A tt^* -bundle associated with a harmonic map from a Riemann surface into a sphere

Sanae Kurosu^a, Katsuhiro Moriya^b

 ^a Department of Mathematics, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN
 ^b Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8571, JAPAN

Abstract

A tt^* -bundle is constructed by a harmonic map from a Riemann surface into an *n*-dimensional sphere. This tt^* -bundle is a high-dimensional analogue of a quaternionic line bundle with a Willmore connection. For the construction, a flat connection is decomposed into four parts by a fiberwise complex structure.

Keywords: tt*-bundle, harmonic map, the Clifford algebra 2010 MSC: 53C43, 81R12

1. Introduction

A tt^* -bundle is a real vector bundle equipped with a family of flat connections, parametrized by a circle. The present paper delivers a tt^* -bundle derived from a harmonic map from a Riemann surface to an *n*-dimensional sphere.

The notion of tt^* -bundles is introduced by Schäfer [10] as a simple solution to a generalized version of the equation of topological-antitopological fusion, introduced by Cecotti and Vafa [2], in terms of real differential geometry. A topological-antitopological fusion of a topological field theory model is a special geometry structure on a Frobenius manifold. As a geometric interpretation of a special geometry structure on a quasi-Frobenius manifold, Dubrovin [6] showed that a solution to the equation is locally a pluriharmonic map from an n-dimensional quasi-Frobenius manifold to the symmetric space $GL(n, \mathbb{R})/O(n)$.

Preprint submitted to Differential Geometry and its Application July 5, 2011

Schäfer [10] showed that an admissible pluriharmonic map from a simply connected complex manifold M to a symmetric space $\operatorname{GL}(r, \mathbb{R})/\operatorname{O}(p, q)$, and that to $\operatorname{SL}(r, \mathbb{R})/\operatorname{SO}(p, q)$ with p+q=r, gives rise from a *metric tt**-bundle. A harmonic map from a Riemann surface to $\operatorname{SU}(1,1)/S(\operatorname{U}(1) \times \operatorname{U}(1)) \cong$ $\operatorname{SL}(2, \mathbb{R})/\operatorname{SO}(2)$ is obtained by the generalized Weierstrass representation formula by Dorfmeister, Pedit, and Wu [5]. The Gauss map of a spacelike surface of constant mean curvature in the Minkowski space $\mathbb{R}^{2,1}$ is a harmonic map from a Riemann surface to $\operatorname{SL}(2, \mathbb{R})/\operatorname{SO}(2)$. The Sym-Bobenko formula (Bobenko [1], Dorfmeister and Haak [4]) connects a surface and its Gauss map. Applying these formulae, Dorfmeister, Guest, and Rossman [3] gave the description of the quantum cohomology of $\mathbb{C}P^1$. The quantum cohomology of $\mathbb{C}P^1$ provides a solution to the third Painlevé equation.

A surface of constant mean curvature in \mathbb{R}^3 is an interesting research subject in the theory of surfaces. Its Gauss map is a harmonic map from a Riemann surface to the two-dimensional sphere S^2 . It is impossible to write S^2 as a symmetric space $\operatorname{GL}(r,\mathbb{R})/\operatorname{O}(p,q)$ or $\operatorname{SL}(r,\mathbb{R})/\operatorname{SO}(p,q)$. This led the authors to find a tt^* -bundle for a harmonic map into S^2 . The theory of a quaternionic line bundle with a Willmore connection by Ferus, Leschke, Pedit, and Pinkall [8] provides a way to construct a tt^* -bundle for a harmonic map from a Riemann surface into S^2 . This method is extended and a tt^* bundle associated with a harmonic map from a Riemann surface into S^n $(n \geq 2)$ is obtained (Theorem 4.1).

2. tt^* -bundles

We recall a tt^* -bundle (Schäfer [10]).

Let M be a complex manifold with complex structure J^M . For a one-form ω on M, we define a one-form $*\omega$ on M by $*\omega := \omega \circ J^M$. Let E be a trivial real vector bundle of rank n over M, ∇ a connection on E, and S a one-form with values in the real endomorphisms of E. A one-form S is considered as a one-form with values in n-by-n real matrices. Define a family of connections $\{\nabla^{\theta}\}_{\theta \in \mathbb{R}}$ on E by

$$\nabla^{\theta} := \nabla + (\cos \theta) S + (\sin \theta) * S.$$

The curvature of ∇^{θ} is

$$\begin{split} d^{\nabla^{\theta}} \circ \nabla^{\theta} \\ &= d^{\nabla} \circ \nabla + (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ ((\cos \theta) S + (\sin \theta) * S) \wedge ((\cos \theta) S + (\sin \theta) * S) \\ &= d^{\nabla} \circ \nabla + (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ (\cos \theta)^2 S \wedge S + \cos \theta \sin \theta (S \wedge *S + *S \wedge S) + (\sin \theta)^2 * S \wedge *S \\ &= d^{\nabla} \circ \nabla + (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ \frac{1 + \cos 2\theta}{2} S \wedge S + \frac{\sin 2\theta}{2} (S \wedge *S + *S \wedge S) + \frac{1 - \cos 2\theta}{2} * S \wedge *S \\ &= d^{\nabla} \circ \nabla + \frac{1}{2} S \wedge S + \frac{1}{2} * S \wedge *S \\ &+ (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ (\cos \theta) d^{\nabla} S + (\sin \theta) d^{\nabla} * S \\ &+ \frac{\cos 2\theta}{2} (S \wedge S - *S \wedge *S) + \frac{\sin 2\theta}{2} (S \wedge *S + *S \wedge S). \end{split}$$

A vector bundle E with ∇ and S is called a tt^* -bundle if ∇^{θ} is flat for all $\theta \in \mathbb{R}$. By the preceding calculation, a vector bundle E with ∇ and S is a tt^* -bundle, if and only if

$$d^{\nabla} \circ \nabla + S \wedge S = 0, \quad d^{\nabla}S = 0, \quad d^{\nabla}*S = 0,$$

$$S \wedge S = *S \wedge *S, \quad S \wedge *S = -*S \wedge S.$$

Indeed,

$$(S \land S - *S \land *S)(X, Y) = S(X)S(Y) - S(Y)S(X) - S(J^{M}X)S(J^{M}Y) + S(J^{M}Y)S(J^{M}X) = -S(X)S(J^{M}J^{M}Y) + S(J^{M}J^{M}Y)S(X) - S(J^{M}X)S(J^{M}Y) + S(J^{M}Y)S(J^{M}X) = -S(X)S(J^{M}J^{M}Y) + S(J^{M}Y)S(J^{M}X) + S(J^{M}J^{M}Y)S(X) - S(J^{M}X)S(J^{M}Y) = -(S \land *S + *S \land S)(X, J^{M}Y)$$

for any tangent vectors X, Y of M. Hence, $S \wedge S = *S \wedge *S$ is equivalent to $S \wedge *S = -*S \wedge S$. Then, a vector bundle E with ∇ and S is a tt-bundle, if and only if

$$d^{\nabla} \circ \nabla + S \wedge S = 0, \quad d^{\nabla}S = 0, \quad d^{\nabla}*S = 0, \quad S \wedge S = *S \wedge *S$$

(see Schäfer [10], Proposition 1).

Assume that E with ∇ and S forms a tt^* -bundle. Define F as the complexification of E, that is, $F := \mathbb{C} \otimes E$. Denote the complex-linear extensions of ∇ and S by the same notations respectively. Define a family of connections $\{\nabla^{\mu}\}_{\mu \in \mathbb{C} \setminus \{0\}}$ of F by

$$\nabla^{\mu} = \nabla + \frac{1}{\mu}C + \mu\bar{C}, \quad C = \frac{1}{2}(S - i * S).$$
(1)

Then C is a (1,0)-form on M with values in complex linear endmorphisms of F. The tt^* -bundle E with ∇ and S is the real part of F with ∇^{μ} if and only if $|\mu| = 1$.

Proposition 2.1. For each $\mu \in \mathbb{C} \setminus \{0\}$, the connection ∇^{μ} is flat.

Proof. As E with ∇ and S is a tt^* -bundle, it follows that

$$d^{\nabla}C = 0, \quad d^{\nabla}\bar{C} = 0,$$
$$C \wedge C = \frac{1}{4}(S \wedge S - iS \wedge *S - i * S \wedge S - *S \wedge *S) = 0,$$
$$C \wedge \bar{C} = \frac{1}{4}(S \wedge S + iS \wedge *S - i * S \wedge S + *S \wedge *S) = \frac{1}{2}(S \wedge S + iS \wedge *S).$$

Then

$$d^{\nabla^{\mu}} \circ \nabla^{\mu} = d^{\nabla} \circ \nabla + \left(\frac{1}{\mu}C + \mu\bar{C}\right) \wedge \left(\frac{1}{\mu}C + \mu\bar{C}\right)$$
$$= d^{\nabla} \circ \nabla + C \wedge \bar{C} + \bar{C} \wedge C$$
$$= d^{\nabla} \circ \nabla + S \wedge S = 0.$$

Hence ∇^{μ} is flat.

Adding the assumption in Proposition 2.1, we assume that there exists a hermitian pseudo-metric h on F, and a metric connection ∇ with respect to h, such that

$$h(C(X)a,b) = h(a,\bar{C}(\bar{X})b),$$

where $a, b \in \Gamma(F)$, and X is a vector field of type (1,0) on M. Then $(F, \nabla, C, \overline{C}, h)$ becomes a harmonic bundle defined in Schäfer [11].

3. Decomposition of a connection

We obtain a condition for a map from a Riemann surface into a sphere, to become a harmonic map, by decomposing a flat connection into four parts.

Let $C\ell_n$ be the Clifford algebra associated with \mathbb{R}^n and the quadratic form $x_1^2 + x_2^2 + \cdots + x_n^2$ (see Lawson and Michelsohn [9]). The Clifford algebra $C\ell_n$ is the algebra generated by an orthonormal basis e_1, \ldots, e_n subject to the relation

$$e_i e_j + e_j e_i = -2\delta_{ij}.$$

Then $C\ell_n$ is identified with \mathbb{R}^{2^n} . The set

$$\{a \in \mathbb{R}^n \subset C\ell_n \,|\, a^2 = -1\}$$

is an (n-1)-dimensional unit sphere $S^{n-1} \subset \mathbb{R}^n \subset C\ell_n \cong \mathbb{R}^{2^n}$.

Let M be a Riemann surface with complex structure J^M and V be the trivial associate bundle of a principal $C\ell_n$ -bundle, with right $C\ell_n$ action, over M. We denote the set of smooth sections of V by $\Gamma(V)$ and the fiber of V at p by V_p . Let $\Omega^m(V)$ be the set of V-valued m-forms on M for every non-negative integer m. Then $\Omega^0(V) = \Gamma(V)$. Let W be another trivial associate bundle of a principal $C\ell_n$ -bundle, with right $C\ell_n$ action, over M. We denote by $\operatorname{Hom}(V, W)$ the $C\ell_n$ -homomorphism bundle from V to W. Let N be a smooth section of the Clifford endomorphism bundle $\operatorname{End}(V)$ of Vsuch that $-N_p \circ N_p$ is the identity map Id_p on V_p for every $p \in M$. The section N is a complex structure at each fiber of V. We have a splitting $\operatorname{End}(V) = \operatorname{End}(V)_+ \oplus \operatorname{End}(V)_-$, where

$$\operatorname{End}(V)_{+} = \{\xi \in \operatorname{End}(V) : N\xi = \xi N\},\$$

$$\operatorname{End}(V)_{-} = \{\xi \in \operatorname{End}(V) : N\xi = -\xi N\}$$

This splitting induces a decomposition of $\xi \in \text{End}(V)$ into $\xi = \xi_+ + \xi_-$, where $\xi_+ = (\xi - N\xi N)/2 \in \text{End}(V)_+$ and $\xi_- = (\xi + N\xi N)/2 \in \text{End}(V)_-$.

Let $T^*M \otimes_{\mathbb{R}} V$ be the tensor bundle of the cotangent bundle T^*M of Mand V over real numbers. We set $*\omega = \omega \circ J^{TM}$ for every $\omega \in \Omega^1(V)$. We have a splitting $T^*M \otimes_{\mathbb{R}} V = KV \oplus \overline{K}V$, where

$$KV = \{\eta \in T^*M \otimes_{\mathbb{R}} V : *\eta = N\eta\}, \ \bar{K}V = \{\eta \in T^*M \otimes_{\mathbb{R}} V : *\eta = -N\eta\}.$$

This splitting induces the type decomposition of $\eta \in T^*M \otimes_{\mathbb{R}} V$ into $\eta = \eta' + \eta''$, where $\eta' = (\eta - N * \eta)/2 \in KV$ and $\eta'' = (\eta + N * \eta)/2 \in \bar{K}V$.

Let C be the right trivial Clifford bundle over M with fiber $C\ell_n$. We identify a smooth map $\phi: M \to C\ell_n$ with a smooth section $p \mapsto (p, \phi(p))$ of C. The bundle End(C) is identified with C, by the identification of $\xi_p \in$ $End(C)_p$ with $P_p \in C_p$ such that $\xi_p(1) = P_p$ for every $p \in M$. We assume that N takes values in $\mathbb{R}^n \subset C\ell_n$. Then N is considered as a map from M to $S^{n-1} \subset \mathbb{R}^n$. Then $T^*M \otimes_{\mathbb{R}} C$ decomposes as

$$T^*M \otimes_{\mathbb{R}} C = (KC)_+ \oplus (KC)_- \oplus (\bar{K}C)_+ \oplus (\bar{K}C)_-$$

According to this decomposition, a connection $\nabla \colon \Gamma(C) \to \Omega^1(C)$ of the Clifford bundle C decomposes as

$$\begin{split} \nabla &= \partial^{\nabla} + A^{\nabla} + \bar{\partial}^{\nabla} + Q^{\nabla}, \\ \nabla' \colon \Gamma(C) \to \Gamma(KC), \ \nabla' \phi &= (\nabla \phi)', \\ \nabla'' \colon \Gamma(C) \to \Gamma(\bar{K}C), \ \nabla'' \phi &= (\nabla \phi)'', \\ \partial^{\nabla} \colon \Gamma(C) \to \Gamma((KC)_+), \ \partial^{\nabla} \phi &= (\nabla' \phi)_+, \\ A^{\nabla} \in \Gamma(\operatorname{Hom}(C, (KC)_-)), \ A^{\nabla} \phi &= (\nabla' \phi)_-, \\ \bar{\partial}^{\nabla} \colon \Gamma(C) \to \Gamma((\bar{K}C)_+), \ \bar{\partial}^{\nabla} \phi &= (\nabla'' \phi)_+, \\ Q^{\nabla} \in \Gamma(\operatorname{Hom}(C, (\bar{K}C)_-)), \ Q^{\nabla} \phi &= (\nabla'' \phi)_-, \end{split}$$

where ϕ is any smooth section of C. We see that A^{∇} and Q^{∇} are tensorial, that is, $A^{\nabla} \in \Gamma(\operatorname{Hom}(C, (KC)_{-}))$ and $Q^{\nabla} \in \Gamma(\operatorname{Hom}(C, (\bar{K}C)_{-}))$. The sections A^{∇} and Q^{∇} are called the *Hopf fields* of ∇' and ∇'' respectively.

We denote by d the trivial connection on C.

Lemma 3.1. A map $N: M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n$ is a harmonic map, if and only if $d * A^d = 0$.

Proof. The Hopf field A^d satisfies the equation

$$\begin{aligned} A^{d}\phi &= \frac{1}{2} \left[(d' + Jd'J) \right] \phi \\ &= \frac{1}{4} \left[d - J * d + J(d - J * d) J \right] \phi \\ &= \frac{1}{4} \{ (d\phi) - N * (d\phi) \\ &+ \left[N(dN)\phi - d\phi \right] + \left[*(dN)\phi + N * d\phi \right] \} \\ &= \frac{1}{4} \left[N(dN) + *(dN) \right] \phi \end{aligned}$$

for every $\phi \in \Gamma(C)$. Hence

$$d * A^{d} = \frac{1}{4}(dN \wedge *dN + Nd * dN).$$

Hence $d * A^d = 0$ if and only if

$$dN \wedge *dN + Nd * dN = 0.$$

For an isothermal coordinate (x, y) such that x + yi is a holomorphic coordinate, a map $N: M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n$ is a harmonic map if and only if

$$\Delta N = -(N_{xx} + N_{yy})dx \wedge dy = |dN|^2 N$$

(see Eells and Lemaire [7]). We have

$$\begin{aligned} d * dN &= d * (N_x \, dx + N_y \, dy) = d(-N_x \, dy + N_y \, dx) \\ &= -(N_{xx} + N_{yy}) dx \wedge dy = \Delta N, \\ dN \wedge * dN &= (N_x \, dx + N_y \, dy) \wedge (-N_x \, dy + N_y \, dx) = (-N_x^2 - N_y^2) dx \wedge dy \\ &= (|N_x|^2 + |N_y|^2) dx \wedge dy = |dN|^2, \end{aligned}$$

where the Clifford multiplication is used. Hence, N is a harmonic map if and only if $d * A^d = 0$.

4. Harmonic maps into a sphere

We construct a tt^* -bundle for a harmonic map from a Riemann surface to an *n*-dimensional sphere.

Let M be a Riemann surface with complex structure J^M . For a one-form ω on M, define a one-form $*\omega$ on M by $*\omega := \omega \circ J^M$. For one-forms ω and η on M with values in $C\ell_n$, we have the relation

$$*\,\omega\wedge*\eta=\omega\wedge\eta.$$

Indeed, for a basis E_1 , E_2 of a tangent space of M with $J^M E_1 = E_2$, we have

$$(\omega \wedge \eta)(qE_1 + rE_2, sE_1 + tE_2) = (qt - rs)(\omega(E_1)\eta(E_2) - \omega(E_2)\omega(E_1)), (*\omega \wedge *\eta)(qE_1 + rE_2, sE_1 + tE_2) = (\omega \wedge \eta)(qE_2 - rE_1, sE_2 - tE_1) = (qt - rs)(\omega(E_1)\eta(E_2) - \omega(E_2)\omega(E_1)),$$

where $q, r, s, t \in \mathbb{R}$.

Let $F := M \times \mathbb{R}^{2^n} \cong M \times C\ell_n$. For a map $N \colon M \to S^{n-1} \subset \mathbb{R}^n \subset C\ell_n$, define a one-form S on M with values in $C\ell_n$ by

$$S := \frac{1}{4} (\ast dN + N \, dN).$$

Lemma 4.1. N is a harmonic map if and only if the one-form S satisfies d * S = 0.

Proof. Since we have

$$4d * S = d(-dN + N * dN) = dN \wedge *dN + Nd * dN = 4d * A^d,$$

this lemma follows from Lemma 3.1.

Theorem 4.1. A vector bundle F with $\nabla := d - S$ and S is a tt^* -bundle.

Proof. We see that

$$4 dS = d * dN + dN \wedge dN = dN \wedge dN + N dN \wedge *dN,$$

$$16S \wedge S = (* dN + N dN) \wedge (* dN + N dN)$$

$$= * dN \wedge * dN + *dN \wedge N dN + N dN \wedge * dN + N dN \wedge N dN$$

$$= dN \wedge dN + N dN \wedge * dN + N dN \wedge * dN + dN \wedge dN$$

$$= 2(dN \wedge dN + N dN \wedge * dN).$$

Hence $dS = 2S \wedge S$ holds.

Lemma 4.1 and a direct calculation yield

$$\nabla^{\theta} = d + (\cos \theta - 1)S + (\sin \theta) * S,$$
$$d^{\nabla^{\theta}} \circ \nabla^{\theta}$$
$$= (\cos \theta - 1)dS + ((\cos \theta - 1)S + (\sin \theta) * S) \land ((\cos \theta - 1)S + (\sin \theta) * S)$$

$$= (\cos \theta - 1)dS + ((\cos \theta - 1)S + (\sin \theta) * S) \land ((\cos \theta - 1)S + (\sin \theta) * S)$$
$$= (\cos \theta - 1)dS + (\cos \theta - 1)^2 S \land S + (\cos \theta - 1)(\sin \theta)S \land *S$$
$$+ (\sin \theta)(\cos \theta - 1) * S \land S + (\sin \theta)^2 * S \land *S$$
$$= (\cos \theta - 1)dS - 2(\cos \theta - 1)S \land S = 0.$$

Hence F with ∇ and S is a tt^* -bundle.

For a harmonic map from a Riemann surface to S^2 , we have two tt^* bundles. One is the tt^* -bundle in Theorem 4.1. The other is that in the theory of quaternionic holomorphic line bundles (see [8]). These do not coincide directly as the fiber of the former is $C\ell_3$ and that of the latter is $C\ell_2$.

Acknowledgements.

The authors are very grateful to Claus Hertling for the comments to a preliminary version of this paper.

References

- [1] A. I. Bobenko, All constant mean curvature tori in \mathbb{R}^3 , S^3 , H^3 in terms of theta-functions, Math. Ann. 290 (1991) 209–245.
- S. Cecotti, C. Vafa, Topological-anti-topological fusion, Nuclear Phys. B 367 (1991) 359–461.
- J. Dorfmeister, M. Guest, W. Rossman, The tt* structure of the quantum cohomology of CP¹ from the viewpoint of differential geometry, Asian J. Math. 14 (2010) 417–437.
- [4] J. Dorfmeister, G. Haak, Meromorphic potentials and smooth surfaces of constant mean curvature, Math. Z. 224 (1997) 603–640.
- [5] J. Dorfmeister, F. Pedit, H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6 (1998) 633– 668.
- [6] B. Dubrovin, Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993) 539–564.
- [7] J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988) 385–524.
- [8] D. Ferus, K. Leschke, F. Pedit, U. Pinkall, Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori, Invent. Math. 146 (2001) 507–593.
- [9] H. B. Lawson, M-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38 Princeton University Press, Princeton, NJ, 1989.
- [10] L. Schäfer, tt*-geometry and pluriharmonic maps, Ann. Global Anal. Geom. 28 (2005) 285–300.
- [11] L. Schäfer, Harmonic bundles, topological-antitopological fusion and the related pluriharmonic maps, J. Geom. Phys. 56 (2006) 830–842.