wedge * d N, \\
16 S \wedge S=(* d N+N d N) \wedge(* d N+N d N) \\
=* d N \wedge * d N+* d N \wedge N d N+N d N \wedge * d N+N d N \wedge N d N \\
=d N \wedge d N+N d N \wedge * d N+N d N \wedge * d N+d N \wedge d N \\
=2(d N \wedge d N+N d N \wedge * d N) .
\end{gathered}
$$

Hence $d S=2 S \wedge S$ holds.
Lemma 4.1 and a direct calculation yield

$$
\begin{gathered}
\nabla^{\theta}=d+(\cos \theta-1) S+(\sin \theta) * S \\
d^{\nabla^{\theta}} \circ \nabla^{\theta} \\
=(\cos \theta-1) d S+((\cos \theta-1) S+(\sin \theta) * S) \wedge((\cos \theta-1) S+(\sin \theta) * S) \\
=(\cos \theta-1) d S+(\cos \theta-1)^{2} S \wedge S+(\cos \theta-1)(\sin \theta) S \wedge * S \\
+(\sin \theta)(\cos \theta-1) * S \wedge S+(\sin \theta)^{2} * S \wedge * S \\
=(\cos \theta-1) d S-2(\cos \theta-1) S \wedge S=0 .
\end{gathered}
$$

Hence F with ∇ and S is a $t t^{*}$-bundle.
For a harmonic map from a Riemann surface to S^{2}, we have two $t t^{*}$ bundles. One is the $t t^{*}$-bundle in Theorem 4.1. The other is that in the theory of quaternionic holomorphic line bundles (see [8]). These do not coincide directly as the fiber of the former is $C \ell_{3}$ and that of the latter is $C \ell_{2}$.

Acknowledgements.

The authors are very grateful to Claus Hertling for the comments to a preliminary version of this paper.

References

[1] A. I. Bobenko, All constant mean curvature tori in $\mathbf{R}^{3}, S^{3}, H^{3}$ in terms of theta-functions, Math. Ann. 290 (1991) 209-245.
[2] S. Cecotti, C. Vafa, Topological-anti-topological fusion, Nuclear Phys. B 367 (1991) 359-461.
[3] J. Dorfmeister, M. Guest, W. Rossman, The $t t^{*}$ structure of the quantum cohomology of $\mathbb{C} P^{1}$ from the viewpoint of differential geometry, Asian J. Math. 14 (2010) 417-437.
[4] J. Dorfmeister, G. Haak, Meromorphic potentials and smooth surfaces of constant mean curvature, Math. Z. 224 (1997) 603-640.
[5] J. Dorfmeister, F. Pedit, H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998) 633668.
[6] B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993) 539-564.
[7] J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988) 385-524.
[8] D. Ferus, K. Leschke, F. Pedit, U. Pinkall, Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori, Invent. Math. 146 (2001) 507-593.
[9] H. B. Lawson, M-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38 Princeton University Press, Princeton, NJ, 1989.
[10] L. Schäfer, tt*-geometry and pluriharmonic maps, Ann. Global Anal. Geom. 28 (2005) 285-300.
[11] L. Schäfer, Harmonic bundles, topological-antitopological fusion and the related pluriharmonic maps, J. Geom. Phys. 56 (2006) 830-842.

