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Summary 

ICE1, a MYC-type transcription factor, has an important role in the induction of 

CBF3/DREB1A for the regulation of cold signaling and tolerance. In this study, we 

reveal that serine 403 of ICE1 is involved in regulating the transactivation and stability 

of the ICE1 protein.  Substitution of serine 403 to an alanine enhanced the 

transactivational activity of ICE1 in Arabidopsis protoplasts.  The overexpression of 

ICE1(S403A) conferred more freezing tolerance than ICE1(WT) in Arabidopsis, and the 

expression of cold-regulated genes such as CBF3/DREB1A, COR47, and KIN1 was 

enhanced in ICE1(S403A)-overexpressing plants.  Furthermore, the ICE1(S403A) 

protein level was not changed after cold treatment, whereas the ICE1(WT) protein level 

was reduced. Interestingly, polyubiquitylation of the ICE1(S403A) protein in vivo was 

apparently blocked. These results demonstrate that serine 403 of ICE1 has roles in both 

the transactivation and the cold-induced degradation of ICE1 via the ubiquitin/26S 

proteasome pathway, suggesting that serine 403 is a key residue for the attenuation of 

cold stress responses by HOS1 mediated degradation of ICE1.   

 

 

Abbreviations: bHLH, basic helix-loop-helix; CBF, CRT-binding factor; CRT, 

C-repeat; DRE, dehydration responsive element; DREB, DRE-binding protein; HOS1, 

high expression of osmotically responsive genes 1; ICE1, inducer of CBF expression 1; 

SUMO, small ubiquitin-related modifier 
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Introduction 

Plants need to adapt to changes in the environment for their survival. When the 

temperature decreases to below the freezing point, some plants native to temperate 

zones have the ability to tolerate the freezing temperature. The freezing tolerance of 

temperate plants is not a constant property but it is induced by exposure to non-freezing 

low temperatures. This process is known as cold acclimation (Guy, 1990; Thomashow, 

1999). Global transcription profiling analyses have revealed that more than 10% of the 

genes in the Arabidopsis genome are regulated during cold acclimation (Fowler and 

Thomashow, 2002; Kreps et al., 2002; Seki et al., 2002). These cold-responsive genes 

include key metabolic enzymes, late embryogenesis-abundant proteins, and 

detoxification enzymes (Thomashow, 1999).  

Many cold- and dehydration-responsive genes contain one or more copies of 

C-repeat (CRT)/dehydration responsive element (DRE) cis-elements in their promoters. 

The CRT/DRE cis-element has a core sequence, CCGAC, and is able to respond to cold, 

dehydration and salinity. (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 

1994). A family of AP2-type transcription factors, known as the CBF (CRT-binding 

factor)/DREB (DRE-binding protein) family, binds to these cis-elements and induces 

expression of the cold- and dehydration-responsive genes (Stockinger et al., 1997; Liu 

et al., 1998). Thus, the ectopic expression of CBF/DREB confers improved tolerance to 

freezing, dehydration and salinity (Jaglo-Ottosen et al., 1998; Liu et al., 1998). Because 

the expression of CBF/DREB itself is induced by cold (Stockinger et al., 1997; Liu et al., 

1998; Gilmour et al., 1998), other transcription factors also control the induction of 

CBF/DREB in response to low temperature. 

   Several factors involved in the regulation of CBF/DREB expression have been 
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identified genetically in Arabidopsis (Chinnusamy et al., 2007; Lissarre et al., 2010). 

The ice1 mutant has been identified by a genetic screen of mutants impaired in the 

expression of the CBF3-LUC reporter gene (Chinnusamy et al., 2003). Expression of 

CBF3/DREB1A and its downstream target genes was shown to be down-regulated in the 

ice1 mutant, and, consequently, ice1 plants display significantly reduced chilling and 

freezing tolerance (Chinnusamy et al., 2003). ICE1 (inducer of CBF expression 1) 

encodes a MYC-like bHLH (basic helix-loop-helix) transcription factor that can bind 

directly to the canonical MYC cis-elements (CANNTG) in the CBF3/DREB1A promoter 

(Chinnusamy et al., 2003). A genome-wide transcription profile revealed that the 

expression of 204 of the 939 cold-regulated genes is affected in the ice1 mutant (Lee et 

al., 2005). Although ICE1 mainly affects CBF3/DREB1A expression (Chinnusamy et al., 

2003), ICE2, a homolog of ICE1 (At1g12860), primarily influences the expression of 

CBF1/DREB1B, but not of CBF3/DREB1A (Fursova et al., 2009). Thus, ICE1 and ICE2 

have pivotal roles in the transcriptional regulation of CBF/DREBs. Interestingly, 

ICE1/SCREAM is also involved in stomatal differentiation (Kanaoka et al., 2008), 

suggesting that ICE1 links the transcriptional regulation of environmental adaptation 

and stomatal development in plants. 

 The recessive mutant hos1 causes the enhanced expression of CBF/DREB and 

cold-responsive genes in cold conditions (Ishitani et al., 1998; Lee et al., 2001). HOS1 

(high expression of osmotically responsive genes 1) encodes a RING finger-type E3 

ligase for the ubiquitylation of ICE1, which results in the cold-induced degradation of 

ICE1 (Lee et al., 2001; Dong et al., 2006).  ICE1 is also post-translationally regulated 

by SUMO (small ubiquitin-related modifier) E3 ligase SIZ1-mediated sumoylation 

(Miura et al., 2007a; Miura et al., 2007b; Miura and Hasegawa, 2010). Protein 
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phosphorylation is the most common mechanism controlling gene expression, however, 

it is unknown whether ICE1 is also regulated by this modification. 

In this study, we evaluated the serine/threonine residues in the regulation of ICE1. 

The substitution of S403 to alanine in ICE1 [ICE1(S403A)] enhanced GAL4-mediated 

transactivation in protoplasts, the expression of cold-regulated genes, such as 

CBF3/DREB1A, COR47, and KIN1, and cold tolerance in transgenic plants. 

Furthermore, the ICE1(S403A) protein level was not changed after cold treatment, 

whereas the ICE1(WT) level was reduced. Polyubiquitylation of the ICE1(S403A) 

protein was blocked in vivo. These results demonstrate that S403 of ICE1 plays a role in 

the regulation of both the transactivation and the cold-induced degradation of the 

transcription factor via the ubiquitin/26S proteasome pathway, probably mediated by 

HOS1. Thus, the enhanced transactivation and impaired degradation of ICE1(S403A) 

may enhance the expression of CBF3/DREB1A and its regulon genes in 

ICE1(S403A)-overexpressing plants. 
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Results 

Serine 403 to alanine substitution increases the transactivation activity of ICE1 

and the freezing tolerance of Arabidopsis 

Previously, we have demonstrated that the SIZ1-mediated sumoylation of ICE1 at K393 

is necessary for cold signaling and tolerance (Miura et al., 2007a) and that the flanking 

region of the sumoylation site, including serine and threonine residues, is highly 

conserved among orthologs. Several reports have also demonstrated relationship 

between phosphorylation and sumoylation (Mohideen et al., 2009). Consequently, 

separate variant proteins with S to A or T to A mutations were generated; T387A, 

S389A, S399A, S400A or S403A (Fig. 1A). These ICE1 variants were fused with the 

DNA-binding domain of the yeast GAL4 transcription factor (Fig. 1B; Ohta et al., 2000; 

Tiwari et al., 2003). Each GAL4-ICE1 variant was co-introduced into Arabidopsis leaf 

protoplasts with the GAL4-GUS reporter and 35S-LUC (Fig. 1B), and the protoplasts 

were incubated at 23°C. Because of the moderate temperature, we presumed that ICE1 

variant would not have been degraded by the proteasome (Dong et al., 2006). The 

transactivation activity was measured as GUS activity and LUC activity was used for 

plasmid uptake normalization between samples (Tiwari et al., 2003; Yoo et al., 2007). 

GAL4-ICE1(S403A) and GAL4-ICE1(S399A, S400A, S403A) activated GAL4-mediated 

transactivation ~2.8-fold higher than GAL4-ICE1(WT) did (Fig. 1C; Supplemental Fig. 

S1).  In contrast, the transactivation activities of ICE1(T387A), ICE1(S389A), and 

ICE1(S399A or S400A) were similar to that of ICE1(WT) (Supplemental Fig. S1). 

These results indicate that S403 is an important residue in the negative regulation of 

ICE1 transactivational activity. 
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In order to assess the biological role of S403 in ICE1, we produced transgenic 

plants overexpressing ICE1(S403A). Transcript abundance of the ICE1(S403A) 

transgene was evaluated by semi-quantitative RT-PCR analysis (Supplemental Fig. S2), 

which indicated that transgenic gene expression was similar in ICE1(WT) (line #12; 

Miura et al., 2007) or ICE1(S403A) (#5, 12, 13) transgenic plants. Non-acclimated 

three-week-old wild-type (Col-0), a vector control, ICE1(WT)-overexpressing (Miura et 

al., 2007a), and ICE1(S403A)-overexpressing plants were subjected to -4°C for 4 h. 

ICE1(WT)-overexpressing plants exhibited higher survival rates (9.38% ± 6.0) than 

wild-type (3.13% ± 1.8) and vector control (all died under this condition) plants after 

one week of recovery at room temperature (Fig. 2A and 2C). The 

ICE1(S403A)-overexpressing plants were more freezing tolerant than the 

ICE1(WT)-overexpressing plants (survival rates ranging from 34.4% to 45.3%, with 

statistical significance at P < 0.05 against the survival of ICE1(WT)-overexpressing 

plants; Fig. 2C). Similar results were also observed when cold-acclimated plants were 

subjected to -8°C for 4 h (Fig. 2B and 2D). Electrolyte leakage analysis was performed 

on detached leaves from the non-acclimated plants. At -3°C, the percentages of 

electrolyte leakage were 41.4 ± 4.6% for the vector control, 38.5 ± 2.5% for the 

ICE1(WT)-overexpressing, and 28.2 ± 2.2% for the ICE1(S403A)-overexpressing plants 

(Fig. 2E), indicating that the leaves of the ICE1(S403A)-overexpressing plants were less 

susceptible to freezing (Fig. 2E). These results demonstrate that the serine403 

substitution to alanine enhanced freezing tolerance in Arabidopsis.  

 

Overexpression of ICE1(WT) or ICE1(S403A) did not affect plant morphology (Fig. 

3A, 3B), fresh weight (Fig. 3C), leaf area (Fig. 3D), or stomatal development (Fig. 4A) 
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or density (Fig. 4B). SCREAM (SCRM)/ICE1 and SCREAM2 (SCRM2)/ICE2 are 

paralogous genes whose proteins interact with and regulate critical determinants of 

stomatal differentiation (Kanaoka et al., 2008). Interestingly, ICE1(WT) or ICE1(S403A) 

expression could suppress ice1-2 scrm-2 double mutant phenotypes of reduced stomatal 

density (not shown) and dwarfism (Fig. 3E; Kanaoka et al., 2008). ICE1(S403A) was 

functionally redundant to ICE1(WT).   

 

ICE1(S403A) overexpression enhanced induction of cold-regulated gene expression 

Because ICE1 controls the expression of CBF3/DREB1A and the regulon genes, such as 

COR47 and KIN1 (Chinnusamy et al., 2003), transcript abundance of these 

cold-regulated genes was monitored by quantitative RT-PCR analysis. CBF3/DREB1A 

transcript was greater in ICE1(WT)-overexpressing plants than in the vector control 

plants (Fig. 5), confirming results described previously (Chinnusamy et al., 2003; Miura 

et al., 2007a). ICE1(S403A) overexpression increased CBF3/DREB1A expression to a 

greater extent, which was most evident after 12 h of cold treatment (Fig. 5). Transgenic 

ICE1 and native ICE1 expression was also investigated in ICE1(WT) and ICE1(S403A) 

transgenic plants.  Interestingly, native ICE1 expression was induced substantially by 

ICE1(WT) and, to greater extent, by ICE1(S403A) (Fig. 5), even prior to cold induction, 

probably because of the three canonical MYC cis-elements (CANNTG) present in 2 kb 

of the ICE1 promoter. Transgene ICE1 expression, which was driven by the cassava 

vein promoter, was similar in both ICE1(WT) and ICE1(S403A) (Fig. 5). Even though 

ICE1 transcript was accumulated under normal condition, induction of CBF3/DREB1A 

expression is required for cold treatment (Fig. 5), suggesting that ICE1 protein may be 

activated by cold and S403 is not a major residue for ICE1 activation. Transcript 
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accumulation of CBF3/DREB1A regulon genes COR47 and KIN1, which are evident 12 

h after exposure of the plants to low temperatures (Gilmour et al., 1998), was induced 

by overexpression of ICE1(WT) or ICE1(S403A) but to a greater extent by the later (Fig. 

5). These results suggest that a prolonged expression of CBF3/DREB1A leads to higher 

levels of cold-regulated gene expression, probably resulting in the higher freezing 

tolerance of ICE1(S403A)-overexpressing plants. 

 

Non-acclimated ICE1(WT) or ICE1(S403A) plants exhibited more tolerance to 

freezing stress (Figs. 2A, 2C).  Low temperatures of 10ºC or less induce CBF/DREB1 

expression within 15 min, and transcript accumulation increases with low temperature 

(Jaglo-Ottosen et al., 1998; Chinnusamy et al., 2003).  In our conditions for freezing 

experiments, plants were kept at 4°C for 30 min and 0°C for 1 h, and then the 

temperature was successively decreased at -1°C h-1, as described in Experimental 

procedures. Therefore, it took 3.5 h to reach the desired temperature (-3°C; Fig. 2A). 

Because we observed the expression of CBF3/DREB1A at 3 h of cold treatment to be 

up-regulated in ICE1(S403A) (Fig. 5), we suggest that the plants may have been 

partially acclimated to the cold. Thus, the ICE1(S403A) transgenic plants were able to 

survive better than the ICE1(WT) transgenic or wild-type plants at -3°C (Fig. 2A, 2C). 

 

Serine 403 to alanine substitution increased stability of ICE1 against cold-induced 

proteasome degradation 

Low temperature induces ICE1 degradation after cold treatment through the 

ubiquitin/proteasome pathway, a process that is mediated by the ubiquitin E3 ligase 

HOS1 (Dong et al., 2006). To investigate whether the S403A substitution affects the 
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stability of ICE1, ICE1 protein abundance was determined before and after cold 

treatment using western blot analysis. ICE1(WT) and ICE1(S403A) were expressed as 

T7-ICE1 fusion proteins, allowing for detection with anti-T7 tag antibody. Because the 

ice1-2 scrm-2 double mutation was complemented by T7-ICE1(WT) and 

T7-ICE1(S403A) (Fig. 3E), T7-tag did not disturb biological function of ICE1. A 24 h 

low temperature (4°C) treatment results in substantial reduction in the T7-ICE1(WT) 

protein but affected T7-ICE1(S403A) protein abundance to a lesser degree (Fig. 6A). To 

confirm the stability of the ICE1(S403A) protein in vivo, we observed the fluorescence 

of GFP-ICE1 fusion proteins. The level of nuclear GFP-ICE1(WT) protein detected 

after cold treatment was reduced to a greater extent than GFP-ICE1(S403A) protein (Fig. 

6B). These results indicate that the S403A substitution increases the stability of the 

ICE1 protein against cold-induced degradation. 

 

The substitution of serine 403 to alanine blocked the polyubiquitylation of ICE1 in 

vivo 

The proteasome inhibitor MG132 was used to assess whether low temperature-induced 

degradation of ICE1 proteins was due to ubiquitylation. High-molecular weight 

polypeptide bands corresponding to the polyubiquitylated forms of T7-ICE1 were 

detected in the immunoprecipitated T7-ICE1 proteins obtained from 

ICE1(WT)-overexpressing plants (Fig. 7A). However, the polyubiquitylated forms of 

T7-ICE1 were not detected in the immunoprecipitated T7-ICE1 proteins from 

ICE1(S403A)-overexpressing plants (Fig. 7A). These results suggest that the 

substitution of S403A inhibits the polyubiquitylation of ICE1 and, consequently, results 

in greater stability of the ICE1 protein against cold-induced degradation. 
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 Nonlysine residues such as serine, threonine, and cysteine are ubiquitylation sites in 

MHC-1 and the Bcl-2 family member Bid (Cadwell and Coscoy, 2005; Tait et al., 2007; 

Wang et al., 2007). Thus, an in vitro ubiquitylation assay of ICE1 proteins was assessed 

using HOS1 as an E3 ligase as described (Dong et al., 2006). After the addition of 

HOS1, a high molecular weight band was detected in both ICE1(WT) and ICE1(S403A) 

recombinant proteins (Fig. 7B), a pattern that is similar to another report (Dong et al., 

2006). Thus, serine 403 is not the main target residue for ubiquitylation, but it inhibits 

the polyubiquitylation of ICE1 in vivo. 

 

 The effect of the S403A substitution on the ICE1 sumoylation status was 

determined. T7-ICE1(WT) or T7-ICE1(S403A) was transiently expressed in Nicotiana 

benthamiana leaves (Voinnet et al., 2003) and immunoprecipitated with anti-T7 

antibody. Immunoblot analysis was then performed using anti-SUMO1 antibodies 

(Supplemental Fig. S3; Miura and Ohta, 2010). No significant difference was apparent, 

suggesting that sumoylation is not involved in regulation of ICE1 through S403. 
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Discussion 

S403A substitution in ICE1 enhanced GAL4-mediated transactivation in Arabidopsis 

protoplasts (Fig. 1C), and expression of cold-regulated genes, such as CBF3/DREB1A, 

COR47, and KIN1 in plants (Fig. 3), and cold tolerance (Fig. 2). Furthermore, the 

ICE1(S403A) protein level did not undergo cold-induced polyubiquitylation mediated 

by the ubiquitin E3 ligase HOS1 or proteasome degradation in vivo to the extent of 

ICE1(WT) (Figs. 6, 7), but ICE1(S403A) can be polyubiquitylated in vitro (Fig. 7B), 

suggesting that ICE1(S403A) facilitates protein stability in vivo even though S403 is not 

a major site of ubiquitin conjugation. Greater ICE1 stability caused by the S403A allele 

likely enhances expression of CBF3/DREB1A and its regulon genes such as COR47 and 

KIN1 (Fig. 5). 

 

Regulation of ICE1 transactivational activity 

Substitution of S403A in ICE1 enhanced the GAL4-mediated transactivation in 

Arabidopsis protoplasts (Fig. 1C), indicating the region around S403 has a role in the 

negative regulation of the transcriptional activity of ICE1. S403A substitution appears 

to repress this negative synergy. MYB15, a negative regulation of CBF expression, 

binds to the C terminus of ICE1 (amino acids 395 to 494) and it is possible that MYB15 

interaction can tranrepress ICE1 transcriptional activity (Agarwal et al., 2006). It is 

feasible that the transcriptional repression of CBF3/DREB1A expression by MYB15 is 

suppressed to some extent by S403A mutation. In this scenario, the S403A mutation 

may inhibit the association of MYB15 with ICE1, thereby allowing for the 

ICE1-activated transcription of CBF3/DREB1A in response to cold. 
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 The expression of CBF3/DREB1A was not expressed before cold treatment, as 

previously described (Chinnusamy et al., 2003; Miura et al., 2007), even though 

ICE1(WT) or ICE1(S403A) was overexpressed (Fig. 5). These results support the notion 

that low temperature is required for ICE1 transcriptional activation of CBF3/DREB1A 

in vivo, although the mechanism remains unelucidated.   

 

ICE1 stability caused by the S403 allele 

ICE1(S403A) was substantially more stable than ICE1(WT) to 

low-temperature-induced proteasomal degradation (Fig. 6). It is postulated that greater 

ICE1 abundance is responsible for the more pronounced and sustained induction of 

CBF3/DREB1A expression, which was most evident 12 h after cold treatment, a time 

when the CBF3/DREB1A transcript abundance had decreased substantially in vector 

control plants (Fig. 5). ICE1(S403A) protein abundance was increased after low 

temperature treatment, because cold causes the ubiquitylation of ICE1 protein by a 

RING finger ubiquitin E3 ligase HOS1 that leads to proteasomal degradation of the 

transcription factor (Dong et al., 2006). The expression of CBF3/DREB1A in the hos1 

mutant was enhanced and therefore the ICE1 level was higher after cold treatment (Lee 

et al., 2001), as in the ICE1(S403A)-overexpressing plants (Fig. 5). S403A substitution 

apparently attenuates HOS1-mediated ubiquitylation and proteasomal degradation that 

is induced by low temperature (Fig. 7A).  However, S403 is not principal 

ubiquitylation site for HOS1 but regulates the activity of the E3 ligase to ubiquitylate 

ICE1 (Fig. 7B). 

 

The T7-ICE1(WT) polypeptide was the same molecular weight as the 
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T7-ICE1(S403A) polypeptide (Fig. 6), and there was no additional band at a higher 

molecular weight, which may have corresponded to phosphorylated T7-ICE1, in either 

WT or S403A (Fig. 6). Furthermore, the substitution of S403 to aspartate (S403D) in 

ICE1 also increased the transactivational activity, as did the ICE1(S403A) substitution 

(Supplemental Fig. S1). These results suggest that S403 is not a major phosphorylation 

site.  

 

Hydroxyl-oxygen side chains in serine and threonine residues may be subjected to 

O-linked glycosylation. An increased number of proline residues is present near the 

O-glycosylated serine or threonine residues, in comparison with nonglycosylated 

serines or threonines (Christlet and Veluraja, 2001). Because serine 403 in ICE1 is also 

in close proximity to proline residues (Fig. 1A), it is plausible that O-glycosylation 

occurs via S403. Because the recombinant ICE1 protein, expressed in E.coli, would not 

have had any glycosylation, the substitution of S403 may not have affected 

ubiquitylation (Fig. 7B). However, ICE1(S403A) may have blocked glycosylation in 

vivo, resulting in a different poly-ubiquitylation pattern (Fig. 7A). Among several 

O-linked glycosylations, such as O-N-acetylgalactosamine and O-mannose, 

O-N-acetylglucosamine (O-GlcNAc) modification is an important posttranslational 

modification that modulates the function of many nuclear and cytoplasmic proteins, 

regulation of protein-protein interaction, competition with phosphorylation, 

nucleo-cytoplasmic shuttling, and modulation of transcription factor activity (Hu et al., 

2010; Özcan et al., 2010). Because increasing O-GlcNAc levels enhances ubiquitylation 

and the RNAi of O-GlcNAc transferase reduced ubiquitylation (Guinez et al., 2008), 

O-GlcNAC and ubiquitylation may be linked. It is possible that the glycosylation of 
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ICE1 at S403 regulates ubiquitylation and cold signaling.  

 

Neither ICE1(WT) nor ICE1(S403A) overexpression affect stomatal development 

ICE1/SCREAM has also been shown to be involved in stomatal differentiation (Kanaoka 

et al., 2008). This indicates that ICE1 links the transcriptional regulation of 

environmental adaptation and development in plants and that the mechanisms of 

transcriptional regulation by ICE1 might overlap between cold adaptation and stomatal 

development processes. However, there were no significant differences in either 

stomatal development or number among wild-type, ICE1(WT)-overexpressing and 

ICE1(S403A)-overexpressing plants (Fig. 4). The hypothesis is that ICE1 may act as an 

integrator of cold signaling and stomatal development. Normally, MYC-type 

transcription factors form dimers for transactivation. For example, mammalian 

Myc/Max/Mad can form dimers in multiple combinations through interactions mediated 

by their helix-loop-helix leucine zipper dimerization interfaces (Davis and Halazonetis, 

1993; Ferré-D’Amaré et al., 1993; Luscher and Larsson, 1999). However, different 

members of the Myc/Max/Mad family have distinct biological functions. As described 

(Kanaoka et al., 2008), ICE1/SCRM can interact with three closely related bHLH 

transcription factors, SPCH, MUTA, and FAMA, for stomatal development, the entry 

into the stomatal cell lineage, the transition from meristemoid to guard mother cells, and 

the terminal differentiation of guard cells (Ohashi-Ito and Bergmann, 2006; MacAlister 

et al., 2007; Pillitteri et al., 2007). It is assumed that ICE1/SCRM and other MYC-type 

proteins, as well as SPCH, MUTA, and FAMA, can form several combinations to 

control cold signaling or stomatal development. The stabilization of ICE1 conferred by 

the S403A substitution did not affect the stomatal development (Fig. 4), suggesting that 
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the cold-induced degradation of ICE1 mediated by HOS1 is specific to cold adaptation 

but not to stomatal development. 

 

The overexpression of ICE2 also conferred a freezing tolerance in Arabidopsis 

(Fursova et al., 2009). Expression of ICE2/SCRM2(R203H), which corresponds to the 

ice1 mutation (R236H), phenocopied the constitutive stomatal differentiation of 

ice1/scrm in the epidermis (Kanaoka et al., 2008). These results demonstrate that 

ICE2/SCRM2 is functionally related to ICE1 and that ICE2/SCRM2 may exert a similar 

mechanism of transcriptional regulation as ICE1. The amino acid sequence surrounding 

S403 in ICE1 is highly conserved in ICE2/SCRM2 (Supplemental Fig. S4). It is 

possible that S359 of ICE2, which is corresponds to S403 of ICE1, is likely to be 

involved in a similar mechanism as the S403 residue of ICE1. 

 

The overexpression of CBF/DREB1s improves the freezing tolerance of plants but 

results in severe growth retardation under normal conditions (Jaglo-Ottosen et al., 1998; 

Kasuga et al., 1999; Gilmour et al. 2004). ICE1(S403A)-overexpressing plants were also 

more tolerant to freezing temperatures, but they grew similar to WT plants under normal 

conditions, even though the expression of ICE1(S403A) was driven by a constitutive 

cassava vein mosaic virus promoter (Fig. 3). ICE1 homologs have also been identified 

in barley and wheat (Skinner et al., 2006; Tondelli et al., 2006; Badawi et al., 2008). The 

overexpression of ICE1(S403A) can provide a potent strategy for improving the freezing 

tolerance of crop plants, thereby increasing their productivities and potentially 

expanding their global distribution.  
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Experimental procedures 

Transient expression assay 

Arabidopsis protoplasts were prepared from two-week-old wild-type seedlings with the 

Cellulase Ononzuka R-10 and Macerozyme R-10 (Yakult Pharmaceutical, 

http://www.yakult.co.jp/ypi/en/index.html), as described (Tiwari et al., 2003; Yoo et al., 

2007). Plasmid DNA of a reporter GAL4-GUS (Tiwari et al., 2003) and an effector 

GAL4DB-ICE1(WT) or its variants was introduced into Arabidopsis protoplasts by 

polyethylene glycol-mediated transfection (Tiwari et al., 2003; Yoo et al., 2007). For 

each transfection, 5 μg of the reporter and 4 μg of the effector plasmid DNA were used. 

After transfection, the protoplasts were incubated at 23°C in dark for 48 h. One μg of 

the reference plasmid DNA, 35S-LUC, was used to normalize the efficiency of each 

transfection. GUS activity was measured as described (Yoo et al., 2007). A luciferase 

assay was performed with the Luciferase Reporter Assay system (Promega, 

http://www.promega.com) using a luminescence reader (Gene Light 55, Microtech 

Nichion, http://nition.com/en/). 

 

Plant freezing assay 

The whole plant freezing assay was performed essentially as described, with slight 

modifications (Miura et al., 2007a; Miura and Ohta, 2010). Wild-type (Col-0), vector 

control (#8), ICE1(WT)-overexpressing (#12), and ICE1(S403A)-overexpressing plants 

(in this study) were grown at 23°C for 3 weeks under constant illumination in soil. For 

cold acclimation, 3-week-old plants were incubated at 4°C for 7 d. Non-acclimated 

plants were incubated at 4°C for 30 min and then at 0°C for 1 h. Next, the temperature 

was successively decreased 1°C per hour until -4°C and held at -4°C for 4 hr in a 
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programmed incubator (IN602, Yamato, http://www.yamatokikai.com). Cold-acclimated 

plants were incubated at 0°C for 1 h, and the temperature was successively decreased 

2°C per hour until -8°C and held at -8°C for 4 hr in a programmed incubator.  To 

facilitate uniform nucleation, crushed ice was spread over the plants at 0°C.  After cold 

acclimation, the plants were kept overnight at 4°C and then transferred to 23°C.  The 

survival ratio was determined one week after the freezing treatment. 

 

RNA preparation and quantitative RT-PCR 

Vector control (#8), ICE1(WT)-overexpressing (#12) (Miura et al., 2007a), and 

ICE1(S403A)-overexpressing (#13) plants (in this study) were grown on half-MS agar 

plates at 23°C for 10 days under a long-day photoperiod (16 h light/8 h dark). The 

plants were then subjected to cold treatments at 4°C. Isolation of the total RNA, cDNA 

synthesis, and quantitative RT-PCR was performed as described (Miura et al., 2009). 

Primers used for the real-time PCR are listed in Supplemental Table S1.   

 

Construction of plasmids 

Mutations in the ICE1 coding regions were introduced by PCR-based methods using the 

PrimeSTAR DNA polymerase (Takara Bio, http://www.takara-bio.com) and pairs of 

primers (Supplemental Table S2).  The mutated ICE1 coding regions were amplified 

by the PrimeSTAR DNA polymerase with ICE1-GDF and ICE1-HAR primers and then 

digested with XmaI and XhoI.  The digested PCR products were introduced into the 

plant expression vector 35S-GAL4 DB digested with XmaI and SalI (Ohta et al., 2000) 

to produce 35S-GAL4-ICE1(mutant) fusion genes.  To construct 

pCsV-T7-ICE1(S403A), the ICE1(S403A) coding region was amplified by the 
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PrimeSTAR DNA polymerase (Takara Bio) with ICE1-expF and ICE1-EGR primers 

(Supplemental Table S2), and the PCR product was introduced into pCsV1300-T7 as 

described (Miura et al., 2007a; Verdaguer et al., 1996).  

The ICE1 or ICE1(S403A) coding region was amplified by the PrimeSTAR 

DNA polymerase with primers, ICE1-expF and ICE1-HAR, and then digested with 

BamHI and SalI.  The digested PCR product was cloned into an E.coli expression 

vector, pCold ProS2 (Takara Bio).  The resulting plasmids were named as pCold-ICE1 

and pCold-ICE1(S403A).  Each plasmid was transformed into E.coli Origami 2(DE3) 

pLysS cells (Novagen, http://www.emdchemicals.com/life-science-research).   

 

Plant transformation 

pCsV-ICE1(S403A) was transformed into wild-type Arabidopsis plants (Col-0 

background) by Agrobacterium-mediated transformation (Miura et al., 2007a; Miura et 

al., 2009).  Hygromycin-resistant plants were selected, and semi-quantitative RT-PCR 

was carried out with the primers ICE1S403AF and NOS-transR (Supplemental Table 

S2) to check the expression levels of the transgenes (Supplemental Fig. S2). 

 

Agroinfiltration procedure 

Agroinfiltration assay was performed as described (Voinnet et al., 2003). Briefly, 

Agrobacterium tumefaciens strain GV3101 containing pCsV-T7-ICE1(WT), 

pCsV-T7-ICE1(S403A), or p19 (Voinnet et al., 2003) was grown at 28°C in L-broth 

supplemented with 10 mM MES, 20 μM acetosyringone, 50 μg ml-1 kanamycin, 30 μg 

ml-1 gentamycin, and 30 μg ml-1 rifampicin to stationary phase. Bacteria were 

sedimented by centrifugation at 5,000 g for 15 min at room temperature, suspended in 
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10 mM MgCl2, 10mM MES and 100 μM acetosyringone, and left for more than 3 h.  

Equal volume of bacteria containing pCsV-T7-ICE1(WT) or pCsV-T7-ICE1(S403A) 

and p19 was mixed. The mixture was infiltrated into the abaxial sides of 3-4-week-old 

Nicotiana benthamiana leaves. After 3-4 days incubation, plants were ground in 

extraction buffer as described (Murtas et al., 2003). 

 

Western blot analysis and Immunoprecipitation 

Ten day-old seedlings of ICE1(WT)-overexpressing (#12) and 

ICE1(S403A)-overexpressing (#13) plants were ground in extraction buffer, as described 

(Murtas et al., 2003). Total protein (20-40 μg) was separated by SDS-PAGE, and 

western blot analysis was performed as described (Miura et al., 2005; Miura et al., 

2009). 

  To detect ubiquitylated ICE1, ten-day-old ICE1(WT)-overexpressing (#12) and 

ICE1(S403A)-overexpressing (#13) plants were pretreated with 50 μM proteasome 

inhibitor (MG132) for 24 h and then treated at 4°C for 15 h. Total protein extract (10 mg 

protein) was immunoprecipitated with T7 antibodies coupled to agarose beads 

(Novagen) for 4 h at 4°C, and the beads were recovered by centrifugation, washed 5 

times with the extraction buffer, and eluted according to the manufacturer’s instructions. 

The eluted samples were separated by SDS-PAGE and immunoblot analysis with 

monoclonal antibody against ubiquitin (P4D1, Santa Cruz Biotechnology Inc, 

http://www.scbt.com) was performed. 

 

Ubiquitylation assay 

The ICE1 or ICE1(S403A) coding region was cloned into pCold ProS2 (Takara Bio).  
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When the E.coli cells grew to mid-log phase, IPTG was added to the medium at a final 

concentration of 0.4 μM. The culture was incubated at 15°C for 24 h. The bacterial cell 

walls were disrupted by the BugBuster Protein Extraction Reagent with rLysozyme and 

Benzonase Nuclease (Novagen). The recombinant proteins, His-ProS2-ICE1(WT) and 

His-ProS2-ICE1(S403A), were purified with the HIS-Select Nickel Affinity Gel (Sigma, 

http://www.sigmaaldrich.com), according to the manufacturer’s instructions.  

MBP-HOS1 (Dong et al., 2006) was purified using amylase resin (New England 

Biolabs, http://www.neb.com), as instructed. The ubiquitylation assay was performed 

using the Ubiquitylation Kit (Enzo Life Sciences, http://www.enzolifesciences.com) 

with UbcH5b for E2, according to the instructions.   

 

Microscopic observation 

The coding region of ICE1(S403A) was excised from the pCsV-ICE1(S403A) plasmid 

DNA by digestion with BamHI.  The resulting DNA fragment was introduced into the 

BamHI site of the binary vector pEGAD to generate GFP-ICE1(S403A).  The direction 

of the insert was confirmed by sequencing, and the plasmid DNA with a sense insert 

orientation was used for further experiments.  This GFP-ICE1(S403A) plasmid was 

introduced into Agrobacterium strain GV3101 and transformed into wild-type 

Arabidopsis plants (Col-0).  T2 transgenic lines resistant to Basta (glufosinate) were 

chosen for the analysis of GFP expression.  Fluorescence of the GFP-ICE fusion 

proteins was observed with a confocal laser-scanning microscope (TCS SP2, Leica, 

http://www.leica.com). 
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Short legends for Supporting Information 

Supplemental Table S1. Primers used for mutagenesis and construction. 

Supplemental Table 2. Primers used for real-time PCR and RT-PCR analyses. 

Supplemental Fig. S1. Identification of serine/threonine residues affecting the 

transactivation activity of ICE1. 

Supplemental Fig. S2. ICE1(WT) or ICE1(S403A) expression in transgenic plants. 

Supplemental Fig. S3. The sumoylation status of ICE1 was not altered by substitution 

of the serine 403 to alanine. 

Supplemental Fig. S4. Sequence alignment of the flanking regions of K393 and S403 

in ICE1 and the corresponding region in ICE2. 
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Figure legends 

Fig. 1. Substitution of serine 403 to alanine enhances the transactivation activity of 

ICE1.  (A) Amino acid sequence near the sumoylation site, K393. Serine or threonine 

residues substituted to alanine are underlined, and lysine 393 is boxed. (B) Schematic 

diagram of the reporter and effector plasmids used in the transient expression assay. 

Wild-type and mutated ICE1 open-reading frames were inserted into the effector 

plasmid fused with GAL4 DB, the DNA-binding domain of the yeast transcription 

factor, GAL4. GUS encodes β-glucuronidase, which is used as a reporter. NOS is the 

termination signal of the nopaline synthase gene. Ω is the translational enhancer of the 

tobacco mosaic virus. (C) Relative GUS activities after transfection with the reporter, 

GAL4-GUS, and the effector plasmid, 35S-GAL4-ICE1 or 35S-GAL4-ICE1(S403A). 

Firefly luciferase activity (35S-LUC) was used for normalization; GUS activity is 

expressed in arbitrary units relative to the activities of firefly luciferase. The values are 

averages of three independent experiments, and error bars indicate standard deviations 

(SD).  

 

Fig. 2.  ICE1(S403A) overexpression improved the freezing tolerance of 

non-acclimated and cold-acclimated plants. (A) Non-acclimated plants and (B) 

cold-acclimated plants were treated at -4°C and -8°C, respectively. Photographs are of 

representative wild-type (a), vector control (b), ICE1-overexpressing [line #12 (c)], and 

ICE1(S403A)-overexpressing plants [line #5 (d), #12 (e), and #13 (f)]. (C) 

Quantification of the survival rates for non-acclimated plants after a freezing treatment 

at -4°C and (D) for cold-acclimated plants after a freezing treatment at -8°C.  Data 

shown are mean values with standard error (n = 4). The tolerance of the 
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ICE1(S403A)-overexpressing plants was significantly different from the wild-type and 

vector control plants (T test, P < 0.01) and from the ICE1-overexpressing plants (T test, 

P < 0.05). (E) Electrolyte leakage at -3°C.  The electrolyte leakage of the 

ICE1(S403A)-overexpressing plants was significantly lower than that of the vector 

control and ICE1-overexpressing plants (T test, P < 0.05). 

 

Fig. 3.  Growth resulting from the overexpression of ICE1(WT) and ICE1(S403A). 

Photographs are representative of vector control, ICE1(WT), and ICE1(S403A) 

transgenic plants grown for 4 weeks (A) or 8 weeks (B). Fresh weight of 4-week-old 

plants and leaf area of the fifth rosette leaf of 8-week-old plants were measured. (H) A 

representative photograph of a heterologous ice1-2/+ scrm-2 and ice1-2/- scrm-2 double 

mutant and an ice1-2/- scrm-2 double mutant harboring ICE1(WT) and ICE1(S403A). 

Bars = 1 cm (A), or 5 cm (B). 

 

Fig. 4.  Stomatal development of ICE1(WT) and ICE1(S403A)-overexpressing plants.  

A. Abaxial leaf epidermis of WT (a), ICE1(WT) (b) and ICE1(S403A) 

(c)-overexpressing plants. Bar indicates 20-μm length. B. Mean number of stomata on 

the abaxial leaf epidermis. Mean ± SE (n = 16). 

 

Fig. 5.  Induction of cold regulated genes is enhanced by the overexpression of 

ICE1(S403A).  

Relative mRNA transcript levels of transgenic ICE1, endogenous ICE1, CBF3/DREB1A, 

COR47, and KIN1 in vector control (#8), ICE1-overexpressing (#12) and 

ICE1(S403A)-overexpressing (#13) seedlings were determined by quantitative RT-PCR 
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analyses. Ten-day-old seedlings grown at 23°C were incubated at 4°C for the indicated 

time. Data are means with SD (n = 3) from a representative experiment of three 

independent experiments. 

 

Fig. 6. The S403A substitution stabilizes ICE1 against cold-induced degradation. 

(A) Detection of the T7-ICE1 protein by western blot analysis. Fourteen-day-old 

ICE1(WT)- and ICE1(S403A)-overexpressing plants were examined before (0 h) or after 

(24 h) treatment at 4°C for 24 h. The T7-ICE1 protein was detected with anti-T7 

antiserum. Histone H3 was detected as a loading control. (B) Visualization of 

GFP-ICE1 fusion proteins. Ten-day-old seedlings of GFP-ICE1(WT) and 

GFP-ICE1(S403A) transgenic plants grown on agar plates were treated (4°C for 24 h) or 

not treated (23°C) with cold stress. Roots of the seedlings were observed immediately 

after cold stress under a confocal microscope.  Scale bars = 150 μm. 

 

Fig. 7.  The S403A substitution inhibits the polyubiquitylation of ICE1 in vivo. 

(A) Polyubiquitylation status in vivo. Ten-day-old ICE1(WT)- and 

ICE1(S403A)-overexpressing plants were treated with the proteasome inhibitor MG132 

(50 μM) for 24 h and then subjected to cold treatment at 4°C for 15 h. Total protein 

extract (10 mg protein) was immunoprecipitated with T7 antibodies coupled to agarose 

beads and analyzed by immunoblotting with antibody against ubiquitin (upper panel). 

The lower panel indicates the immunoblot analysis of the input total protein extract with 

T7 antibody as a loading control. (B) In vitro ubiquitylation assay. 

His-ProS2-ICE1(WT), His-ProS2-ICE1(S403A), and MBP-HOS1 recombinant proteins 

were prepared.  Without HOS1, the ubiquitylation of ICE1 was not detected even 
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though ubiquitin, E1, and E2 proteins were added.  Addition of HOS1 enhanced the 

ubiquitylation of both ICE1(WT) and ICE1(S403A). The blot was incubated with 

anti-ProS2 antibody to detect His-ProS2-ICE1(WT) or His-ProS2-ICE1(S403A). The 

arrowhead indicates polyubiquitylated ICE1(WT) and ICE1(S403A). 
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Supplementary Table S1.  Primers used for mutagenesis and construction. 

 

Name of primer DNA sequence (5'-to-3') 

for mutagenesis of ICE1 

ICE1S403AF CCCTCTTCTTTACCAGCTCCTAAAGGCC 

ICE1S403AR GGCCTTTAGGAGCTGGTAAAGAAGAGGG 

ICE1S403DF CCCTCTTCTTTACCAGATCCTAAAGGCC 

ICE1S403DR GGCCTTTAGGATCTGGTAAAGAAGAGGG 

ICE1SSSAAAF GTCCCGCTGCTTTACCAGCTCCTAAAGG 

ICE1SSSAAAR CCTTTAGGAGCTGGTAAAGCAGCGGGAC 

ICE1S389AF CCGCAAACTCTTGCTTGTCGTGTCAAGG 

ICE1S389AR CCTTGACACGACAAGCAAGAGTTTGCGG 

ICE1T387AF CCTACACCGCAAGCTCTTTCTTGTCGTG 

ICE1T387AR CACGACAAGAAAGAGCTTGCGGTGTAGG 

ICE1SS399AAF AAGAGTTGTGTCCCGCTGCTTTACCAAG 

ICE1SS399AAR CTTGGTAAAGCAGCGGGACACAACTCTT 

  

for construction of pGD-ICE1 

ICE1-GDF CACGCCCGGGGATGGGTCTTGACGGAAACAA

ICE1-HAR CCGCTCGAGTCAGATCATACCAGCATACCC 

  

for construction of pCsV-ICE1 

ICE1-expF CGGGATCCATGGGTCTTGACGGAAACAA 

ICE1-EGR CGGGATCCTCAGATCATACCAGCATACCC 

  



Supplementary Table S2.  Primers used for Real-time PCR and RT-PCR analyses. 

 

Name of primer DNA sequence (5'-to-3') 

DREB1A/CBF3 5’-GATGACGACGTATCGTTATGGA-3’ 

 5’-TACACTCGTTTCTCAGTTTTACAAAC-3’ 

COR47 5’-CAGTGTCGGAGAGTGTGGTG-3’ 

 5’-ACAGCTGGTGAATCCTCTGC-3’ 

KIN1 5’-TGGAGCTGGAGCACAACA-3’ 

 5’-GACCCGAATCGCTACTTGTTC-3’ 

ACTIN2 5'-TAACAGGGAGAAGATGACTCAGATCA-3'

 5'-AAGATCAAGACGAAGGATAGCATGAG-3'

  

To detect expression of ICE1 transgene 

ICE1S403AF CCCTCTTCTTTACCAGCTCCTAAAGGCC 

NOS-transR GCCAAATGTTTGAACGATCGGGAA 

  

 

 


