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We study the equation of state in 2þ 1 flavor QCD with nonperturbatively improved Wilson quarks

coupled with the renormalization group-improved Iwasaki glue. We apply the T-integration method to

nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale

approach, we can purely vary the temperature on a line of constant physics without changing the system

size and renormalization constants. Unlike the conventional fixed-Nt approach, it is easy to keep scaling

violations small at low temperature in the fixed-scale approach. We study 2þ 1 flavor QCD at light quark

mass corresponding to m�=m� ’ 0:63, while the strange quark mass is chosen around the physical point.

Although the light quark masses are still heavier than the physical values, our equation of state is roughly

consistent with recent results with highly improved staggered quarks at large Nt.
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I. INTRODUCTION

The QCD equation of state (EOS) at high temperature
plays a key role in understanding the nature of quark gluon
plasma (QGP), e.g. as inputs of the hydrodynamical
description of QGP space-time evolution in heavy-ion
collision experiments [1]. Lattice QCD simulations pro-
vide us with the only systematic way to calculate the EOS
nonperturbatively without resorting to phenomenological
assumptions.

For a quantitatively reliable evaluation of EOS in QCD,
it is indispensable to incorporate dynamical up, down, and
strange quarks. However, dynamical quarks require a large
computational effort on the lattice. Most calculations of
EOS have been made in the fixed-Nt approach, in which
the temperature T ¼ ðNtaÞ�1 is varied on a lattice with
fixed temporal size Nt by varying the lattice spacing a

through a variation of coupling parameters on a line of
constant physics (LCP). Here, we note that a sizable
fraction of the total computational cost is required to
systematically carry out zero-temperature simulations to
determine the location of the LCP, to get basic information
such as the scale and beta functions on the LCP, and to
renormalize finite-temperature observables such as the
EOS at each simulation point. In QCD with dynamical
quarks, such systematic simulations are quite demanding.
We adopt the fixed-scale approach, in which we vary T

by varying Nt at a fixed a [2]. In this approach, because all
the simulations are done with the same values of the
coupling parameters, they are automatically on the same
LCP. Furthermore, we need zero-temperature simulation at
only one point to renormalize the observables at all T’s.
Thus, the cost for the zero-temperature simulations can be
largely reduced. To take or to confirm the continuum limit,
we may repeat the calculations at several values of a. As
the zero-temperature configurations, we may even borrow
high statistic configurations on fine lattices, which were
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generated for spectrum studies at T ¼ 0 and are open to the
public on the International Lattice Data Grid (ILDG) [3].

The fixed-scale approach is complementary to the con-
ventional fixed-Nt approach in several respects: In the very
high T region where T * Oða�1Þ, the fixed-scale approach
suffers from lattice artifacts due to the coarseness of the
lattice in comparison with the typical extent T�1 of thermal
fluctuations, while in the fixed-Nt approach one can keep
T�1=a ¼ Nt finite even in the high temperature limit. In
the fixed-scale approach, the spatial volume of the system
is kept fixed at all T’s with the same spatial lattice size Ns,
while in the fixed-Nt approach theNs has to be increased to
quite large values at high T’s to keep the spatial volume.
Large spatial volume is important at light quark masses to
suppress volume effects in the hadron spectrum and thus in
the determination of the scale and LCP. At small T’s,
typically at T & Tpc, where Tpc is the pseudocritical tem-

perature, the fixed-scale approach keeps a small a, while
the fixed-Nt approach suffers from lattice artifacts due to
large a. It should be kept in mind here that the fixed-scale
approach requires high statistics in the low T region, where
we have a severe cancellation in the observables due to the
zero-temperature subtraction procedure at large Nt.
Nevertheless, we think it is worth taking advantage of
smaller overall simulation costs with the fixed-scale ap-
proach to calculate the EOS in 2þ 1 flavor QCD with
small discretization errors around Tpc.

Another point of our study is the choice of the quark
action on the lattice. Most lattice studies of hot/dense
QCD have been done with computationally less expensive
staggered-type lattice quarks [4,5]. However, their theo-
retical basis such as locality and universality are not well
established. Therefore, to check the validity of these results
it is important to compare the results with those obtained
using theoretically sound lattice quarks, such as the
Wilson-type quarks. See [6–9] for recent studies of QCD
thermodynamics with Wilson-type quarks. A systematic
study of the EOS with Wilson-type quarks has been done
so far only in the case of two-flavor QCD [10,11]. We
extend the study to the more realistic case of 2þ 1 flavor
QCD, using a nonperturbatively improved Wilson quark
action coupled to a renormalization group (RG)-improved
Iwasaki gauge action.

Thanks to the fixed-scale approach, we can take advan-
tage of using the zero-temperature configurations on the
ILDG. Using the same combination of lattice actions as
ours, the CP-PACSþ JLQCD Collaboration has generated
a set of zero-temperature configurations in 2þ 1 flavor
QCD and has studied their hadronic spectrum [12,13].
Another attractive point of the fixed-scale approach in a
study with improved Wilson quarks is that, unlike the case
of the fixed-Nt approach, we can keep the lattice spacing
small at all temperatures and thus can avoid extrapolating
the nonperturbative clover coefficient cSW to coarse lattices
on which the improvement program is not quite justified.

Choosing a simulation point of the CP-PACSþ JLQCD
Collaboration, we carry out finite-temperature simulations
to perform the first calculation of the EOS in 2þ 1 flavor
QCD with improved Wilson quarks. Although the light
quark masses studied are still heavier than their physical
values, we find that the EOS obtained is roughly consistent
with recent results using highly improved staggered quarks
in the fixed-Nt approach at large values of Nt.
In the next section, we introduce the T-integration

method which enables us to calculate the EOS nonpertur-
batively in the fixed-scale approach. The lattice setup and
the simulation parameters are summarized in Sec. III.
Results of gauge observables are presented in Sec. IV. In
Sec. V the beta functions are evaluated. Our results on
the EOS are shown in Sec. VI, and a summary is given
in Sec. VII. The Appendix is devoted to a discussion
about the choice of the interpolation procedure for the
T-integration method. Preliminary results of this study
have been reported in [14,15].

II. T-INTEGRATION METHOD

In conventional studies of EOS in the fixed-Nt approach,
the pressure p is nonperturbatively estimated by the
‘‘integration method’’ [16]:

p ¼ T

V
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where V is the spatial volume of the system, Z is the
partition function, S is the lattice action with the coupling

parameters ~b ¼ ð�; �ud; �s; � � �Þ, and h� � �isub is the ther-
mal average with a zero-temperature contribution sub-
tracted for renormalization. This relation is obtained by
differentiating and then integrating the thermodynamic
relation p ¼ ðT=VÞ lnZ in the coupling parameter space

of ~b. The initial point ~b0 is chosen in the low temperature

phase such that pð ~b0Þ � 0.
This method is inapplicable in the fixed-scale approach

because ~b is fixed in the simulations. To overcome the
problem, we have developed the ‘‘T-integration method’’
[2]: Using a thermodynamic relation at vanishing chemical
potential,

T
@
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; (2)

where � is the energy density, we obtain another nonper-
turbative estimate of the pressure,

p

T4 ¼
Z T

T0

dT
�� 3p

T5
; (3)

with the initial temperature T0 chosen such that pðT0Þ � 0.
Here, the trace anomaly �� 3p is calculated as
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where aðd ~b=daÞ is a vector of the beta functions which

describes the variation of ~b along the LCP.

When we vary T along a LCP by varying ~b, the integral in
(3) is equivalent to that in (1), with the integration path chosen
to be on the same LCP. However, (3) allows us to vary T

without varying ~b. In the fixed-scale approach, we vary T by
varyingNt. BecauseNt is discrete, we have to interpolate the
data with respect to T to carry out the integration of (3). The
systematic error from the interpolation should be checked.

In [2], the T-integration method was tested in quenched
QCD and it was shown that the systematic error from the
discreteness of T is under control when a is chosen suffi-
ciently small, as adopted in spectrum studies. The EOS
from the fixed-scale approach was shown to be well con-
sistent with that from the fixed-Nt approach with large Nt

(Nt � 8), except for the high temperature limit where the
fixed-scale approach suffers from lattice discretization
errors, as discussed in Sec. I.

III. LATTICE SETUP

We adopt a nonperturbatively OðaÞ-improved Wilson
quark action [17] coupled with the RG-improved Iwasaki
gauge action [18] to simulate 2þ 1 flavor QCD:

Sg ¼ ��
X
x

(X
�>�

c0W
1�1
�� ðxÞ þX

�;�

c1W
1�2
�� ðxÞ

�
; (5)
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xyq
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Df
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X
�
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�Uy
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X
�>�


��F�� (7)

with �u ¼ �d � �ud. The clover coefficient cSWð�Þ
has been evaluated nonperturbatively by the Schrödinger
functional method in [12]. Hadronic properties have been

systematically studied with this action by the CP-PACS,
JLQCD, and PACS-CS Collaborations, down to the physi-
cal point [13,19–22].
In this study, we use the zero-temperature configurations

by the CP-PACS and JLQCD Collaborations [13], which
are open to the public at ILDG/JLDG [3]. The CP-PACSþ
JLQCD zero-temperature configurations are available at
three �’s, five �ud’s, and two �s’s, i.e. at a total of 30
simulation points. Among them, we choose � ¼ 2:05,
�ud ¼ 0:1356, and �s ¼ 0:1351, which correspond to the
smallest lattice spacing and the lightest u and d quark
masses (m�=m� ’ 0:63) with ms near its physical point

(m�ss
=m� ’ 0:74). The hadronic radius is estimated to

be r0=a ¼ 7:06ð3Þ [23]. Setting the lattice scale by
r0 ¼ 0:5 fm, we estimate the scale as 1=a ’ 2:79 GeV
(a ’ 0:07 fm). The lattice size is 283 � 56 (Nsa ’ 2 fm),
and the number of thermalized configurations are 650
(6500 trajectories), which are stored every 10 trajectories.
Note that the u and d quark masses are still much larger
than their physical values. We are planning to extend the
study down to the physical point [22].
Adopting the same coupling parameters as the

zero-temperature simulation [13], we generate finite-
temperature configurations on 323 � Nt lattices with Nt ¼
4, 6, . . ., 16. Our generation code is based on the Colombia
Physics System (CPS) code [24] with the RHMC algorithm
for the s quark. We tuned the acceptance rate at the
Metropolis test to be about 80%. The simulation parame-
ters are summarized in Table I.
Using the relation between T and Nt, our range of Nt

corresponds to the range T ¼ 174–697 MeV at � ¼ 2:05,
as shown in Fig. 1. Previous studies of the pseudocritical
temperature Tpc in two-flavor QCD with improved Wilson

quarks at Nt � 6 [6,25] suggest Tpc around 200 MeV for

m�=m� ’ 0:63 in two-flavor QCD. Taking into account the

effect of the dynamical s quark and also our larger values
of Nt � 14 around the pseudocritical point, we expect a
smaller value for Tpc. In the succeeding sections, we show

TABLE I. Simulation parameters and gauge observables. The zero-temperature results (Nt ¼ 58) are taken from [13] by the
CP-PACSþ JLQCD Collaboration. Temperature T is determined using 1=a ¼ 2:79 GeV (a ’ 0:07 fm) [13]. The Metropolis test is
performed every 0.5 trajectories for finite-temperature simulations. � is the molecular dynamics time step, and ‘‘Bin size’’ is the bin
size for gauge observables, both in units of trajectories. ‘‘Trajectory’’ is the generated trajectory length after thermalization of
‘‘Thermalization’’ trajectories. ‘‘Plaquette’’ and ‘‘Rectangular’’ are plaquette and rectangular loop expectation values. hLi and �L are
the bare Polyakov loop and its susceptibility, respectively.

Nt T½MeV� � Trajectory Thermalization Bin size Plaquette Rectangular hLi �L

58 � � � � � � 6500 � � � � � � 0.604 026 0(40) 0.377 080 0(50) � � � � � �
16 174 1=140 7895 1000 500 0.604 033 7(50) 0.377 087 0(86) 0.000 213(21) 0.0018(20)

14 199 1=120 6370 1000 500 0.604 104 0(100) 0.377 200 3(168) 0.001 172(67) 0.0075(34)

12 232 1=120 6460 1000 300 0.604 178 9(53) 0.377 314 5(80) 0.004 911(60) 0.0141(25)

10 279 1=90 3935 500 200 0.604 262 9(50) 0.377 446 0(86) 0.014 70(11) 0.0528(58)

8 348 1=60 2770 500 100 0.604 343 0(87) 0.377 580 3(141) 0.040 72(12) 0.115(13)

6 464 1=52 2785 500 50 0.604 590 2(93) 0.378 018 2(150) 0.109 81(11) 0.190(15)

4 697 1=44 3510 500 50 0.606 112 2(93) 0.380 962 0(144) 0.291 854(74) 0.2168(92)
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that our data suggest Tpc � 190 MeV at our simulation

point, as shown in Fig. 1 by the vertical shaded line.
The fixed-scale approach is not applicable at very high

temperatures, where the lattice spacing a becomes too
coarse to resolve thermal fluctuations [2]. We may estimate
a typical length scale of thermal fluctuations by the thermal
wavelength �� 1=E, where E is an average energy of
massless particles at finite T. We then obtain �� 1=ð3TÞ
from E� 3T�ð4Þ=�ð3Þ � 2:7T for the Bose-Einstein dis-
tribution and E� 3T�ð4Þ=�ð3Þ � 7=6� 3:15T for the
Fermi-Dirac distribution. Thus, data at T * 1=ð3aÞ should
be taken with care [26]. On the present lattice, the data at
T ’ 700 MeV may suffer from some lattice artifacts.

IV. GAUGE OBSERVABLES

The expectation values of gauge observables are mea-
sured every 0.5 trajectories. The results of basic observ-
ables are summarized in Table I. The time history of the
Polyakov loop defined by

L ¼ 1

V

X
~x

1

3
Tr

YNt

¼1

Uð; ~xÞ;4 (8)

is shown in Fig. 2. The gauge configurations are stored
every five trajectories, on which quark observables are
measured. By examining the bin-size dependence of the
errors, we estimate the statistical errors for gauge observ-
ables by the jackknife method with the bin size listed in
Table I, while those for quark observables are estimated
with the bin size of 25 trajectories after thermalization of
1000 trajectories. Static quark potentials measured on the
same configurations are studied in [23,26]. In the

following, we disregard the statistical error in T from
that of the lattice scale a, which is about 0.5%. Note that,
because the scale is common for all T’s in the fixed-scale
approach, a shift in the scale a just causes an overall shift
of T.
The left panel of Fig. 3 shows the results of the Polyakov

loop expectation value hLi and its susceptibility �L ¼
N3

s ðhL2i � hLi2Þ as functions of T. We find that hLi starts
deviating from zero at T � 180–200 MeV, suggesting the
pseudocritical point around there.
For a comparison with the results of previous studies in

the fixed-Nt approach, we have to renormalize hLi.
Although the additive renormalization constant for free
energies is independent of T and thus is common for all
T’s in the fixed-scale approach, the Polyakov loop

hLi � e�F=T does receive a T-dependent renormalization.
To enable a direct comparison with the results of
staggered-type quarks, we adopt the renormalization
scheme proposed in [27]; i.e. we renormalize L such that
the singlet free energy from Lren ¼ ðZrenÞNtL becomes the
Lüscher’s universal bosonic-string potential ��=ð12rÞ þ

r at r ¼ 1:5r0 [28], where 
 is the string tension at
T ¼ 0. Using our potential data at T ¼ 0 [23], we obtain
Zren ¼ 1:4801ð90Þ. Our results for hLreni and the corre-
sponding susceptibility �Lren

are plotted in the right panel

of Fig. 3. We note that the dependences on T in these
quantities are largely influenced by the renormalization
factor. In spite of the heavier light quark mass in our study,
our results for hLreni agree well with a result from the p4
staggered quark action in the fixed-Nt approach at Nt ¼ 8
[29] (see the right panel of Fig. 3). Similar agreement of
hLreni between a smeared Wilson-type quark action and a
smeared staggered-type quark action is reported in [9].
In Fig. 3, we also show the results of Polyakov loop

susceptibilities. In the left panel of Fig. 3, besides a faint
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FIG. 1 (color online). Temperature vs lattice spacing at each
Nt. The horizontal dashed line at a ’ 0:07 fm represents the
lattice spacing in this study. The vertical shaded line represents
the approximate location of the pseudocritical temperature at our
quark masses.
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FIG. 2 (color online). Time history of the Polyakov loop
measured on finite-temperature lattices. The horizontal axis is
the trajectory length.
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bump at T � 200 MeV, we do not see a clear signal of a
peak in �L at the two discrete simulation points in the
range 180–200 MeV where Tpc is expected. In the right

panel of Fig. 3, the existence of a peak of �Lren
around these

temperatures is not excluded, but it is due to the large errors
there. The origin of the large errors will be discussed in
Secs. VI and VII. This is in contrast with the case of our
previous study in quenched QCD adopting the fixed-scale
approach [30], in which we observe a clear peak of �L, and
also with the cases of full QCD studies adopting the
fixed-Nt approach with staggered-type (see e.g. [31]) and
Wilson-type [6,25] quarks. As a possible cause of the
absence of a clear peak in this study, we note that the
resolution in T is lower than that in our previous quenched
study. We may have missed the peak between the simula-
tion points. We also note the following: (i) We probably
have a crossover in full QCD around the simulated quark
masses instead of the first-order deconfining transition in
quenched QCD. (ii) Our previous experience with im-
proved Wilson quarks suggests that the peak becomes
milder with increasing Nt. Our Nt � 14 around the cross-
over point is larger than those adopted in previous studies
with the fixed-Nt approach. (iii) The aspect ratio Ns=Nt is
not large at low temperatures in this study. All of these will
make the peak milder and thus more difficult to detect
when the resolution in T is not fine enough.

V. BETA FUNCTIONS

To evaluate the trace anomaly according to (4), we need
the beta functions aðd�=daÞ and aðd�f=daÞ (f ¼ ud and

s). In this study, we define LCP’s by m�=m� and m�ss
=m�

at T ¼ 0. The beta functions are determined

nonperturbatively through the coupling parameter depen-
dence of zero-temperature observables. We use the data of
am�, m�=m�, and m�ss

=m� at 30 simulation points of the

CP-PACSþ JLQCD zero-temperature configurations [13]
to extract the beta functions. From a previous experience of
two-flavor QCD with improved Wilson quarks in the
fixed-Nt approach [11], we expect that, although
aðd�f=daÞ’s are much smaller than aðd�=daÞ, in the trace

anomaly, the overall magnitude of the quark contribution
proportional to aðd�f=daÞ is comparable with that of the

gauge part proportional toaðd�=daÞ, but with opposite sign.
Therefore, evaluation of the quark contribution is important.
In our previous attempt [14], we have tried to evaluate

the beta functions by the inverse matrix method, which was
successful in the case of two-flavor QCD [11]. In 2þ 1
flavor QCD, we fitted the data of am�, m�=m�, and

m�ss
=m� as functions of three coupling parameters (�,

�ud, �s), and inverted the matrix of the slopes of the former
in terms of the latter to obtain the beta functions. However,
it turned out that errors in aðd�f=daÞ are too large to

calculate the quark part EOS reliably, although the magni-
tude of the beta functions and the result for the gauge part
of the trace anomaly are consistent with an expectation
from the two-flavor case [14]. The situation is also similar
when we use the data of pseudoscalar decay constants
instead of m�. We find that the large errors in aðd�f=daÞ
are mainly due to the matrix inversion procedure, through
which all components of the inverse matrix get errors of
similar magnitude. Because aðd�f=daÞ are much smaller

than aðd�=daÞ, we need more precise values of the slopes
to suppress the errors in aðd�f=daÞ. In the present case of

2þ 1 flavor QCD, the data points of zero-temperature
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FIG. 3 (color online). Polyakov loop expectation value and its susceptibility as functions of T. The left panel shows the bare results;
the right panel shows renormalized results using the renormalization scheme of [27]. �L is multiplied by 2 and �Lren

is multiplied by

0.004 to fit into the same scale. Also shown in the right panel are the results of hLreni from the p4 staggered quark action obtained at
mbare

ud =mbare
s ¼ 0:05 in the fixed Nt approach at Nt ¼ 8 [29], where the horizontal axis is rescaled using r0 ¼ 0:5 fm.
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configurations around the simulation point are not dense
enough to achieve the required precision of the slopes.

To avoid the matrix inversion procedure, we now
adopt an alternative method, the direct fit method [11]:
We fit the coupling parameters, �, �ud, and �s, as a

function of three observables, am�, m�=m�, and

m�ss
=m�. Consulting the overall quality of the fits, we

adopt the following third order polynomial function of
the observables in this study:

�

�ud

�s

0
BB@

1
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�
m�ss
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�
þ ~c19ðam�Þ

�
m�

m�

��
m�ss

m�

�
: (9)

Note that the fits for the three coupling parameters are
independent of each other. Figures 4 and 5 show the results
of the global fit (9) as functions ofm�a. The fits with dof ¼
10 lead to reasonable �2=dof ( ¼ 1:63, 1.08, and 1.69 for
the fit of �, �ud, and �s, respectively), where the standard
deviation of each coupling parameter is estimated by the
error propagation rule using the errors of the observables
and the partial derivatives of the resulting fitting function,
Eq. (9), with respect to the observables, neglecting the
covariance among the observables.

We define the LCP by fixing m�=m� and m�ss
=m�.

Then, the beta functions are calculated as ad�=da ¼
ðam�Þ@�=@ðam�Þ, etc., in terms of the coefficients ~c1,

~c2, ~c5, ~c8, ~c10, etc. in (9). The resulting beta functions for
our LCP (m�=m� ¼ 0:6337, m�ss

=m� ¼ 0:7377) are

shown in Fig. 6 as functions of �. Beta functions at other
light quark masses are shown in Fig. 7. As the variable to
set the scale, we may alternatively adopt am�, amK, or
amK	 instead of am� in (9). Results of the beta functions, at

our simulation point (� ¼ 2:05 on our LCP), adopting
various scale setting variables are listed in Table II.
Taking the results from am� as the central value, we obtain

a
d�

da
¼ �0:279ð24Þðþ40

�64Þ;

a
d�ud

da
¼ 0:001 23ð41Þðþ56

�68Þ;

a
d�s

da
¼ 0:000 46ð26Þðþ42

�44Þ

(10)

at our simulation point, where the first brackets are for
statistical errors, and the second brackets are for systematic
errors estimated by the variation of the scale setting.

VI. EQUATION OF STATE

With our lattice action (5) and (6), the trace anomaly
ð�� 3pÞ=T4 is given by

�� 3p

T4
¼ N3

t

N3
s

�
a
d�

da

�
@S

@�

�
sub

þ a
d�ud

da

�
@S

@�ud

�
sub

þ a
d�s

da

�
@S

@�s

�
sub

�
(11)

with

�
@S

@�

�
sub

¼�
� X
x;�>�

c0W
1�1
�� ðxÞþ X

x;�;�

c1W
1�2
�� ðxÞ

�
sub

þ@cSW
@�

X
f¼u;d;s

�f

� X
x;�>�

Trðc;sÞ
��F��ðDfÞ�1
x;x

�
sub

;

(12)
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CP−PACS/JLQCD results
simulation point
Fit results

mρa

β

FIG. 4 (color online). The global fit for coupling parameters,
�, as a function of m�a. Square symbols show coupling pa-

rameters in the CP-PACS=JLQCD study. The solid lines show
the global fit results for each simulation point with correspond-
ing m�=m� and m�ss

=m�. To avoid a plot that is too busy, only

half of the data points are shown (�s ¼ 0:1371, 0.1358, and
0.1351 at � ¼ 1:83, 1.90, and 2.05, respectively).
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�
@S

@�f

�
sub

¼ Nf

��X
x;�

Trðc;sÞfð1� 	�ÞUx;�ðDfÞ�1
xþ�̂;x

þ ð1þ 	�ÞUy
x��̂;�ðDfÞ�1

x��̂;xg
�
sub

þ cSW

� X
x;�>�

Trðc;sÞ
��F��ðDfÞ�1
x;x

�
sub

�
; (13)

where Nf ¼ 2 for f ¼ ud and 1 for f ¼ s. We evaluate the

traces in (12) and (13) by the random noise method with
complex U(1) random numbers [25]. The number of noise
vectors is 1 for each of the color and spinor indices. Results
of the quark contributions in (12) and (13) are summarized
in Table III.

In Fig. 8, the results of the trace anomaly (11) are shown
by the solid curve. The curve is drawn by the Akima spline
interpolation [32]. The central values are the results using
the beta functions with the scale setting variable am�, and

vertical thin bars represent statistic errors, in which the
statistical errors of gauge and quark observables as well as
those of the beta functions are combined by the error
propagation rule. We repeat the calculation using the val-
ues of the beta functions adopting alternative scale setting
variables to estimate the systematic error due to the beta
function. We find that, in the trace anomaly, the variations
due to the change of the scale setting variable partially
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CP−PACS/JLQCD results

simulation point

Fit results

mρa

κud

mρa

κud

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.134

0.135

0.136

0.137

0.138

0.139

0.14

CP−PACS/JLQCD results

simulation point

Fit results

mρa

κs

FIG. 5 (color online). The same as Fig. 4 but for �ud and �s.
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β

beta−functions at mπ/mρ=0.6337, mηss
/mφ=0.7377

a(dκud/da) x 100

a(dκs/da) x 100

a(dβ/da)

FIG. 6 (color online). Beta functions on our LCP, m�=m� ¼
0:6337 and m�ss

=m� ¼ 0:7377, as functions of �. The scale

setting is made with am�. Beta functions for �ud and �s are

magnified by a factor of 100. Horizontal and vertical bars at each
data point represent statistical errors.
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FIG. 7 (color online). Beta functions at light quark masses
corresponding to m�=m� ’ 0:5, 0.6, and 0.7, with the s-quark

mass m�ss
=m� ’ 0:7, as functions of �. The simulation point of

this study is marked by an open square. Horizontal and vertical
bars at each data point represent statistical errors.

EQUATION OF STATE IN 2þ 1 FLAVOR QCD WITH . . . PHYSICAL REVIEW D 85, 094508 (2012)

094508-7



cancel with each other among the contributions from dif-
ferent beta functions, leading to a smaller variation in total.
Resulting systematic errors are shown by thick vertical
bars in Fig. 8. The systematic errors thus estimated are
smaller than the statistical errors in this study.

We find that ð�� 3pÞ=T4 is small at T ¼ 174 MeV but
shows a peak atT ¼ 199 MeV and decreases towards higher
T. We note that the peak height of about 7 at T ¼ 199 MeV
(Nt ¼ 14) is roughly consistent with recent results of
highly improved staggered quarks (obtained at Nt ¼ 6–12)
in the fixed-Nt approach [4,5]. The shape of ð�� 3pÞ=T4

suggests that Tpc is located between 174 and 199 MeV.

Carrying out the T integration (3) using the Akima
spline interpolation for the trace anomaly, we obtain the
pressure p=T4 shown in Fig. 8. Here, we have chosen
the starting point of the integration to be at Nt ¼ 16, where
the trace anomaly vanishes within the statistical error. The
energy density �=T4 is calculated by p=T4 and ð��
3pÞ=T4. To our knowledge, this is the first result for EOS
in 2þ 1 flavor QCD with dynamical Wilson-type quarks.

In our previous test in quenched QCD, we confirmed
that the choice of the interpolation procedure has only
minor effects on the EOS [2]. Because the resolution in
T is coarser in the present study, we need to reexamine the
influence of the interpolation procedures on the final values
of the EOS. The results are summarized in Appendix . We
find that the systematic errors due to the choice of the
interpolation procedure are small in the EOS in compari-
son with the present statistical errors.

The overall large errors in p=T4 and �=T4 are mainly
due to the large statistic error in ð�� 3pÞ=T4 at
T � 200 MeV—they propagate to higher T’s through the
numerical integration. The large statistic error in ð��
3pÞ=T4 at T & 200 MeV is caused by the enhancement
factor N4

t in (11) (note that S is proportional to NtN
3
s ).

Although the central value is largely canceled by the zero-
temperature subtraction procedure, the errors are magni-
fied. We find that the statistical fluctuation is much larger in
the gauge part than in the quark parts. Note that the same
difficulty exists also in the fixed-Nt approach when we
increase Nt towards the continuum limit. In the fixed-scale
approach, because high statistics is required at very low
temperatures only, the overall numerical cost will still be
lower than that in the fixed-Nt approach when we try to
keep a similar magnitude of discretization errors around
the transition temperature. In the present test, however, we
stop at the current statistics and leave the task for the future
investigation at the physical point.
An additional source of errors in Fig. 8 is the spacing of

the data points in T: Because our lattice spacing a is
coarser than that of our previous study in quenched QCD
[2], and also because Nt is restricted to be even due to the
CPS simulation code with the even-odd preconditioning, we

cannot have the resolution as achieved in our previous
study. To improve the resolution in T, we need to develop
a simulation code for odd Nt’s. An alternative way out may
be to combine results at different lattice spacing a. Note
that we can choose small values of a in the fixed-scale

TABLE III. Quark contributions to the trace anomaly: S
hopp
f ¼ ðN3

sNtÞ�1
P

x;�Tr
ðc;sÞfð1� 	�ÞUx;�ðDfÞ�1

xþ�̂;x þ ð1þ
	�ÞUy

x��̂;�ðDfÞ�1
x��̂;xg and S

diag
f ¼ ðN3

sNtÞ�1
P

x;�>�Tr
ðc;sÞ
��F��ðDfÞ�1

x;x . In this table, the zero-temperature results (Nt ¼ 58) are

raw expectation values, while the finite-temperature results are subtracted by the corresponding zero-temperature values. Quark
observables are measured every five trajectories after thermalization of 1000 trajectories, and their errors are estimated by adopting the
bin size of 25 trajectories. Nconf is the number of configurations.

Nt T½MeV� Nconf hShoppud i hSdiagud i hShopps i hSdiags i
58 � � � 390 �4:904 87ð46Þ 1.904 649(79) �4:748 78ð44Þ 1.909 956(75)

16 174 447 �0:003 80ð82Þ �0:000 65ð13Þ �0:002 71ð80Þ �0:000 52ð12Þ
14 199 447 �0:0125ð10Þ �0:001 82ð17Þ �0:010 07ð93Þ �0:001 53ð16Þ
12 232 495 �0:029 87ð88Þ �0:004 43ð14Þ �0:025 90ð86Þ �0:003 94ð14Þ
10 279 287 �0:0448ð11Þ �0:006 79ð18Þ �0:0422ð12Þ �0:006 46ð18Þ
8 348 319 �0:0576ð11Þ �0:008 85ð15Þ �0:0592ð11Þ �0:008 98ð15Þ
6 464 159 �0:0850ð15Þ �0:013 94ð21Þ �0:0947ð15Þ �0:015 00ð21Þ
4 697 95 �0:3216ð24Þ �0:049 66ð38Þ �0:3501ð23Þ �0:052 66ð35Þ

TABLE II. Beta functions at our simulation point determined by the global fit (9) or with
alternative scale setting variables. Values of �2=dof for the fits are also given.

Scale setting a d�
da �2=dof a d�ud

da �2=dof a d�s

da �2=dof

am� �0:279ð24Þ 1.6 0.001 23(41) 1.1 0.000 46(26) 1.7

am� �0:319ð21Þ 1.2 0.001 79(38) 0.8 0.000 88(22) 1.3

amK �0:252ð25Þ 1.0 0.001 05(44) 1.0 0.000 43(32) 1.3

amK	 �0:215ð28Þ 1.1 0.000 55(47) 1.2 0.000 02(36) 1.8
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approach. When a’s are well in the scaling region, results
for physical observables as functions of T should lie on
the same curves for these a’s, but at different discrete
points. After confirming the insensitivity to a variation of
a, we may combine the results at different a’s to more
smoothly interpolate the data in T. We leave the applica-
tion of these methods to future studies of EOS at the
physical point.

Besides the large errors, our EOS looks roughly consis-
tent with recent results with highly improved staggered
quarks near the physical point: The peak of the trace anom-
aly from the stout quarks is located at T � 190–200 MeV
with a peak height of about 4.0 [4]. A preliminary result
from the highly improved staggered quarks gives a peak
height of about 5.6 atT � 200–220 MeV [5].We recall that
our light quark masses are heavier than their physical
values. The experience with improved staggered quarks
suggests that the peak becomes higher as the light quark
masses are increased (see, e.g., [4]).

VII. SUMMARY

We calculated the EOS in 2þ 1 flavor QCD with im-
provedWilson quarks by adopting the fixed-scale approach
[2], with which we vary T without varying the system
volume on a fine lattice. As the first step towards the
EOS with Wilson-type quarks in 2þ 1 flavor QCD, we
made simulations at m�=m� ’ 0:63, taking advantage of

the fixed-scale approach to make use of high-precision
configurations by the CP-PACSþ JLQCD Collaboration
at T ¼ 0 [13]. Although the light quark masses are still
heavier than their physical values, our EOS looks roughly
consistent with recent results with highly improved stag-
gered quarks near the physical point [4,5].

To extend the study towards the physical point, however,
we found a couple of issues that need to be solved: To
obtain statistically accurate EOS at low temperatures, we
need a large statistics proportional to N7

t (a power of Nt is
reduced due to the average over the lattice sites). This is,
however, an unavoidable step to calculate observables
suppressing discretization errors. Another source of sys-
tematic errors in EOS is the limited resolution in T due to
the discrete variation of Nt in the fixed-scale approach. In
the present study, because the lattice spacing a is coarser
than our previous quenched study, and because Nt is lim-
ited to be even due to the simulation program set we have
adopted, this seems to be non-negligible. To improve the
resolution in T, we need simulations at odd values of Nt

and a finer lattice spacing a. An alternative way will be to
combine results at different a’s, since we can choose fine
a’s with the fixed-scale approach; thus, after confirming
that the discretization effects are sufficiently small in the
observables under study, we may combine the results at
different a’s to more smoothly interpolate in T. We leave
these trials to a forthcoming study with much lighter
quarks, adopting the on-the-physical-point configurations
by the PACS-CS Collaboration [22].
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APPENDIX: COMPARISON OF
INTERPOLATION PROCEDURES

To carry out the T integration given by (3), we need to
interpolate the data of the trace anomaly at discrete values
of T corresponding to the discrete values of Nt. In this
appendix, we examine the interpolation procedures and
their influences on the EOS with our data.
In the left panel of Fig. 9, we apply three different

interpolation procedures to our data of the trace anomaly.
Beta functions with the scale setting variable am� are

adopted. The long-dotted line, dotted line, and solid line
represent the results of straight line, cubic spline, and
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FIG. 8 (color online). Trace anomaly ð�� 3pÞ=T4, energy
density �=T4, and pressure 3p=T4 in 2þ 1 flavor QCD. The
thin and thick vertical bars represent statistic and systematic
errors, respectively. The curves are drawn by the Akima spline
interpolation.
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Akima spline [32] interpolations, respectively. In our pre-
vious study in quenched QCD, we have adopted the cubic
spline interpolation [2]. With our present data, however, we
find the oscillatory interpolation curve by the cubic spline
interpolation. This is due to the coarseness of the present data
points—data are available only at even values of Nt. The
cubic spline is not stable for data sets with sharp variations.

In such cases, the Akima spline interpolation [32] is
widely adopted. The Akima spline is a combination of
local cubic polynomials and is known to suppress such
oscillatory behavior around sharp variations. From Fig. 9,
we find that the Akima spline leads to a more natural curve

smoothly following the data points. Therefore, we adopt
the Akima spline interpolation in this study.
To estimate the systematic error due to the choice of the

interpolation procedure in the EOS, we perform the T
integration with these interpolations. The results for the
pressure are shown in the right panel of Fig. 9. The strong
oscillation of the interpolation curve from the cubic spline
is averaged over through the integration, and the results of
p=T4 are well consistent for all three interpolations. We
thus conclude that the systematic error in the EOS due to
the choice of the interpolation procedure is much smaller
than the statistical errors.
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