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Abstract

A tt∗-bundle is constructed by a harmonic map from a Riemann surface into
an n-dimensional sphere. This tt∗-bundle is a high-dimensional analogue of
a quaternionic line bundle with a Willmore connection. For the construc-
tion, a flat connection is decomposed into four parts by a fiberwise complex
structure.
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1. Introduction

A tt∗-bundle is a real vector bundle equipped with a family of flat con-
nections, parametrized by a circle. The present paper delivers a tt∗-bundle
derived from a harmonic map from a Riemann surface to an n-dimensional
sphere.

The notion of tt∗-bundles is introduced by Schäfer [10] as a simple so-
lution to a generalized version of the equation of topological-antitopological
fusion, introduced by Cecotti and Vafa [2], in terms of real differential geom-
etry. A topological-antitopological fusion of a topological field theory model
is a special geometry structure on a Frobenius manifold. As a geometric in-
terpretation of a special geometry structure on a quasi-Frobenius manifold,
Dubrovin [6] showed that a solution to the equation is locally a pluriharmonic
map from an n-dimensional quasi-Frobenius manifold to the symmetric space
GL(n, R)/ O(n).
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Schäfer [10] showed that an admissible pluriharmonic map from a simply
connected complex manifold M to a symmetric space GL(r, R)/ O(p, q), and
that to SL(r, R)/ SO(p, q) with p+ q = r, gives rise from a metric tt∗-bundle.
A harmonic map from a Riemann surface to SU(1, 1)/S(U(1) × U(1)) ∼=
SL(2, R)/ SO(2) is obtained by the generalized Weierstrass representation
formula by Dorfmeister, Pedit, and Wu [5]. The Gauss map of a spacelike
surface of constant mean curvature in the Minkowski space R2,1 is a harmonic
map from a Riemann surface to SL(2, R)/ SO(2). The Sym-Bobenko formula
(Bobenko [1], Dorfmeister and Haak [4]) connects a surface and its Gauss
map. Applying these formulae, Dorfmeister, Guest, and Rossman [3] gave the
description of the quantum cohomology of CP 1. The quantum cohomology
of CP 1 provides a solution to the third Painlevé equation.

A surface of constant mean curvature in R3 is an interesting research
subject in the theory of surfaces. Its Gauss map is a harmonic map from a
Riemann surface to the two-dimensional sphere S2. It is impossible to write
S2 as a symmetric space GL(r, R)/ O(p, q) or SL(r, R)/ SO(p, q). This led
the authors to find a tt∗-bundle for a harmonic map into S2. The theory
of a quaternionic line bundle with a Willmore connection by Ferus, Leschke,
Pedit, and Pinkall [8] provides a way to construct a tt∗-bundle for a harmonic
map from a Riemann surface into S2. This method is extended and a tt∗-
bundle associated with a harmonic map from a Riemann surface into Sn

(n ≥ 2) is obtained (Theorem 4.1).

2. tt∗-bundles

We recall a tt∗-bundle (Schäfer [10]).
Let M be a complex manifold with complex structure JM . For a one-form

ω on M , we define a one-form ∗ω on M by ∗ω := ω ◦JM . Let E be a trivial
real vector bundle of rank n over M , ∇ a connection on E, and S a one-form
with values in the real endomorphisms of E. A one-form S is considered as a
one-form with values in n-by-n real matrices. Define a family of connections
{∇θ}θ∈R on E by

∇θ := ∇ + (cos θ)S + (sin θ) ∗ S.
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The curvature of ∇θ is

d∇θ ◦ ∇θ

= d∇ ◦ ∇ + (cos θ)d∇S + (sin θ)d∇ ∗ S

+ ((cos θ)S + (sin θ) ∗ S) ∧ ((cos θ)S + (sin θ) ∗ S)

= d∇ ◦ ∇ + (cos θ)d∇S + (sin θ)d∇ ∗ S

+(cos θ)2S ∧ S + cos θ sin θ(S ∧ ∗S + ∗S ∧ S) + (sin θ)2 ∗ S ∧ ∗S
= d∇ ◦ ∇ + (cos θ)d∇S + (sin θ)d∇ ∗ S

+
1 + cos 2θ

2
S ∧ S +

sin 2θ

2
(S ∧ ∗S + ∗S ∧ S) +

1 − cos 2θ

2
∗ S ∧ ∗S

= d∇ ◦ ∇ +
1

2
S ∧ S +

1

2
∗ S ∧ ∗S

+(cos θ)d∇S + (sin θ)d∇ ∗ S

+
cos 2θ

2
(S ∧ S − ∗S ∧ ∗S) +

sin 2θ

2
(S ∧ ∗S + ∗S ∧ S).

A vector bundle E with ∇ and S is called a tt∗-bundle if ∇θ is flat for all
θ ∈ R. By the preceding calculation, a vector bundle E with ∇ and S is a
tt∗-bundle, if and only if

d∇ ◦ ∇ + S ∧ S = 0, d∇S = 0, d∇ ∗ S = 0,

S ∧ S = ∗S ∧ ∗S, S ∧ ∗S = − ∗ S ∧ S.

Indeed,

(S ∧ S − ∗S ∧ ∗S)(X, Y )

= S(X)S(Y ) − S(Y )S(X) − S(JMX)S(JMY ) + S(JMY )S(JMX)

= −S(X)S(JMJMY ) + S(JMJMY )S(X)

−S(JMX)S(JMY ) + S(JMY )S(JMX)

= −S(X)S(JMJMY ) + S(JMY )S(JMX)

+S(JMJMY )S(X) − S(JMX)S(JMY )

= −(S ∧ ∗S + ∗S ∧ S)(X, JMY )

for any tangent vectors X, Y of M . Hence, S ∧S = ∗S ∧ ∗S is equivalent to
S ∧ ∗S = − ∗ S ∧ S. Then, a vector bundle E with ∇ and S is a tt∗-bundle,
if and only if

d∇ ◦ ∇ + S ∧ S = 0, d∇S = 0, d∇ ∗ S = 0, S ∧ S = ∗S ∧ ∗S
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(see Schäfer [10], Proposition 1).
Assume that E with ∇ and S forms a tt∗-bundle. Define F as the com-

plexification of E, that is, F := C⊗E. Denote the complex-linear extensions
of ∇ and S by the same notations respectively. Define a family of connections
{∇µ}µ∈C\{0} of F by

∇µ = ∇ +
1

µ
C + µC̄, C =

1

2
(S − i ∗ S). (1)

Then C is a (1, 0)-form on M with values in complex linear endmorphisms
of F . The tt∗-bundle E with ∇ and S is the real part of F with ∇µ if and
only if |µ| = 1.

Proposition 2.1. For each µ ∈ C \ {0}, the connection ∇µ is flat.

Proof. As E with ∇ and S is a tt∗-bundle, it follows that

d∇C = 0, d∇C̄ = 0,

C ∧ C =
1

4
(S ∧ S − iS ∧ ∗S − i ∗ S ∧ S − ∗S ∧ ∗S) = 0,

C ∧ C̄ =
1

4
(S ∧ S + iS ∧ ∗S − i ∗ S ∧ S + ∗S ∧ ∗S) =

1

2
(S ∧ S + iS ∧ ∗S).

Then

d∇µ ◦ ∇µ = d∇ ◦ ∇ +

(
1

µ
C + µC̄

)
∧

(
1

µ
C + µC̄

)

= d∇ ◦ ∇ + C ∧ C̄ + C̄ ∧ C

= d∇ ◦ ∇ + S ∧ S = 0.

Hence ∇µ is flat.

Adding the assumption in Proposition 2.1, we assume that there exists a
hermitian pseudo-metric h on F , and a metric connection ∇ with respect to
h, such that

h(C(X)a, b) = h(a, C̄(X̄)b),

where a, b ∈ Γ(F ), and X is a vector field of type (1, 0) on M . Then
(F,∇, C, C̄, h) becomes a harmonic bundle defined in Schäfer [11].
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3. Decomposition of a connection

We obtain a condition for a map from a Riemann surface into a sphere, to
become a harmonic map, by decomposing a flat connection into four parts.

Let C#n be the Clifford algebra associated with Rn and the quadratic form
x2

1 +x2
2 + · · ·+x2

n (see Lawson and Michelsohn [9]). The Clifford algebra C#n

is the algebra generated by an orthonormal basis e1, . . . , en subject to the
relation

eiej + ejei = −2δij.

Then C#n is identified with R2n
. The set

{a ∈ Rn ⊂ C#n | a2 = −1}

is an (n − 1)-dimensional unit sphere Sn−1 ⊂ Rn ⊂ C#n
∼= R2n

.
Let M be a Riemann surface with complex structure JM and V be the

trivial associate bundle of a principal C#n-bundle, with right C#n action,
over M . We denote the set of smooth sections of V by Γ(V ) and the fiber
of V at p by Vp. Let Ωm(V ) be the set of V -valued m-forms on M for every
non-negative integer m. Then Ω0(V ) = Γ(V ). Let W be another trivial
associate bundle of a principal C#n-bundle, with right C#n action, over M .
We denote by Hom(V, W ) the C#n-homomorphism bundle from V to W . Let
N be a smooth section of the Clifford endomorphism bundle End(V ) of V
such that −Np ◦ Np is the identity map Idp on Vp for every p ∈ M . The
section N is a complex structure at each fiber of V . We have a splitting
End(V ) = End(V )+ ⊕ End(V )−, where

End(V )+ = {ξ ∈ End(V ) : Nξ = ξN},
End(V )− = {ξ ∈ End(V ) : Nξ = −ξN}.

This splitting induces a decomposition of ξ ∈ End(V ) into ξ = ξ++ξ−, where
ξ+ = (ξ − NξN)/2 ∈ End(V )+ and ξ− = (ξ + NξN)/2 ∈ End(V )−.

Let T ∗M ⊗R V be the tensor bundle of the cotangent bundle T ∗M of M
and V over real numbers. We set ∗ω = ω ◦ JTM for every ω ∈ Ω1(V ). We
have a splitting T ∗M ⊗R V = KV ⊕ K̄V , where

KV = {η ∈ T ∗M ⊗R V : ∗η = Nη}, K̄V = {η ∈ T ∗M ⊗R V : ∗η = −Nη}.

This splitting induces the type decomposition of η ∈ T ∗M ⊗R V into η =
η′ + η′′, where η′ = (η − N ∗ η)/2 ∈ KV and η′′ = (η + N ∗ η)/2 ∈ K̄V .
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Let C be the right trivial Clifford bundle over M with fiber C#n. We
identify a smooth map φ : M → C#n with a smooth section p .→ (p,φ(p))
of C. The bundle End(C) is identified with C, by the identification of ξp ∈
End(C)p with Pp ∈ Cp such that ξp(1) = Pp for every p ∈ M . We assume
that N takes values in Rn ⊂ C#n. Then N is considered as a map from M
to Sn−1 ⊂ Rn. Then T ∗M ⊗R C decomposes as

T ∗M ⊗R C = (KC)+ ⊕ (KC)− ⊕ (K̄C)+ ⊕ (K̄C)−.

According to this decomposition, a connection ∇ : Γ(C) → Ω1(C) of the
Clifford bundle C decomposes as

∇ = ∂∇ + A∇ + ∂̄∇ + Q∇,

∇′ : Γ(C) → Γ(KC), ∇′φ = (∇φ)′,

∇′′ : Γ(C) → Γ(K̄C), ∇′′φ = (∇φ)′′,

∂∇ : Γ(C) → Γ((KC)+), ∂∇φ = (∇′φ)+,

A∇ ∈ Γ(Hom(C, (KC)−)), A∇φ = (∇′φ)−,

∂̄∇ : Γ(C) → Γ((K̄C)+), ∂̄∇φ = (∇′′φ)+,

Q∇ ∈ Γ(Hom(C, (K̄C)−)), Q∇φ = (∇′′φ)−,

where φ is any smooth section of C. We see that A∇ and Q∇ are tenso-
rial, that is, A∇ ∈ Γ(Hom(C, (KC)−)) and Q∇ ∈ Γ(Hom(C, (K̄C)−)). The
sections A∇ and Q∇ are called the Hopf fields of ∇′ and ∇′′ respectively.

We denote by d the trivial connection on C.

Lemma 3.1. A map N : M → Sn−1 ⊂ Rn ⊂ C#n is a harmonic map, if and
only if d ∗ Ad = 0.

Proof. The Hopf field Ad satisfies the equation

Adφ =
1

2
[(d′ + Jd′J)] φ

=
1

4
[d − J ∗ d + J(d − J ∗ d)J ] φ

=
1

4
{(dφ) − N ∗ (dφ)

+ [N(dN)φ − dφ] + [∗(dN)φ + N ∗ dφ]}

=
1

4
[N(dN) + ∗(dN)] φ
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for every φ ∈ Γ(C). Hence

d ∗ Ad =
1

4
(dN ∧ ∗dN + Nd ∗ dN).

Hence d ∗ Ad = 0 if and only if

dN ∧ ∗dN + Nd ∗ dN = 0.

For an isothermal coordinate (x, y) such that x + yi is a holomorphic
coordinate, a map N : M → Sn−1 ⊂ Rn ⊂ C#n is a harmonic map if and
only if

∆N = −(Nxx + Nyy)dx ∧ dy = |dN |2N

(see Eells and Lemaire [7]). We have

d ∗ dN = d ∗ (Nx dx + Ny dy) = d(−Nx dy + Ny dx)

= −(Nxx + Nyy)dx ∧ dy = ∆N,

dN ∧ ∗ dN = (Nx dx + Ny dy) ∧ (−Nx dy + Ny dx) = (−N2
x − N2

y )dx ∧ dy

= (|Nx|2 + |Ny|2)dx ∧ dy = |dN |2,

where the Clifford multiplication is used. Hence, N is a harmonic map if and
only if d ∗ Ad = 0.

4. Harmonic maps into a sphere

We construct a tt∗-bundle for a harmonic map from a Riemann surface
to an n-dimensional sphere.

Let M be a Riemann surface with complex structure JM . For a one-form
ω on M , define a one-form ∗ω on M by ∗ω := ω ◦ JM . For one-forms ω and
η on M with values in C#n, we have the relation

∗ω ∧ ∗ η = ω ∧ η.

Indeed, for a basis E1, E2 of a tangent space of M with JME1 = E2, we have

(ω ∧ η)(qE1 + rE2, sE1 + tE2)

= (qt − rs)(ω(E1)η(E2) − ω(E2)ω(E1)),

(∗ω ∧ ∗ η)(qE1 + rE2, sE1 + tE2) = (ω ∧ η)(qE2 − rE1, sE2 − tE1)

= (qt − rs)(ω(E1)η(E2) − ω(E2)ω(E1)),
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where q, r, s, t ∈ R.
Let F := M × R2n ∼= M × C#n. For a map N : M → Sn−1 ⊂ Rn ⊂ C#n,

define a one-form S on M with values in C#n by

S :=
1

4
(∗ dN + N dN).

Lemma 4.1. N is a harmonic map if and only if the one-form S satisfies
d ∗ S = 0.

Proof. Since we have

4 d ∗ S = d(−dN + N ∗ dN) = dN ∧ ∗dN + N d ∗ dN = 4d ∗ Ad,

this lemma follows from Lemma 3.1.

Theorem 4.1. A vector bundle F with ∇ := d − S and S is a tt∗-bundle.

Proof. We see that

4 dS = d ∗ dN + dN ∧ dN = dN ∧ dN + N dN ∧ ∗dN,

16S ∧ S = (∗ dN + N dN) ∧ (∗ dN + N dN)

= ∗ dN ∧ ∗ dN + ∗dN ∧ N dN + N dN ∧ ∗ dN + N dN ∧ N dN

= dN ∧ dN + N dN ∧ ∗ dN + N dN ∧ ∗ dN + dN ∧ dN

= 2(dN ∧ dN + N dN ∧ ∗ dN).

Hence dS = 2S ∧ S holds.
Lemma 4.1 and a direct calculation yield

∇θ = d + (cos θ − 1)S + (sin θ) ∗ S,

d∇θ ◦ ∇θ

= (cos θ − 1)dS + ((cos θ − 1)S + (sin θ) ∗ S) ∧ ((cos θ − 1)S + (sin θ) ∗ S)

= (cos θ − 1)dS + (cos θ − 1)2S ∧ S + (cos θ − 1)(sin θ)S ∧ ∗S
+(sin θ)(cos θ − 1) ∗ S ∧ S + (sin θ)2 ∗ S ∧ ∗S

= (cos θ − 1)dS − 2(cos θ − 1)S ∧ S = 0.

Hence F with ∇ and S is a tt∗-bundle.

For a harmonic map from a Riemann surface to S2, we have two tt∗-
bundles. One is the tt∗-bundle in Theorem 4.1. The other is that in the
theory of quaternionic holomorphic line bundles (see [8]). These do not
coincide directly as the fiber of the former is C#3 and that of the latter is
C#2.
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