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Wave-packet approach to transport properties of carrier coupled with intermolecular
and intramolecular vibrations of organic semiconductors
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We present a methodology to study the charge-transport properties of organic semiconductors by the time-
dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate
the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular
vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport
behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist
in the molecular crystals, we present the temperature dependence of charge-transport properties in competition
among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.
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I. INTRODUCTION

Organic semiconductors are expected to be one of the candi-
dates for future electronic-device applications requiring struc-
tural flexibility and large area coverage with printing process.
For example, representative applications include field-effect
transistors (FETs),1–6 light-emitting diodes (LEDs),7,8 and
solar cells.9–11 Recent technological progress in organic elec-
tronics requires us to obtain a much better fundamental under-
standing of the nature of their charge-transport mechanisms.

Different from inorganic materials such as silicon semi-
conductors, organic materials are formed with very weak van
der Waals interactions between molecules. For typical organic
semiconductors, the intermolecular bonding energies, called
transfer integrals, are small, in the range of 10–102 meV,12,13

which is comparable to the depth of carrier-trap poten-
tials by the static structural disorders, impurities, and grain
boundaries.14 Then the charge carriers are strongly scattered
and are localized in a molecule, creating a quasiparticle state,
called a polaron, as a result of the strong interaction with
intramolecular vibrations of the local lattice environment. The
polaronic state should affect the transport properties of organic
materials because the binding energy of a polaron (reorganiza-
tion energy) has similar energetic orders of transfer integrals13

and thermal excitation energy kBT � 25 meV at room temper-
ature. In fact, the incoherent molecular-to-molecular hopping
of a polaron, which is a slow-moving electron coupled with
lattice distortion, is observed in experiments as a thermally
activated behavior of temperature-dependent mobility, where
the carrier mobility is generally below 0.1 cm2/V s at room
temperature.2 In such a low mobility regime, the charge-
transport properties have been investigated theoretically using
the Marcus equation,15 taking polaron effects by the Holstein
model,16 which describes the strong coupling between the
intramolecular vibration and the electron.

Recent rapid progress in technology enables us to fabricate
the single-crystal organic thin films and to construct the flexible
thin-film transistor (TFT) devices with high carrier mobility
up to ∼40 cm2/V s,17 which presently exceeds the mobility
of amorphous silicon.2 This shows that structural disorders
are almost excluded from the organic TFTs. The temperature

dependence of mobility is remarkably different from that of the
disordered materials. In single crystals, the mobility decreases
with increasing temperature, according to μ ∝ T −n. Such
power-law dependence is a typical character of coherent band
transport due to delocalized carriers and originates from the
scattering processes by the coupling between carriers and the
intermolecular vibrations, i.e., the lattice phonons. Moreover,
recent experimental measurements of Hall effects on the or-
ganic TFTs6,18,19 provide us with evidence of possible coherent
charge transport in the single-crystal organic materials. On the
other hand, a difficult problem arises in the coherent band
picture. That is, the estimated mean free path is comparable
to or shorter than the distance between adjacent molecules,
which implies a breakdown of the coherent band transport.

Recent theoretical studies tackle these transport problems
on the single-crystal organic materials with high mobility,
based on the quantum-mechanical theory from an atomistic
viewpoint. Troisi and Orlandi soloved the time-dependent
Schrödinger equation of electrons coupled with the classical
equation of molecular motion taking the polaron effects by the
Peierls model, which describes the strong coupling between
the intermolecular vibration and the electron.20 They showed
that large thermal fluctuations of molecular motion are suffi-
cient to destroy the translational symmetry of the molecular
lattice, and the carrier state becomes sometimes delocalized
bandlike and sometimes strongly localized. Fratini and Ciuchi
also employed the Peierls model and found the simultaneous
presence of band carriers and incoherent states.21 Ciuchi,
Fratini, and Mayou analyzed the optical conductivity observed
in experiments using the Kubo formula with the Peierls model
and found an incipient electron localization caused by large
dynamical lattice disorders.22 Böhlin, Linares, and Stafstöm
investigated the polaron dynamics in the molecular lattice
applied by a finite magnitude of electric field within the Peierls
model and found the change of the transport process from an
adiabatic polaron drift process to a combination of sequences
of adiabatic drift and nonadiabatic hopping events.23

Although these approaches focus on the intermolecular cou-
pling in the Peierls (large polaron) model, the intramolecular
coupling described by the Holstein (small polaron) model
cannot be ignored to account for the transport properties of

245206-11098-0121/2012/85(24)/245206(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.245206


ISHII, HONMA, KOBAYASHI, AND HIROSE PHYSICAL REVIEW B 85, 245206 (2012)

single-crystal organic materials because the Holstein-type
polaron has a large binding energy and describes the charge
transport in the localized hopping regime due to static
disorders, which inevitably exist in the molecular crystals.14

Hannewald and Ortmann have performed an analytical evalua-
tion of mobility using the method of canonical transformation
of the mixed Holstein-Peierls model.24,25 They studied the
contribution of both the coherent and the incoherent scattering
events on the transport properties. However, they assumed
that the transport is bandlike, i.e., that the phase coherence
is maintained and the scattering with phonon is infrequent.
In general, this assumption is valid at much lower than room
temperature.

To investigate the charge-transport properties of single-
crystal organic semiconductors at around room temperature,
we develop a methodology based on the time-dependent
wave-packet diffusion (TD-WPD) method26 to apply for the
mixed Holstein-Peierls model and to study the temperature
dependence of charge-transport properties. In the present
approach, we evaluate the carrier mobilities, mean free paths,
and diffusion coefficients including both the Holstein-type and
Peierls-type polaronic states on the same footing, with the
use of the Kubo formula based on the quantum-mechanical
calculations of electron wave-packet dynamics combined
with the classical molecular-dynamics simulation. We show
the temperature dependence of transport properties of organic
semiconductors in competition among the thermal fluctuation
of molecular motion, the polaron formation, and the static
disorders.

II. METHODOLOGY

A. TD-WPD methodology for organic materials

To clarify the charge-transport properties from an atomistic
viewpoint, we adopt a semiclassical approach for phonons
assuming that the nuclear motions of the lattice are treated
classically, whereas the charge-carrier dynamics is evaluated
purely based on the quantum-mechanical approach. We note
that this assumption has been frequently taken in studies of
conductive polymers.27 The electron motion in materials is
described directly by coupling the quantum-mechanical time-
evolution calculation of an electron wave packet with the clas-
sical molecular lattice dynamics simulations, which is called
the TD-WPD approach.26 In previous studies, we applied
the TD-WPD method to inorganic materials, such as carbon
nanotubes and graphene nanoribbons, which are formed by
covalent bonding. We clarified the electron-phonon coupling
effects on the transition of transport properties from the
ballistic to diffusive transport regimes and from the coherent to
incoherent transport regimes, from an atomistic viewpoint.26,28

The molecules in organic materials, on the other hand, are
coupled to each other by weak van der Waals interactions,
which make these materials much more flexible than inorganic
materials. The carrier motions in the organic materials are
affected strongly by the lattice distortions which form the
so-called polaron state, a quasiparticle state coupled with
electron and molecular vibrations. Therefore the charge-carrier
transport must be described using different models from those
for covalently bonded semiconductors. In the present study, we
introduce the polaron effect into the TD-WPD methodology,

and investigate the mechanism of charge-carrier transport with
lattice distortion of flexible organic semiconductors. It should
be noted that evaluation of the carrier mobility of organic
materials is important from the viewpoint of not only basic
science but also for a number of industrial applications.

We extract the time-dependent form of electron conductiv-
ity σ of materials with volume � from the Kubo formula,26,29

σ = lim
t→+∞

∫ +∞

−∞
dE

(
− df (E − EF )

dE

)

× e2 Tr

[
δ(E − Ĥe)

�

{x̂(t) − x̂(0)}2

t

]
, (1)

where the Fermi-distribution function is represented by
f (E − EF ), the position operator of charge is written by
x̂(t) ≡ Û †(t)x̂Û (t) in the Heisenberg picture, and Û (t =
Nt�t) ≡ �

Nt−1
n=0 exp {iĤe(n�t)�t/h̄} is the time-evolution

operator. The dynamical change of electronic states by
lattice distortion due to polaron formation is included in
the time-dependent Hamiltonian Ĥe(t). To reduce the cal-
culation cost, the conductivity is computed numerically by
Chebyshev polynomial development of Û (t) using Haydock’s
recursion method. We evaluate the quantity of Tr[· · ·] by
(N/Nw) × ∑Nw

n=1〈�n| · · · |�n〉, where N and Nw represent
the total site number and the number of initial conditions,
respectively. The use of wave packets, instead of using the
direct eigenvectors of the Hamiltonian, allows us to perform
the order-N computation of transport properties for large-scale
systems,26 suitable for the use of parallel computing.

The mobility of a carrier with an elementary charge q is
defined as the conductivity of Eq. (1) divided by the charge
density, μ ≡ σ/qn. The charge density is defined as qn =
q

∫
dE f (E − EF )ν(E), where ν(E) is the density of states

(DOS) given by Tr[δ(E − Ĥe)/�]. The diffusion coefficient
D is evaluated as the long-time limit of the time-dependent
diffusion coefficient,

D = lim
t→+∞ D(t)

= lim
t→+∞

1

t

∫
dE f (E − EF )Tr[δ(E − Ĥe){x̂(t) − x̂(0)}2]∫

dE f (E − EF )Tr[δ(E − Ĥe)]
.

(2)

When we approximate the Fermi-distribution function as
f (E − EF ) � exp{−(E − EF )/kBT } since we consider the
low carrier states of the semiconductor in the present study, we
can extract the well-known Einstein relation, μ = qD/kBT .30

The mean free path is also obtained from the diffusion
coefficient, lmfp = D/v, where v is the carrier velocity defined
by limt→0

√
D(t)/t .

Using the real-time molecular dynamics simulations, we
describe the dynamical lattice distortions by both thermal
fluctuation and reorganization upon ionization by charge
carriers. When we employ the generalized coordinate system
{ Q} to describe the lattice distortion, the equation of motion for
the nth site with mass M is derived from the canonical equation
M × d2 Qn/dt2 = −∂Etot/∂ Qn, where the total energy Etot

is defined by the summation of the electron energy and the
molecular vibration energy. Here, for instance, Qn represents
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the displacement of the nth molecular position �Rn and
the intramolecular distortion �un in the present paper. In
general, the total energy is divided into four terms: Etot =
Ee({ρ}) + E

pot
l ({ Q}) + Ekin

l ({ Q̇}) + Eel({ρ · Q}), where Ee,
E

pot
l , Ekin

l , and Eel represent the electron energy, the elastic
potential energy, the kinetic energy of the lattice vibration, and
the electron-phonon coupling energy, respectively. Here, the
electron density matrix is written as {ρ}. We obtain the follow-
ing equation of motion for the lattice vibration and distortion:

M
d2 Qn

dt2
= −∂E

pot
l ({ Q})
∂ Qn

− ∂Eel({ρ · Q})
∂ Qn

, (3)

where the first term in the right-hand side corresponds to the
elastic force and the second term induces the lattice distortion
due to polaron formation. The temperature T is fixed by
normalizing the kinetic energy of lattice vibration at each
time step with the condition of

∑N
n=1 M Q̇

2
n/2 = dNkBT /2

in the d-dimensional systems. Solutions of the coupled
equations (1) and (3) allow us to describe the electron motion
strongly coupled with both the thermal fluctuating lattice
and the distortion by polaron formation. The calculation flow
within the TD-WPD approach is shown later.

B. Application to the Holstein-Peierls model

To investigate the charge-carrier transport of organic
semiconductors, we employ the mixed Holstein-Peierls model
for the carriers interacting tightly with molecular distortion.
The Holstein model16 is based on the local electron-phonon
coupling which acts purely intramolecularly, i.e., at the single
molecule ionized by the charge of carrier. On the other hand,
intermolecular vibration influences the time dependence of
transfer integrals between adjacent molecules. The resulting
nonlocal coupling leads to a Peierls model such as the Su-
Schrieffer-Heeger model.27 We show a schematic picture of
the hole transport in a single-crystal organic semiconductor in
Fig. 1(a). The Hamiltonian for holes in the highest occupied
molecular orbital (HOMO) band is written as

Ĥe(t) =
∑
n,m

γ̃ HOMO
nm [�Rnm(t)](ĉ†nĉm + ĉ†mĉn)

+
∑

n

{
ε̃HOMO
n [�un(t)] + Wn

}
ĉ†nĉn, (4)

where the transfer integral γ̃ HOMO
nm and the orbital energy

ε̃HOMO
n coupled with inter- and intramolecular lattice distor-

tions are defined by

γ̃ HOMO
nm (�Rnm) = γ HOMO

nm + αHOMO
P �Rnm, (5)

ε̃HOMO
n (�un) = εHOMO

n + αHOMO
H �un. (6)

Here, γ HOMO
nm is the bare transfer integral between the nth and

mth molecules, and αHOMO
P is the Peierls-type electron-phonon

coupling constant. When we represent the displacement of the
nth molecule as �Rn, the change of intermolecular distance
is given by �Rnm = |(Re

m + �Rm) − (Re
n + �Rn)| − |Re

m −
Re

n|. Here Re
n is the equilibrium position of the molecule.

The operators ĉn and ĉ
†
n are the annihilation and creation

operators of a hole at the HOMO with the orbital energy
εHOMO
n . The Holstein-type electron-phonon coupling constant

Polaron

h
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LUMO

ΔR Δu

En
er

gy

(a)

(b)

(3). Molecular dynamics from t to t+Δt

(1). Make Hamiltonian of electron at time t

(2). Wave-packet dynamics from t to t+Δt

ΔR(t+Δt)ΔR(t)

Δu(t+Δt)Δu(t)
dEtot({ρ},{ΔR},{Δu})

dt2
d2ΔRM = dΔR

Equation of motion

(0). Input of initial conditions at t=0

{ΔR(0)} {Δu(0)}Ψ(0)

= He(t) Σ
n,m

γnm        (ΔRnm) (cncm+cmcn)HOMO~ + Σ
n

εn           (Δun) cncn
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Ψ(t)Ψ(t+Δt) = exp[                ]h
He(t)i Δt

Time-evolution of wavepacketΨ(t) Ψ(t+Δt)

γnm        (ΔRnm)HOMO~

εn           (Δun)HOMO~

Evaluation of 
 σ and D(t)

FIG. 1. (Color online) (a) Schematic picture of the hole transport
in organic semiconductors with Holstein-type and Peierls-type
electron-phonon couplings. (Upper panel) Transfer energy between
adjacent molecules modulated from γ HOMO to γ̃ HOMO ≡ (γ HOMO +
αHOMO

P �R) by the bond-length change �R due to both thermal
fluctuation and polaron formation induced by Peierls-type coupling.
(Lower panel) The HOMO and LUMO levels of each molecule
in the organic semiconductor. The intramolecular deformation by
reorganization, which is represented by �u in the upper panel,
changes the HOMO level by Holstein-type coupling. (b) Flowchart
of numerical computation according to the TD-WPD methodology
in the case of the Holstein-Peierls model.

is represented by αHOMO
H . In the present paper, we replace

the intramolecular displacement �un with the effective scalar
coordinate �un.38 The information of the atomistic config-
uration is included into the effective one. As a result, we
can express the shift of orbital energy by {αHOMO

H �un}. In
addition, we also consider the effect of static disorder, which
inevitably exists in the molecular crystals. We introduce the
Anderson-type disorder potentials Wn, which modulate the
on-site orbital energies randomly within the energy width
[−W/2, + W/2].28

As for the molecular dynamics, we treat the dynamics
of molecular lattice within the classical theory. When the
elastic energies for both the inter- and intramolecular defor-
mations are approximated by a harmonic form, we obtain the
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Hamiltonian of molecular lattice as follows:

Ĥl(t) =
∑

n

1

2
M

{
d�Rn(t)

dt

}2

+
∑
n,m

1

2
KP{�Rnm(t)}2

+
∑

n

1

2
KH{�un(t)}2, (7)

where the inter- and intramolecular elastic constants represent
KP and KH, respectively. The total Hamiltonian is given by
Ĥtot(t) ≡ Ĥe(t) + Ĥl(t), and we can obtain the total energy as

Etot =
∫

dE f (E − EF )Tr[δ(E − Ĥe)Ĥtot]

=
∑
n,m

γ̃ HOMO
nm (�Rnm){ρnm(t) + ρmn(t)}

+
∑

n

ε̃HOMO
n (�un)ρnn(t) +

∑
n

1

2
M

{
d�Rn(t)

dt

}2

+
∑
n,m

1

2
KP{�Rnm(t)}2 +

∑
n

1

2
KH{�un(t)}2, (8)

where ρnm ≡ ∫
dE f (E − EF )Tr[δ(E − Ĥe)ĉnĉ

†
m] is the den-

sity matrix element. Replacing Qn by �Rn in Eq. (3), we
derive the equation of molecular motion, M × d2�Rn/dt2 =
−∂Etot/∂�Rn. On the other hand, as for the intramolecular
distortion, we determine �un by the variational principle
for the minimum total energy, ∂Etot/∂�un = 0, resulting in
�un(t) = (αH/KH){ρnn(t)/

∑
m ρmm(t)}.

We show the schematic flowchart for the Holstein-Peierls
model in Fig. 1(b). First, we determine the Hamiltonian Ĥe(t)
of electrons for the given inter- and intramolecular configura-
tions of material at time t . Using the Hamiltonian, we create
the time-evolution operator of an electron motion defined by
exp{−iĤe(t)�t/h̄}. Then we evaluate the conductivity σ of
Eq. (1) and the time-dependent diffusion coefficient D(t) of
Eq. (2). Here, the Fermi energy EF is determined to satisfy
the charge neutrality condition that the electron number in the
lowest unoccupied molecular orbital (LUMO) band is equal
to the hole number in the HOMO band. Then we obtain the
inter- and intramolecular configurations at the next time step
using the molecular lattice dynamics simulation based on the
velocity Verlet algorithm, including the effect of not only the
thermally excited molecular vibration but also the polaronic
lattice distortions. From the renewed inter- and intramolecular
configurations, we can extract the Hamiltonian at the next
time step, Ĥe(t + �t). Repeating these processes, we take
into account the complicated trajectory of an electron motion
in its induced time-dependent lattice distortion.

Here we apply the above TD-WPD method to the transport
properties of single-crystal pentacene thin films. The physical
quantities used here, such as electron-phonon coupling con-
stants and elastic constants, are extracted from the calculations
based on the density functional theory (DFT), including the
van der Waals interactions for the energy (DFT-D approach).31

These quantities are in good agreement with some experi-
mental observations.32 Although the various two-dimensional
organic thin films can be treated with the present approach,
we consider for simplicity a one-dimensional stack of 1600
pentacene molecules in the present work. This is justified

since the transport properties of organic semiconductors are
strongly anisotropic in real space. We obtain the bare transfer
integrals between adjacent molecules γ HOMO = −75 meV
and γ LUMO = −125 meV by fitting the bandwidth of a
three-dimensional pentacene crystal computed by the DFT
calculations (see Ref. 33 for details) with the bandwidth
4γ of the one-dimensional model used here. We take the
HOMO and LUMO energy levels of an isolated pentacene
molecule as εHOMO = −4.60 eV and εLUMO = −2.384 eV at
the B3LYP/6-31G(d) level,34 respectively. The Peierls-type
electron-phonon coupling is estimated by αP ≡ dγ /d�R at
the equilibrium molecular position, where the bond-length-
dependent γ is calculated by the dimer-splitting approach12,35

at the DFT-D/B3LYP-D3/6-31G(d) level. For these quantities,
we use αHOMO

P = 104 meV/Å and αLUMO
P = 112 meV/Å.36

The Peierls-type elastic constant can be estimated as KP =
2.19 eV/Å2 by fitting the computed bond-length-dependent
total energy U (�R) with the parabolic form U = KP(�R)2/2
around the equilibrium molecular position.32 These are in
good agreement with previously reported values (αHOMO

P =
86–174 meV/Å and KP = 1.50 eV/Å2).20 The intermolecular
vibration has a continuous phonon band structure h̄ωP(q) =
h̄
√

2KP(1 − cos qa)/M with a bandwidth of 3.8 meV, where
the bond length is a = 5.16 Å and the mass of a pentacene
molecule is M = 4.151 × 10−24 kg. This phonon dispersion
is in good agreement with an acoustic phonon branch of
oligoacene crystals.37 By coupling the wave-packet dynamics
with the classical molecular dynamics, we can take various
phonon modes from q = 0 to ±π/a thermally excited at
a finite temperature to study the realistic phonon-scattering
effects on the charge-transport properties.26 The Holstein-type
electron-phonon coupling and the elastic constant referred to
in Ref. 38, αHOMO

H = −93 meV and KH = 92 meV, are also
estimated using the DFT calculations at the B3LYP/6-31G(d)
level.34 Here, we employ the dimensionless-effective-scalar
coordinate �un as the intramolecular distortion. We confirmed
that when the effective coordinate �u is equal to 1, the
relaxation energy defined by KH(�u)2/2 and the binding
energy of the Holstein-type polaron are in good agreement
with those reported by other theoretical studies.12,38

As for the numerical computation of the time evolution of
wave packets combined with the molecular dynamics within
the TD-WPD methodology, we employ a time step �t =
2 × h/(1eV) � 8.272 fs for stacked pentacene molecules. The
summation up to 20th order of the Chebyshev polynomial is
sufficient to ensure convergence. We evaluate Eqs. (1) and
(2) using 256 initial conditions for wave packets of localized
random phase states,39 distributions of static disorders, and
Maxwell velocity distributions of molecules.

III. CALCULATION RESULTS

A. Polaron formation energy

At first, we investigate the electron-phonon coupling effect
on polaron formation of single-crystal organic semiconductors
without both thermal fluctuations and static disorders. The
polaron state is achieved by self-consistent calculations to
minimize the total energy Etot with respect to the intra- and
the intermolecular displacements, i.e., �un and �Rn, under
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FIG. 2. (a) Change of the HOMO levels due to the Holstein-type
coupling as a function of molecular number i. The electron-formed
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states in energy widths from −4.6 to −4.4 eV. A discrete energy level
of polaron state is created above the HOMO band as indicated by
the arrow. The binding energy EB is defined as the energy difference
between the polaron level and the top of the HOMO band.

the condition of which the length of the molecular lattice was
kept fixed.23,27 In the present calculation, we consider a carrier
with spin degeneracy in a HOMO band composed of the 1600
pentacene molecular lattice, resulting in the formation of a
bipolaron state. We confirm that this system size is enough to
converge the calculated binding energy and the eigenstate of
polarons.

1. Holstein-type coupling effects

First, we focus on the Holstein-type electron-phonon
coupling, which describes the interaction between the electron
and intramolecular distortion inducing the energy shift of
the HOMO levels. Figure 2(a) shows that the change of
HOMO level of the ith molecule attains ∼20 meV at its
maximum. The obtained spatial distribution of the polaron
state is localized in the range of 50 Å (∼10 molecules) around
i = 743rd molecule. We show the energy spectrum of the DOS
of the whole HOMO and LUMO bands in Fig. 2(b). The
spectrum shows the van Hove singularities since we employ
the one-dimensional model. In the right panel of Fig. 2(b), we
can see a discrete polaron state in the energy spectrum of the
DOS located above the HOMO band. The binding energy EB

is evaluated as 14.3 meV, which is the same energetic order of
transfer integrals γ and the thermal excitation energy kBT at
around room temperature. This implies that the Holstein-type
coupling affects the carrier transport properties through the
polaron formation.

In Table I, we present the calculated polaron binding
energies for three different models. One is the Holstein-Peierls
model discussed above, and the others are the Peierls model
where αP �= 0 and αH = 0, and the Holstein model where
αP = 0 and αH �= 0. We observe significant differences among

TABLE I. Polaron binding energies by the Peierls, Holstein, and
Holstein-Peierls models.

Peierls Holstein Peierls-Holstein

Binding energy EB (meV) 1.3 7.5 14.3

these models. We see that the Holstein-Peierls model gives
rise to a much larger binding energy than the Holstein or the
Peierls model. These calculated results indicate that we have
to take into account both the Holstein-type and Peierls-type
electron-phonon couplings simultaneously when we study the
transport properties of organic semiconductors.

2. Peierls-type coupling effects and thermal fluctuation

Next, we investigate the Peierls-type electron-phonon
coupling effects on the transfer integrals. The Peierls-type
coupling describes the interaction between the electron transfer
integral and the intermolecular vibration, called the lattice
phonon. Figure 3(a) shows the Peierls-type coupling effects
on the transfer integrals of HOMO orbitals between adjacent
molecules γ̃ HOMO

i,i+1 as a function of molecular number i. Here,
we consider the low-temperature limit (T → 0) to exclude
the thermal fluctuation effects in the molecular dynamics
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FIG. 3. (Color online) (a) The Peierls-type electron-phonon
coupling effects on transfer integrals between two HOMO orbitals
γ̃ HOMO

i,i+1 as a function of molecular number i. In the calculation, the
Holstein-type coupling is also included simultaneously. The electron
accompanying the polaron state is localized around the i = 743rd
molecule. (b) Time-dependent transfer integrals induced by the ther-
mal fluctuation at T = 300 K. For comparison, the transfer integral
without the electron-phonon couplings (αH

H = αH
P = 0) is represented

by a red dashed line, and the maximum value of transfer integrals
enhanced by polaronic distortion is shown by a red straight line.
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simulations. We see that the transfer integrals are enhanced
from −75 meV up to −79 meV by shrinking of the molecular
bond length, resulting in the formation of a Peierls-type large
polaron.

Since the organic semiconductor devices are operated at
room temperature, it is essential to consider how the thermal
fluctuations of molecular motions, as well as the polaron
formation, affect the transfer integrals. Figure 3(b) shows the
time-dependent transfer integrals for several bonds at 300 K.
For comparison, the transfer integral without any distortion,
�Rnm = 0, is shown by the red dashed line. The thermal lattice
vibrations give rise to a large dynamic disorder in the inter-
molecular transfer integrals, whereas polaron formation gives
a subtle contribution to the change of transfer integral, shown
by the red solid line. The amplitude of the thermally fluctuating
transfer integrals reaches ∼80 meV, which is comparable to
the magnitude of the long-time averaged transfer integrals
γ̃ HOMO, the thermal exciation energy kBT , and the polaron
binding energy EB . These calculated results indicate that
the charge-transport properties of organic semiconductors are
determined in the subtle balance of energies among the thermal
fluctuation of molecular motion, the thermal excitation, and the
polaron formation.

B. Inter- and intramolecular vibration effects
on intrinsic charge transport

In this section, we study the intrinsic charge-transport
properties of single-crystal organic semiconductors, excluding
the static disorders, i.e., W = 0, and compute the time
evolution of wave packets. This would give us a possi-
ble maximum value of the mobility. Figure 4(a) shows
the calculated carrier mobility μ as a function of temperature
T . The mobility decreases monotonically with increasing
temperature approximately by the power-law dependence,
which shows apparent evidence of the bandlike transport.40

Similar power-law temperature dependence of mobility has
been reported in recent theoretical works.20,21 The present
calculated results show that the intrinsic mobility reaches
∼100 cm2/V s at around room temperature and increases up
to 300 cm2/V s by decreasing the temperature to 100 K. It
should be noted that we cannot take into account the bandwidth
narrowing induced by the quasiparticle picture of polaron,41

since we treat the phonon vibrations based on the classical
theory. The band narrowing effect can be discussed using
the canonical transformation technique in whole quantum
approach.24,25 Furthermore it is difficult for us to investigate
a lattice heating problem induced by the phonon emission
process. However, we consider these difficulties negligible in
a low-bias voltage and in the temperature range of 50–400 K
discussed in this paper.20

Let us see the time dependence of diffusion coefficient D(t),
which reflects the carrier motions through its time-dependent
behavior. For example, D(t) increases monotonically with
time t when the system is in the ballistic transport regime,
whereas D(t) saturates to a constant maximum value in the
diffusive transport regime. In cases where the effects of static
disorders become significant, the carrier is spatially localized
and D(t) becomes zero in the long-time limit.26 Figure 4(b)
shows the calculated D(t) for several temperatures from
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FIG. 4. (Color online) (a) The intrinsic carrier mobility μ as a
function of temperature T in the case of no static disorders. μ de-
creases monotonically with increasing T and reaches ∼100 cm2/V s
at around room temperature. (b) (Main panel) Time-dependent
diffusion coefficients D(t) for several temperatures from 100 to
400 K. The time-dependent behaviors show the typical diffusive
transport characters without static disorders. Dashed lines represent
the asymptotic lines for T = 100 and 400 K, respectively, whose
slopes are equal to the squared carrier velocity v2. (Inset) lmfp as a
function of T . The ratios of lmfp to a are also shown in the right axis.

100 to 400 K without static disorders. The behavior of the time
dependence of D(t) shows that the intrinsic carrier motion in
single-crystal organic semiconductors has a typical diffusive
transport character.

The mean free path lmfp, which is important to under-
standing the transport mechanism, can be evaluated from
the diffusion coefficients as lmfp = D/v, where the carrier
velocity is given by v = limt→0

√
D(t)/t . If lmfp is equivalent

to or shorter than the lattice constant a (the distance between
adjacent molecules) as lmfp < a, then the carrier takes the
hopping transport process, while the bandlike transport process
is characterized as lmfp much longer than a, such as lmfp � a.
In Fig. 4(b), we show the time-dependent behaviors of D(t)
for T = 100 and 400 K. The dashed lines, the slope of D(t),
are equal to the squared carrier velocities v2. The magnitude
of velocity increases with the temperature, v ∝ √

T , since the
carriers are excited thermally. From this information, we obtain
lmfp and its T dependence is shown in the inset. The carrier
scatterings are included in the changes of the time-dependent
transfer integrals, which are induced by the thermal fluctuation
of molecular motion through the Peierls-type electron-phonon
coupling. Then the mean free path decreases monotonically
as the temperature increases as lmfp = vτ ∝ v/〈(�Rnm)2〉 ∝
v/(kBT ).21 For reference, the ratio of lmfp to a is plotted in the
right axis. We see that the mean free path reaches ten times
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FIG. 5. Logarithmic plot of the carrier mobility μ as a function of
temperature T for the static disorders of W = 50, 100, and 200 meV,
respectively. As W increases, the T dependence of μ at around room
temperature changes from the nearly power-law dependence to the
thermally activated behavior. (Inset) Normal linear plots of μ vs T

characteristics for the static disorders of W = 50 (left), 100 (center),
and 200 meV (right).

longer than the lattice constant at around room temperature,
supporting the possibility of bandlike behavior in the intrinsic
transport when the static disorders are absent.

C. Static disorder effects on charge transport

Here, we investigate how the transport properties are
affected by the static disorders W , which inevitably exist
in the molecular crystals in terms of static defects such as
crystal imperfections and the presence of impurities. Several
experimental evaluations show that the potential depths of
static disorders are estimated as ∼50 meV.14 Thus we change
the parameter W between 50 and 200 meV. We note that these
static disorders are comparable to the HOMO bandwidth of the
present organic semiconductors. In fact, the ratio of W/γ HOMO

ranges from 0.67 to 2.67. Therefore, the charge-transport
properties are expected to be strongly disturbed by the effects
of the presence of static disorders in the various temperature
regimes.

Figure 5 shows the logarithmic plot of the carrier mobility μ

as a function of the temperature T for several strengths of static
disorders W = 50, 100, and 200 meV. In the inset, we plot the
normal linear behavior of the mobility μ vs T . The existence
of static disorders decreases the carrier mobility significantly
from 100 cm2/V s (no static disorder) up to 2 cm2/V s
(W = 200 meV) around 300 K, and more importantly their
temperature dependencies are changed completely.

In the case of W = 50 meV, the magnitude of μ becomes
larger than 50 cm2/V s at around room temperature and
dμ/dT takes negative values in the whole temperature regime
studied here, showing a monotonic increase of μ as a decrease
of T . The T dependence of μ higher than 200 K is close to
the power-law dependence seen in Fig. 4(a). On the other
hand, the slope of an increase of μ becomes dull in the
low T regime since the scatterings by static disorders with
no temperature dependence become dominant for the carrier
motion. To clarify the details of the transport mechanism,
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FIG. 6. (Color online) Time-dependent diffusion coefficients
D(t) for temperatures from 100 to 400 K in the presence of static
disorders with (a) W = 50 and (b) 100 meV. (c) Mean free path
lmfp as a function of temperature T for W = 50, 100, and 200 meV,
respectively. The ratios of lmfp to a are also shown in the right axis.

we show the time-dependent diffusion coefficients D(t) in
Fig. 6(a). We see that their time dependencies are remarkably
similar to those in Fig. 4(b), which indicates the realization of
diffusive transport rather than hopping transport of a localized
carrier. Figure 6(c), in which the mean free paths lmfp are
presented as a function of T , shows four to six times longer
than the lattice constant a in the case of W = 50 meV.

When the disorder W increases to 100 meV, dμ/dT

changes its sign <300 K as shown in Fig. 5; that is to say, μ

changes its behavior from bandlike in the high-T regime to the
thermally activated one in the low-T regime. In this situation,
we expect that the carrier is localized by the static disorders
and induces the intramolecular distortions, resulting in a
low-mobility polaron formation. From a comparison with the
calculated mobility by taking only the Peierls-type coupling,
we find that the presence of Holstein-type coupling, which
describes the interaction between a hole and the intramolecular
distortion, decreases the mobility from 11.4 to 6.4 cm2/V s at
50 K and from 15.0 to 14.5 cm2/Vs at 100 K. At temperatures
>150 K, the mobility reduction by the polaron formation
becomes negligible, and the mobility takes its maximum
value of 19 cm2/V s at 300 K. Then μ decreases again with
increasing T . We note that such T dependence of μ has been
observed in several recent experiments of organic TFTs.1,42

To clarify their transport properties, let us investigate the
time dependence of D(t). We see in Fig. 6(b) that D(t)
increases with time at first and takes the maximum value
at ∼0.1 ps, then decreases gradually. This indicates that
the charge carrier is localized by the strong static disorders,
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resulting in low mobility and thermally hopping behavior with
a finite polaron formation energy. Actually, from Fig. 6(c),
we can see that the lmfp is comparable to the lattice constant
a, which agrees well with experimental observations.43 The
polaronic localization state is destroyed with increasing T

because the thermal excitation energy beyond the polaron
binding energy is given to the carrier.

When the static disorders become more significant, up to
W = 200 meV, the magnitude of μ takes a much lower value
of ∼1 cm2/V s in comparison with those for W = 50 and
100 meV. The sign of dμ/dT becomes positive in the whole
temperature regime, as shown in Fig. 5. In this situation,
the carrier is trapped tightly by the disorders, therefore the
calculated lmfp in Fig. 6(c) is less than the lattice constant a. The
evaluated mean free path of carrier is shorter than the molecule-
to-molecule distance, which renders the concept of bandlike
transport meaningless. The carrier transport properties are very
close to typical thermally activated behaviors, which have been
observed for the organic TFTs with low quality.2

Finally, we study the time dependence of carrier motion
in organic semiconductors. Figure 7 shows the propagation
length of carrier as a function of time, which is defined by
L(t) ≡ √

D(t) × t . We also plot the ideal time-dependent
behaviors of L(t) by thin solid lines in the limits of the
ballistic (L ∝ t), the diffusive (L ∝ √

t), and the localized
(time-independent) characters, respectively. When the time
exceeds t � 30 fs, the carrier begins to be scattered both by the
electron-phonon couplings and by the static disorders, and its
time dependence deviates gradually from the ballistic behavior.
The localized nature of carriers is enhanced in the presence
of static disorders. We find that the estimated localization
length is ∼10 Å in the case of W = 200 meV. Note that the
crystal structure of organic molecular systems is considered as
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FIG. 7. (Color online) Propagation length L(t) ≡ √
D(t) × t , as

a function of time for several T ’s and W ’s. We plot the ideal
time-dependent behavior of L in the limit of the ballistic (L ∝ t),
the diffusive (L ∝ t0.5), and the localization (time-independent)
characters, respectively.

quasi-one-dimensional due to its highly anisotropic character.
For a purely one-dimensional model, the localization effect
sets in more efficiently, therefore the above estimation should
be an upper bound to the localization length. As T increases
or W decreases, the carrier begins to move and its motion
changes from the thermally activated hopping transport due to
the localized carrier to the diffusive transport character.

IV. SUMMARY

In summary, we have developed a methodology to cal-
culate the carrier transport coupled with the inter- and the
intramolecular vibrations of organic semiconductors based
on the TD-WPD method. In this methodology, we carry out
the quantum-mechanical time-evolution calculations of wave
packets and the classical molecular dynamics simulations
simultaneously, including the inter- and intramolecular lattice
distortions and the static disorders on an equal footing without
any perturbative treatment. This enables us to take into account
the polaron formation effects, which are considered indispens-
able in the carrier transport of organic semiconductors.

Using this methodology, taking both the Holstein-type
(small) and Peierls-type (large) polaron formations, we studied
the carrier mobilities and the mean free paths of single-
crystal pentacene organic semiconductors, focusing on their
temperature dependence in competition among the thermal
fluctuation of molecular motion, the polaron formation, and
the static disorders.

When the static disorders, such as crystal imperfections, and
the presence of impurities are absent in the idealized situations,
we found that the intrinsic mobility reaches ∼100 cm2/V s at
around room temperature and increases up to 300 cm2/V s
with decreasing the temperature to 100 K, which follows the
power-law dependence. We found that this is mainly due to
the transfer-integral modulation originating from the thermal
fluctuation of molecular motion, whereas the polaron forma-
tion gives a subtle contribution to the transport properties.
As the static disorders increase, the carrier becomes localized
and couples with the intramolecular distortions, forming the
polaron state. Therefore, the magnitude of mobility is dramati-
cally decreased and its temperature dependence changes grad-
ually from the bandlike transport behavior dμ/dT < 0 to the
thermally activated hopping transport behavior dμ/dT > 0.
We note that such transport behaviors have been observed
frequently in experiments.1,42 The present calculated results
indicate that the thermal fluctuation, the polaron formation,
and the static disorders provide important contributions to the
understanding of the transport mechanism of realistic organic
semiconductors.
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