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ABSTRACT 1 

 2 

The cap-dependent endonuclease activity of the influenza virus 3 

RNA-dependent RNA polymerase cleaves host mRNAs to produce capped RNA 4 

fragments for primers to initiate viral mRNA synthesis.  The influenza A virus (FluA) 5 

cap-dependent endonuclease preferentially recognizes the cap1 structure (m7GpppNm).  6 

However, little is known about the substrate specificity of the influenza B virus (FluB) 7 

endonuclease.  Here, we determined the substrate specificity of the FluB polymerase 8 

using purified viral RNPs and 32P-labeled polyribonucleotides containing a variety of 9 

cap structures (m7GpppGm, m7GpppG, and GpppG).  We found that the FluA 10 

polymerase cleaves m7G-capped RNAs preferentially.  In contrast, the FluB 11 

polymerase could efficiently cleave not only m7G-capped RNAs but also unmethylated 12 

GpppG-RNAs.  To identify a key amino acid(s) related to the cap recognition 13 

specificity of the PB2 subunit, the transcription activity of FluB polymerases containing 14 

mutated cap-binding domains was examined by a mini-replicon assay system.  In the 15 

case of FluA PB2, Phe323, His357, and Phe404, which stack the m7GTP, and Glu361 16 

and Lys376, which make hydrogen bonds with a guanine base, were essential for the 17 

transcription activity.  In contrast, in the case of FluB PB2, the stacking interaction of 18 

Trp359 with a guanine base and putative hydrogen bonds using Gln325 and Glu363 19 

were enough for the transcription activity.  Taking these results together with the result 20 

for the cap-binding activity, we propose that the cap recognition pocket of FluB PB2 21 

does not have the specificity for m7G-cap structures and thus is more flexible to accept 22 

various cap structures than FluA PB2. 23 

24 



 4 

INTRODUCTION 1 

 2 

Influenza A virus (FluA) and influenza B virus (FluB) belong to the family of 3 

Orthomyxoviridae.  The genomes of FluA and FluB are composed of a set of eight 4 

segments of RNA (vRNA) of negative polarity.  vRNA is complexed with 5 

nucleoprotein (NP) and associated with the RNA polymerase to form viral 6 

ribonucleoprotein (vRNP) complexes.  vRNP is an essential unit for both transcription 7 

and replication (9).  In transcription, the RNA polymerase catalyzes not only RNA 8 

polymerization and polyadenylation of mRNA but also cleavage of host mRNAs to 9 

generate capped RNA fragments.  The RNA polymerase is composed of one molecule 10 

each of three viral proteins, PB1, PB2, and PA.  PB1 plays central roles in both RNA 11 

polymerase assembly (27, 31) and RNA polymerization (6).  It contains the conserved 12 

motifs characteristic of RNA-dependent RNA polymerases and is directly involved in 13 

RNA chain elongation (1, 2).  It binds to 5’- and 3’-terminal sequences of vRNA and 14 

cRNA (complementary RNA to vRNA), which are conserved in all segments and act as 15 

cis-acting elements for the viral RNA synthesis.  PB2 is required for transcription and 16 

binds to the cap structures of host mRNAs.  Recently, the structural features of the 17 

cap-binding site in FluA PB2 and the FluA PB1-PB2 contact site have been determined 18 

by functional studies and crystallography (12, 31).  PA is involved in not only virus 19 

genome replication but also transcription as an endonuclease for generation of primers 20 

for RNA synthesis (8, 10, 13, 19, 36).  It is also reported that PA is important for the 21 

polymerase assembly (19).  The structure of the PB1-PA contact site has also been 22 

determined crystallographically (14, 27). 23 

The FluA polymerase exhibits a cap-dependent endonuclease activity, which 24 



 5 

cleaves host mRNAs to produce capped RNA fragments with lengths of 11 to 13 1 

nucleotides (nt).  The resulting capped RNA fragment serves as a primer to initiate 2 

viral mRNA synthesis.  It is well known that in the case of the FluA polymerase, 3 

eukaryotic mRNAs containing m7G(5’)ppp(5’)Nm (cap1) and m7G(5’)ppp(5’)NmN’m 4 

(cap2) structures stimulate in vitro viral RNA transcription strongly (4, 5, 29).  5 

Removal of m7G of the cap from mRNA eliminates the priming activity, and naturally 6 

occurring uncapped mRNAs do not prime transcription (5, 29).  In addition, the 7 

presence of methyl groups in the cap is required for the priming activity; reovirus 8 

mRNAs with 5’-terminal GpppG are inactive as primers (3).  It has also been 9 

demonstrated that each of the two methyl groups in the cap1 structure, the 7-methyl 10 

residue of guanine and the 2’-O-methyl on the ribose of guanosine, strongly influences 11 

the capped RNA-primed transcription activity (4).  12 

Biochemical and structural studies revealed the functional structures of the 13 

cap-binding proteins, including FluA PB2 (12), human translation initiation factor 4E 14 

(eIF4E) (33, 34), human nuclear cap-binding protein 20 (CBP20) (23), and vaccinia 15 

virus (nucleoside-2’-O-)-methyltransferase (VP39) (16).  The overall structures of 16 

these four cap binding proteins differ widely due to their evolutionarily unrelated 17 

origins, but the cap-binding pockets form a common structure and preferentially bind to 18 

the 7-methylated cap structure.  These cap-binding proteins hardly bind to the 19 

unmethylated cap structure.  20 

Most of our knowledge on the transcription mechanism of the influenza virus 21 

genome has been derived from studies on the FluA polymerase, whereas little is known 22 

about the FluB polymerase.  It is reported that α-amanitin, a potent inhibitor for the 23 

host cell RNA polymerase II, inhibits influenza virus transcription, suggesting that 24 
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eukaryotic mRNAs containing the cap structure are essential for influenza virus 1 

transcription (21).  Using α-amanitin, we found that the growth of FluB is more 2 

sensitive to the amount of cellular mRNA than that of FluA (data not shown).  To 3 

elucidate the transcription initiation mechanism of the FluB polymerase, we tried to 4 

determine the specificity of cap recognition by the FluB polymerase.  First, we 5 

compared the substrate specificities of FluA and FluB polymerases using purified 6 

vRNPs and various capped RNA substrates (m7GpppGm-, m7GpppG-, and 7 

GpppG-RNA) and found that the FluB polymerase efficiently cleaves not only 8 

m7G-capped RNAs but also unmethylated GpppG-RNA, whereas the FluA polymerase 9 

cleaves m7G-capped RNAs specifically.  We then tried to identify key amino acids 10 

related to the cap recognition of FluB PB2.  In order to examine the transcription 11 

activity using mutated PB2 proteins, we utilized FluA and FluB mini-replicon assay 12 

systems using a virus polymerase-dependent reporter gene (17, 35).  The mini-replicon 13 

system has been utilized for a number of functional analyses of cis-acting elements with 14 

the viral genome and trans-acting viral factors (10, 35).  The reporter gene contains a 15 

coding region flanked by each viral 5’ and 3’ untranslated region (UTR), which function 16 

as promoters, and therefore mimics an influenza virus genomic segment.  Using this 17 

assay systems, we identified the important amino acids required for the cap recognition 18 

by the FluB polymerase by referencing functionally important amino acids in the FluA 19 

polymerase (12).  20 

Based on the findings using the assay systems, we propose that the FluB 21 

polymerase possesses a novel cap recognition mechanism, which is different not only 22 

from the FluA polymerase but also from well-known cap-binding proteins.  These 23 

findings could be important to develop novel anti-influenza virus drugs targeting the cap 24 
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recognition and cleavage reaction. 1 

2 



 8 

MATERIALS AND METHODS 1 

 2 

Biological materials.  Monolayer cultures of 293T and MDCK cells were 3 

maintained at 37°C in Dulbecco's modified Eagle medium (DMEM) and minimal 4 

essential medium (MEM) (Nissui), respectively, supplemented with 10% fetal calf 5 

serum (Cell Culture Technologies).  Influenza virus A/Panama/2007/99 (A/PA/99) and 6 

B/Shanghai/361/2002 (B/SH/02) were kindly supplied by Y. Suzuki and T. Gotanda 7 

(Kitasato Institute, Research Center for Biologicals, Saitama, Japan).  Vaccinia virus 8 

capping enzyme and recombinant human mRNA (guanine-7-)methyltransferase 9 

(rhMTase) were prepared according to a previously described procedure (28). 10 

 11 

Cloning of cDNAs for viral RNA polymerase subunits and nucleoprotein 12 

cDNA.  For construction of mammalian expression vectors for influenza virus 13 

polymerase subunits (PB1, PB2, and PA) and nucleoprotein (NP), cDNAs 14 

corresponding to the full-length PB1, PB2 with a FLAG tag at its C terminus 15 

(PB2cFLAG), PA, and NP were amplified by reverse transcription-PCR (RT-PCR) 16 

from vRNAs of influenza virus A/PA/99 and B/SH/02 as templates using the following 17 

sets of phosphorylated primers (see Table S1 in the supplemental material): 18 

A-PB1-FOR and A-PB1-REV for FluA-PB1, A-PB2-FOR and A-PB2-cFLAG-REV for 19 

FluA-PB2cFLAG, A-PA-FOR and A-PA-REV for FluA-PA, A-NP-FOR and 20 

A-NP-REV for FluA-NP, B-PB1-FOR and B-PB1-REV for FluB-PB1, B-PB2-FOR and 21 

B-PB2-cFLAG-REV for FluB-PB2cFLAG, B-PA-FOR and B-PA-REV for FluB-PA, 22 

and B-NP-FOR and B-NP-REV for FluB-NP.  The PCR products were then cloned 23 

into the EcoRV site of pCAGGS-P7 (7), resulting in construction of 24 
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pCAGGS-Panama-PB1, pCAGGS-Panama-PB2-cFLAG, pCAGGS-Panama-PA, 1 

pCAGGS-Panama-NP, pCAGGS-Shanghai-PB1, pCAGGS-Shanghai-PB2-cFLAG, 2 

pCAGGS-Shanghai-PA, and pCAGGS-Shanghai-NP.  cDNAs for PB2 mutants were 3 

prepared by site-directed mutagenesis using the primer sets for FluA-PB2-cFLAG and 4 

FluB-PB2-cFLAG and mutant primer sets (see Table S2 in the supplemental material).  5 

The PB2 mutant genes have been fully sequenced by standard methods (35).   6 

 7 

Preparation of influenza virus vRNP.  To prepare vRNP, we first treated 8 

purified influenza virions at 30°C for 60 min with a disruption buffer consisting of  50 9 

mM Tris-HCl (pH 8.0), 100 mM KCl, 5 mM MgCl2, 1 mM dithiothreitol (DTT), 5% 10 

glycerol, 2% Triton X-100, and 2% lysolecithin according to a method described 11 

previously (32).  The sample was then directly subjected to centrifugation on a 30 to 12 

60% (wt/vol) linear gradient of glycerol on a 70% (wt/vol) glycerol cushion in 50 mM 13 

Tris-HCl (pH 8.0) and 150 mM NaCl in a Beckman MLS-50 rotor with adapters at 14 

163,000 × gAV for 3 h at 4°C.  Fractionation was carried out from the top of the 15 

gradient.  Fractions containing vRNP were pooled and then used for in vitro 16 

endonuclease and elongation assays.   17 

 18 

Preparation of various RNA substrates.  Triphosphate-ended RNA with 19 

the 33-nucleotide sequence  20 

5’-GAAAAAAAAAAAAAAAAAAAAAAAAAAAAUAAA-3’, designated 21 

pppG-RNA, was synthesized by using T7 RNA polymerase (Amersham Biosciences) 22 

and a synthetic DNA template.  The protocol was previously described (30).  Briefly, 23 
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to prepare the template for the T7 RNA polymerase, an oligonucleotide T7P 1 

(5’-TAATACGACTCACTATA-3’), corresponding to the T7 promoter (–17 to –1), was 2 

annealed to the template oligonucleotide T7-polyA-R1 3 

(5’-TTTATTTTTTTTTTTTTTTTTTTTTTTTTTTTCTATAGTGAGTCGTATTA-3’, 4 

where the underlined sequence is complementary to the T7 promoter [–17 to –1]).  5 

After the transcription reaction, the transcription mixture was treated with DNase I 6 

(Roche Applied Science).  RNA was then extracted with phenol-chloroform, ethanol 7 

precipitated, and used as a capping substrate.  To synthesize m7G[32P]pppGm-RNA 8 

and G[32P]pppG-RNA, 50 pmol of pppG-RNA was incubated at 37°C for 2 h in the 9 

presence of 8 µM [α-32P]GTP (800 cpm/fmol) and an appropriate amount of purified 10 

vaccinia virus capping enzyme, which has guanylyltransferase, 11 

guanine-7-methyltransferase, and ribose-2’-O-methyl-transferase activities, in a reaction 12 

mixture (50 µl) containing 50 mM Tris-HCl (pH 7.9), 2 mM MgCl2, 40 mM NaCl, and 13 

20 mM DTT in the presence or absence of 150 µM S-adenosyl-L-methionine (AdoMet).  14 

After the reaction, capped RNA was extracted with phenol-chloroform, ethanol 15 

precipitated, and dissolved in H2O.  To synthesize the m7G[32P]pppG-RNA, 0.4 pmol 16 

of G[32P]pppG-RNA was incubated at 30°C for 20 min with 15 ng/µl of rhMTase in a 17 

reaction mixture (20 µl) containing 25 mM Tris-HCl (pH 7.9), 0.5 mM DTT, 0.1 mg/ml 18 

bovine serum albumin (BSA), and 50 µM AdoMet.  The RNA was extracted with 19 

phenol-chloroform, ethanol precipitated, and dissolved in H2O.  To confirm the cap 20 

structure on the synthesized RNA, the cap structure of the synthesized 32P-capped RNA 21 

was liberated by digestion with nuclease P1 (Wako) (28).  The reaction product was 22 

analyzed by thin-layer chromatography (TLC) on a polyethyleneimine (PEI)-cellulose 23 

plate (PEI-CEL UV254; Macherey-Nagel) with 0.65 M LiCl and visualized by 24 
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autoradiography. 1 

 2 

In vitro capped RNA cleavage and RNA elongation reactions.  The 3 

determination of Flu cap-dependent endonuclease activity and the subsequent RNA 4 

elongation reaction were carried out in a reaction mixture (25 µl) containing 50 mM 5 

Tris-HCl (pH 7.9), 0.1 mM ammonium acetate, 5 mM MgCl2, 2.5 mM DTT, 0.1% 6 

Nonidet P-40, 8 U of RNasin, 3 to 5 fmol of each 32P-capped RNAs (800 cpm/fmol), 7 

and an appropriate amount of purified vRNPs without or with ATP, UTP, GTP, or CTP.  8 

The reaction mixture was incubated at 30°C for 2 h, and then RNA products were 9 

extracted with phenol-chloroform and ethanol precipitated.  The RNA products 10 

denatured with formamide were electrophoresed in a 20% acrylamide gel containing 8 11 

M urea.  After electrophoresis, the gel was dried, and RNAs were visualized by 12 

autoradiography.  The amount of synthesized RNA was measured with a liquid 13 

scintillation counter (LS6000IC; Beckman).  The endonuclease activity was 14 

represented as a ratio of the amount of cleaved RNAs to that of total capped RNAs, and 15 

the RNA elongation efficiency was represented as a ratio of the amount of transcripts to 16 

that of total capped RNAs. 17 

 18 

Cap-binding assay.  UV cross-linking was carried out to measure the 19 

cap-binding activity of viral RNA polymerases.  A reaction mixture (12 µl) containing 20 

50 mM Tris-HCl (pH 7.9), 0.1 mM ammonium acetate, 5 mM MgCl2, 2.5 mM DTT, 21 

250 fmol of uncapped RNA substrate, 50 fmol of each 32P-capped RNA (~800 22 

cpm/fmol), and an appropriate amount of purified vRNPs was incubated for 30 min on 23 

ice and then irradiated on ice for 10 min with 254-nm UV light (FUNA-UV-Linker 24 
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FS-1500; [FUNAKOSHI, Japan]) with 0.2 mg/ml of heparin.  The 32P-labeled 1 

products were digested with nuclease P1, analyzed by 6% SDS-PAGE, and detected by 2 

autoradiography.   3 

 4 

Mini-replicon assay.  Two plasmid vectors carrying a reporter gene (an 5 

artificial influenza virus genome containing firefly luciferase gene of negative polarity, 6 

which is synthesized in cells by the human DNA-dependent RNA polymerase I [Pol I]), 7 

were constructed as described previously (35).  A fragment containing the luciferase 8 

gene sandwiched by 5’- and 3’-terminal sequences of FluA/PA/99 and FluB/SH/02 9 

segment 8 was amplified by PCR with specific primers 10 

5’-GTAGTAGAAACAAGGGTGTTTTTTACTCGAGATCTTACAATTTGGACTTTC11 

CGCCCTT-3’ and 12 

5’-GATCCGTCTCCGGGAGCAAAAGCAGGGTGACAAAGACATAATGCATATGG13 

AAGACGCCAAAAACATAAAGAAAGG-3’ for FluA/PA/99, and 14 

5’-TATTCGTCTCAGGGAGCAGAAGCAGAGGATTTGTTTAGTCACTGGCAAAC15 

GGAAAAAAATGGAAGACGCCAAAAACATAAAG-3’ and 16 

5’-ATATCGTCTCGTATTAGTAGTAACAAGAGGATTTTTATTTTAAATTTACAATT17 

TGGACTTTCCGCC-3’ for FluB/SH/02, using pGV-B (the promoterless luciferase 18 

reporter vector; TOYO Ink) as a template.  The amplified PCR products were digested 19 

with BsmBI and cloned into pHH21 containing the promoter region of the human rRNA 20 

gene (24)(25), which had been digested with BsmBI.  The constructed plasmids were 21 

designated pHH-A-vNS-Luc and pHH-B-vNS-Luc, in which the luciferase gene in 22 

reverse orientation sandwiched with 23- and 26-nucleotide 5’- and 3’-terminal 23 

sequences of the FluA/PA/99 segment 8 or 30 and 44-nucleotide 5’- and 3’-terminal 24 
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sequences of the FluB/SH/02 segment 8, respectively, is placed under the control of the 1 

human Pol I promoter.  293T cells were transfected with plasmids for the expression of 2 

the FluA mini-replicon (pCAGGS-Panama-PB1, pCAGGS-Panama-PB2-cFLAG, 3 

pCAGGS-Panama-PA, pCAGGS-Panama-NP, and pHH-A-vNS-Luc) or FluB 4 

mini-replicon (pCAGGS-Shanghai-PB1, pCAGGS-Shanghai-PB2-cFLAG, 5 

pCAGGS-Shanghai-PA, pCAGGS-Shanghai-NP, and pHH-B-vNS-Luc).  A plasmid 6 

for the expression of Renilla luciferase driven by the simian virus 40 (SV40) promoter 7 

was used as an internal control for the dual-luciferase assay.  As a negative control, 8 

293T cells were transfected with the same plasmids, except for the omission of the PB2 9 

expression plasmid.  After transfection, the cells were incubated at 37°C for 24 h, and 10 

then the luciferase activity was determined using commercially available reagents 11 

(Promega) according to the manufacturer's protocol.  The relative luminescence 12 

intensity was measured with a luminometer for 20 s.  To measure the levels of 13 

accumulation of viral mRNA, cRNA, and vRNA, quantitative RT-PCR was performed.  14 

Total RNA was extracted from transfected cells and then reverse transcribed with either 15 

(i) oligo(dT)20 for synthesizing cDNA from viral mRNA, (ii) 16 

5′-ATATCGTCTCGTATTAGTAGTAACAAGAGCATT-3′, which is complementary to 17 

the 3′ portion of cRNA of the reporter gene, for synthesizing cDNA from cRNA, or (iii) 18 

5’-TCCATCACGGTTTTGGAATGTTTACTACAC-3’, which is complementary to 19 

vRNA, for synthesizing cDNA from vRNA of the reporter gene.  These 20 

single-stranded cDNAs were subjected to real-time quantitative PCR analyses (Thermal 21 

Cycler Dice real-time system TP800; TaKaRa) with SYBR Premix Ex Taq (TaKaRa) 22 

and two specific primers, 5′-TCCATCACGGTTTTGGAATGTTTACTACAC-3′ 23 

corresponding to the firefly luciferase mRNA between nucleotide sequence positions 24 
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728 and 757, and 5′-GTGCGCCCCCAGAAGCAATTTC-3′, which is complementary 1 

to the firefly luciferase mRNA between nucleotide sequence positions 931 and 952.  2 

Renilla luciferase mRNA was also amplified with two specific primers, 3 

5′-GCAGCATATCTTGAACCATTC-3′, corresponding to the Renilla luciferase mRNA 4 

between nucleotide sequence positions 598 and 618, and 5 

5′-CATCACTTGCACGTAGATAAG-3′, which is complementary to the Renilla 6 

luciferase mRNA between nucleotide sequence positions 725 and 745.  The relative 7 

amounts of mRNA, cRNA, and vRNA were calculated by using the second-derivative 8 

maximum method and normalized to the amount of Renilla luciferase mRNA.  The 9 

ratio of the amounts of mRNA and cRNA relative to vRNA is shown. 10 

 11 

 Detection of capped RNA co-precipitated with the viral RNA 12 

polymerase.  293T cells were transfected with plasmids for the expression of the FluB 13 

viral proteins, PB1, FLAG-tagged PB2 (wild-type or mutated PB2), and PA.  At 24 h 14 

posttransfection, cells were resuspended in a lysis buffer (20 mM Tris-HCl [pH 7.9], 15 

100 mM NaCl, 30 mM KCl, and 0.1% Nonidet P-40).  The RNA polymerase complex 16 

composed of PB1, FLAG-tagged PB2, and PA was purified by incubating with 17 

anti-FLAG M2 agarose (Sigma) at 4ºC for 3 h and eluted with an elution buffer (50 mM 18 

Tris-HCl [pH 7.9], 100 mM ammonium acetate, 5 mM MgCl2, and 10% (vol/vol) 19 

glycerol) containing 0.1 mg/ml FLAG peptide (Sigma).  RNAs which interact with the 20 

viral RNA polymerase was extracted from recombinant RNA polymerase complexes 21 

(100 ng PB1 equivalents) with phenol-chloroform and ethanol precipitated with 20 µg 22 

of carrier tRNA.  After treatment with calf intestinal alkaline phosphatase (CIAP), 23 

which removes free phosphate groups, periodate oxidation under mild conditions 24 
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followed by β-elimination with aniline was carried out to remove 5’-terminal m7G from 1 

capped RNA, generating RNA with 5’-triphosphate, which is the substrate for vaccinia 2 

virus capping enzyme, as described previously (4, 11).  The RNA was then recapped 3 

using vaccinia virus capping enzyme with [α-32P]GTP as described in the previous 4 

section.  To measure the amount of 32P-labeled capped RNA, the RNA was digested 5 

with tobacco acid pyrophosphatase (TAP) (Sigma) at 37ºC for 1 h in a buffer containing 6 

50 mM sodium acetate (pH 5.5), 5 mM EDTA, and 10 mM 2-mercaptoethanol.  The 7 

reaction product was analyzed by thin-layer chromatography on a PEI cellulose plate as 8 

described above, and the amount of [32P]m7Gp was measured with a liquid scintillation 9 

counter. 10 

11 
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RESULTS 1 

 2 

In vitro capped RNA cleavage reaction and subsequent RNA elongation 3 

reaction.  The FluA polymerase requires the cap1 structure (m7GpppNm) stringently 4 

for transcription (4).  In contrast, little is known about the requirement for the cap 5 

structure of the FluB polymerase.  Thus, we first examined the efficiency of the capped 6 

RNA cleavage reaction and subsequent RNA elongation reaction by FluA and FluB 7 

polymerases using cap1-RNA (m7GpppGm-RNA).  The cap1-RNA labeled with 32P in 8 

the cap structure was incubated with purified vRNP (see Fig. S1A in the supplemental 9 

material) in the absence or presence of nucleoside triphosphates (NTPs) (Fig. 1A).  10 

RNA products were analyzed by 15% PAGE containing 8 M Urea.  FluA and FluB 11 

polymerases cleaved the cap1-RNA and produced 11- to 13-nucleotide and 11- to 12 

12-nucleotide RNAs, respectively, in the absence of NTPs (Fig. 1A, lanes 2 to 7), 13 

indicating that the endonuclease activity of FluB is different from that of FluA in the 14 

distance of cleavage site from the cap structure.  This cleavage pattern was observed 15 

commonly among FluA strains and among FluB strains (see Fig. S1B, lanes 2 to 6, in 16 

the supplemental material).  The cleaved RNA products were elongated in the presence 17 

of NTPs in a dose-dependent manner (Fig. 1A, lanes 8 to 13), but the elongation 18 

efficiency of the FluB polymerase was lower than that of the FluA polymerase.  We 19 

also confirmed that these elongated products contain full-length transcripts from 8 20 

segments and partially polyadenylated (see Fig. S2 in the supplemental material).  To 21 

investigate the cap-binding activity of the polymerases, UV cross-linking assays were 22 

carried out (Fig. 1B).  Cap1-RNA specifically bound to PB2 in both FluA and FluB 23 

polymerases, although the cap-binding activity of FluB PB2 is less (~25%) than that of 24 
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FluA PB2.  These results suggest that FluA and FluB polymerases are different in their 1 

binding to RNA containing the cap1 structure and in their cleavage modes.  2 

 3 

Specificity of recognition of cap structures by Flu polymerases.  To 4 

investigate the specificity of recognition of cap structures by FluA and FluB 5 

polymerases, we carried out similar experiments using RNA primers containing various 6 

cap structures.  To this end, we prepared 32P-labeled RNAs containing differently 7 

methylated cap structures, such as m7GpppGm, m7GpppG, and GpppG, as described in 8 

Materials and Methods.  After preparation, we analyzed the terminal cap structure 9 

using nuclease-digested samples (see Materials and Methods) and thin-layer 10 

chromatography on a PEI-cellulose plate.  As shown in Fig. 2A, we confirmed that 11 

each RNA had the expected cap structure.  Using these RNAs as substrates, we carried 12 

out in vitro capped RNA cleavage and subsequent RNA elongation reactions with FluA 13 

or FluB vRNPs.  As expected, FluA vRNP specifically cleaved both m7GpppGm-RNA 14 

and m7GpppG-RNA, although the latter was less efficiently cleaved (Fig. 2B, lanes 2, 5, 15 

and 8, and D).  The m7GpppGm-RNA fragments were most successfully elongated 16 

into viral mRNAs (Fig. 2C, lane 2, and E).  In contrast, FluB vRNP could cleave 17 

GpppG-RNA efficiently in addition to the m7GpppGm-RNA and m7GpppG-RNA (Fig. 18 

2B, lanes 3, 6, and 9, and D).  It is noteworthy that m7GpppGm-RNA fragments also 19 

served as an efficient primer for chain elongation, as is the case for the FluA polymerase 20 

(Fig. 2C, lane 3, and E).  More over, we carried out UV cross-linking assays using 21 

RNA primers containing various cap structures (Fig. 2F).  Interestingly, the 22 

cap-binding activity was detected just using m7GpppGm-RNA with both FluA and FluB 23 

vRNPs.  These results indicate that the guanine-7-methyl residue is a key for stable 24 
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cap-binding of both FluA and FluB polymerases.  It is also indicated that the 1 

cap-binding activity is strictly related to the elongation efficiency but not to the 2 

cleavage reaction.  It is presently unknown why the binding of GpppG and m7GpppG 3 

was not detected under the conditions employed, while m7GpppG-RNA was recognized 4 

and cleaved by both FluA and FluB polymerases and GpppG-RNA was by the FluB 5 

polymerase.  Since m7GpppG-RNA and GpppG-RNA were not effective for elongation, 6 

the cleavage of these cap structures would be abortive for transcription, possibly due to 7 

improper recognition. 8 

 9 

Identification of key amino acids involved in the cap recognition 10 

specificity of the PB2 subunit of the FluB polymerase.  To clarify the cap 11 

recognition mechanism, we focused our structure-related functional studies on the 12 

interaction between the cap1 structure and the PB2 subunit, which has the cap-binding 13 

domain.  It is quite likely that amino acid residues essential for cap-binding are 14 

conserved between FluA and FluB (Fig. 3A).  Three-dimensional (3D) structural 15 

studies (12) revealed that in the FluA PB2 cap-binding domain (Fig. 3B), Phe404 and 16 

His357 sandwich the methylated guanine and Phe323 stacks on the ribose of m7GTP.  17 

Glu361 makes hydrogen bonds with the N1 and N2 positions of guanine, and Lys376 18 

also makes a hydrogen bond with position O6 of guanine.  Computer-associated 19 

modeling could make the FluB PB2 cap-binding domain fit on the FluA PB2 20 

cap-binding domain (Fig. 3C).  In the model of the FluB cap-binding domain, 2 amino 21 

acids, Gln325 and Trp359, are different from Phe323 and His357 of the FluA 22 

cap-binding domain, respectively.   23 
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To determine key amino acids related to the cap recognition specificity, the 1 

transcription activity was measured using a mini-replicon assay system.  In this assay 2 

system, we have used a transient-transfection system with a viral genome, in which the 3 

coding region for a viral gene is replaced with a luciferase reporter gene while 4 

cis-acting regulatory regions (24) remain intact (35).  The cellular RNA polymerase I 5 

produces a negative-sense luciferase RNA sandwiched with viral terminal sequences.  6 

Luciferase mRNA is synthesized by transcription of the negative-sense RNA with the 7 

viral RNA polymerase and NP and subjected to translation.  This system has been used 8 

to measure the transcription activity of the Flu polymerase (20, 22).   9 

In the case of FluA PB2, His357, with which methylated guanine is stacked, 10 

could be replaced by other aromatic residues such as Trp and Phe, while Phe404, which 11 

is also involved in stacking methylated guanine, could not be (Fig. 4A).  Leu could not 12 

substitute for either His357 and Phe404.  On the other hand, in the case of FluB PB2, 13 

Trp359 could be replaced with other aromatic residues (but with less efficiency than for 14 

the FluA polymerase), but Phe406 could be replaced with hydrophobic residues such as 15 

Tyr and Leu (Fig. 4B).   To confirm the importance of the hydrogen bonds with 16 

methylated guanine, Glu361 and Lys376 in FluA PB2 and Glu363 and Lys378 in FluB 17 

PB2 were replaced with alanine (Ala).  Ala substitutions in FluA PB2 abolished the 18 

transcription activity, while Ala substitution for Lys378 of FluB PB2 caused only a 19 

small decrease in the transcription activity (Fig. 4C and D).  These results suggest that 20 

the stacking interaction of His357 and Phe404 and the hydrogen bonds of Glu361 and 21 

Lys376 with methylated guanine are essential for cap recognition by the FluA 22 

polymerase.  This is in good agreement with a previous report (12).  In contrast, it is 23 

suggested that the stacking interaction of Trp359 and the hydrogen bonds of Glu363 24 



 20 

with methylated guanine are sufficient for cap recognition by the FluB polymerase.  1 

These results indicate that the mechanism for recognition of methylated guanine by the 2 

FluB polymerase could be different from that for the FluA polymerase.  It is also 3 

speculated that the cap-binding pocket of the FluB polymerase may be more flexible or 4 

less stringent than that of the FluA polymerase in recognition of various cap structures, 5 

since Phe406 of FluB PB2 is changeable with other amino acids. 6 

Phe323 in FluA PB2 stacks on the ribose of m7GTP, and was essential for cap 7 

recognition (see Fig. S3 in the supplemental material) (12).  However, it is likely that 8 

Gln325 in FluB PB2, which is located in the same position of Phe323 in FluA PB2, 9 

makes a hydrogen bond with the ribose of m7GTP.  We speculated that FluB PB2 10 

recognizes the cap structure in a flexible pocket as discussed above, so that the 11 

hydrogen bonds made by Gln325 and Glu363 could be more crucial for cap-binding 12 

than those in FluAPB2.  In addition, there could be an appropriate amino acid in the 13 

amino acid combination between amino acid positions 325 and 363 in FluB PB2 in 14 

order to keep the flexible pocket.  To confirm this prediction, the transcription 15 

activities of mutants with substitutions at position 325 were examined in the presence of 16 

the Asp363 mutant (Fig. 4E).  The transcription activity of the Asp363 single mutant 17 

was reduced to 20% of the wild type level, possibly because of a longer distance 18 

between Asp363 and guanine residue for hydrogen bonds (Figs. 4E; see Fig. S4B in the 19 

supplemental material).  Interestingly, Lys and Arg mutations but not Ala and Asn 20 

mutations at position 325 could rescue the transcription activity of Asp363 (Fig. 4E).  21 

We also examined the effect of an Asp363 single mutation and an Arg325-Asp363 22 

double mutation on the transcription and replication processes and the cap-binding 23 

activity (Fig. 5).  According to the levels of accumulation of mRNA (Fig. 5A) and 24 
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cRNA (Fig. 5B), the level of reporter expression (Fig. 4E) is well correlated with the 1 

transcription but not replication activities.  To examine the cap-binding activity in vivo, 2 

capped RNAs that could interact with the viral RNA polymerase were co-precipitated 3 

from cells expressing the recombinant RNA polymerase, and the cap structure was 4 

detected by recapping of RNA which had been CIAP treated and then decapped 5 

(β-eliminated) (Fig. 5C).  We could detect the [32P]m7Gp labeled by [α-32P]GTP and 6 

vaccinia virus capping enzyme, depending on TAP digestion.  In contrast, uncapped 7 

RNA treated with CIAP was poorly labeled by this protocol.  These results indicate 8 

that this recapping method is suitable for the detection of capped RNA specifically.  9 

Using this method, we found that the cap-binding activities of these mutants (Fig. 5D) 10 

are well correlated with these transcription activities (Fig. 4E) and the mRNA 11 

accumulation levels (Fig. 5A).  These results indicate that the Arg at position 325 in 12 

FluB PB2 supports cap recognition when Glu363 is replaced with Asp363.  13 

14 
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DISCUSSION 1 

 2 

Most of our knowledge on the transcription mechanism of the influenza virus 3 

genome has been derived from studies on FluA, while little has been demonstrated for 4 

FluB.  This is also the case for studies on the enzymatic aspects of these viral RNA 5 

polymerases.  Each of the two methyl groups in the cap1 structure, the 7-methyl 6 

residue of the guanine base and the 2’-O-methyl residue on the ribose of the penultimate 7 

base, strongly influences the transcription activity of the FluA polymerase (4).  8 

Recently, the structure of the PB2 cap-binding domain of the FluA polymerase with 9 

m7GTP has been clarified (12).  Based on these reports, we tried to identify the 10 

specificity of cap recognition and characterize key amino acids for cap recognition of 11 

the FluB polymerase.   12 

First, we compared the efficiency of capped RNA cleavage and subsequent 13 

RNA elongation reactions of the FluA polymerase with those of the FluB polymerase 14 

using cap1-RNA.  As expected, the FluA polymerase exhibited efficient endonuclease 15 

activity, elongation activity, and cap-binding affinity.  The pattern of cleavage of 16 

cap1-RNA by the FluB polymerase was different from that by the FluA polymerase 17 

(Figs. 1A; see Fig. S1B in the supplemental material), and the RNA elongation and the 18 

cap-binding activities of the FluB polymerase were lower than those of the FluA 19 

polymerase (Fig. 1A and B).  These results indicate that the cap-binding and the 20 

cleavage mechanism of the FluB polymerase are different from those of the FluA 21 

polymerase. 22 

We then examined the specificity of recognition of cap structures by the FluB 23 

polymerase compared with that by the FluA polymerase.  Using various methylated 24 
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capped RNAs, we performed capped RNA cleavage and RNA elongation assays (Fig. 2).  1 

The FluA polymerase cleaved RNA containing m7G specifically, while the FluB 2 

polymerase could cleave GpppG-RNA as well as RNA containing m7G.  Both the FluA 3 

and FluB polymerases elongated and bound to the cap structure efficiently only in the 4 

case of m7GpppGm-RNA compared with other capped-RNAs (Fig. 2C, 2E, and 2F).  5 

Based on these results, we propose that the FluA polymerase recognizes strictly the 6 

guanine-7-methyl residue in the cleavage reaction and that the FluB polymerase 7 

recognizes only the cap core structure (GpppX), which may result in its weak 8 

cap1-binding activity.  In addition, these results suggest that ribose 2’-O-methyl 9 

residue and/or the guanine-7-methyl residue may be responsible for the elongation 10 

reaction by both FluA and FluB polymerases, because cap-binding and efficient 11 

elongation could not be observed except for m7GpppGm-RNA. 12 

 To elucidate the mechanism of cap recognition by the FluB polymerase, we 13 

studied the PB2 subunit, which has the cap-binding domain.  Recently, the 3D 14 

structure of the FluA PB2 cap-binding domain was revealed (12).  Amino acid residues 15 

essential for cap-binding were identified and found to be conserved between FluA and 16 

FluB polymerases (Fig. 3A).  In the FluA PB2 cap-binding domain (Fig. 3B), the 17 

methylated guanine base is sandwiched with His357 and Phe404, and Phe323 stacks on 18 

the ribose of m7GTP.  Glu361 makes hydrogen bonds with the N1 and N2 positions of 19 

guanine, and Lys376 also makes hydrogen bonds with the O6 position of guanine.  20 

Based on the structure of the FluA PB2 cap-binding domain, a model of the FluB PB2 21 

cap-binding domain was postulated (Fig. 3C).  Five amino acids, which contact the 22 

guanine-7-methyl residue are highlighted.  Mini-replicon assays showed that Trp359 in 23 

FluB PB2 is crucial for possible stacking interaction with a methylated guanine base 24 
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without sandwiching with Phe406 (Fig. 4B).  Moreover, the hydrogen bond made by 1 

Lys378 to the O6 position of guanine seemed not to be essential for cap recognition (Fig. 2 

4D).  These results suggest that the FluB polymerase recognizes the cap structure in a 3 

manner different from the FluA polymerase.  We illustrated a new proposed 4 

computer-associated model for the cap recognition by FluB PB2 (see Fig. S4A in the 5 

supplemental material), although the 3D structure of the FluB PB2 cap-binding domain 6 

has not been determined.  The overall structures of four cap-binding proteins, FluA 7 

PB2 (12), eIF4E (33, 34), CBP20 (23), and VP39 (16), differ each other widely due to 8 

their evolutionarily unrelated origins, but cap-binding pockets are essentially quite 9 

similar (see Fig. S5 in the supplemental material), although there are some differences 10 

in details.  In addition to the two aromatic amino acids, an acidic residue is directed 11 

toward the pocket to accommodate the positively charged π-ring system of the 12 

methylated guanine.  These amino acids provide the high specificity for the 13 

recognition of m7GTP and exhibit the low affinity for nonmethylated cap analogues 14 

(>100-fold difference in affinity compared with N7-methylated ones) (15, 18, 26).  15 

Compared with these well-known cap-binding proteins, the cap-binding pocket of FluB 16 

PB2 contains only one aromatic amino acid, Trp359.  This feature may cause the low 17 

affinity of the FluB PB2 for the cap1 structure (Fig. 1B) and the recognition of 18 

nonmethylated capped RNA (GpppG-RNA) (Fig. 2) compared with FluA PB2. 19 

 In the case of FluA PB2, the stacking interaction of Phe323 with the ribose of 20 

m7GTP is also essential for cap recognition.  However, Gln325 of FluB PB2 seems to 21 

make a hydrogen bond with the ribose of m7GTP instead of a stacking interaction.  To 22 

examine our speculation that FluB PB2 recognizes the cap structure in the flexible 23 

pocket, we made substitution mutations at position 325 in the presence of an Asp363 24 
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mutation (Gln → Asp), which should extend too much into the pocket where Gln325 is 1 

present.  Interestingly, the transcription activity and the cap-binding activity of the 2 

Asp363 mutant were restored to the wild-type levels by the Arg325 mutation (Figs. 4E 3 

and 5) without changing the replication activity.  The transcription activity of the 4 

Asp363 single mutant was decreased, possibly because the longer distance between 5 

Asp363 and the guanine residue may make hydrogen bonds weak (see Fig. S4B in the 6 

supplemental materials).  These results suggest that the hydrogen bond made by 7 

Arg325 with the ribose of the guanosine could support the recognition of the cap 8 

structure (Fig. 4E, 5A, 5C, and 5D; see Fig. S4C in the supplemental materials).  9 

Crystal structure analyses of wild-type FluB PB2 and the mutant containing Arg325 and 10 

Asp363 are needed to support our hypothesis. 11 

 In summary, our results indicate that the substrate specificity and the residues 12 

essential in the cap recognition are different between FluA and FluB polymerases.  In 13 

the case of the FluA polymerase, m7G-capped RNA is cleaved specifically, and the 14 

stacking interactions of His357 and Phe404 with the metylated guanine base and of 15 

Phe323 with the ribose of m7GTP and the hydrogen bonds made by Glu361 and Lys376 16 

on the methylated guanine are essential for cap recognition as observed in other 17 

cap-binding proteins.  In contrast, in the case of the FluB polymerase, unmethylated 18 

capped RNA is cleaved as well as m7G-capped RNA, and the stacking interaction which 19 

is made only by Trp359 with the guanine base and the hydrogen bonds which are made 20 

by Glu363 on the guanine base and by Gln325 with the ribose of m7GTP are enough for 21 

cap recognition.   22 

23 
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FIGURE LEGENDS 1 

 2 

 FIG. 1. In vitro capped RNA cleavage, RNA elongation and cap-binding reactions.  3 

(A) Dose-dependency of in vitro capped RNA cleavage and the subsequent RNA 4 

elongation by vRNP.  In vitro capped RNA cleavage and RNA elongation reactions 5 

were performed with 20, 40, and 80 ng of FluA (lanes 2 to 4 and 8 to 10) and FluB 6 

(lanes 5 to 7 and 11 to 13) vRNP using 2 fmol of m7GpppGm-RNA.  Capped RNA 7 

cleavage was performed in the absence of NTPs (lanes 2 to 7), while RNA elongation 8 

was performed in the presence of NTPs (lanes 8 to 13).  Synthesized RNA products 9 

were analyzed by 15% PAGE containing 8 M urea.  (B) Interaction of vRNP with the 10 

cap1-structure.  UV cross-linking was performed using 50, 100, and 200 ng of FluA 11 

(lanes 1 to 5) and FluB (lanes 6 to 10) vRNPs with (lanes 2 to 5 and 7 to 10) or without 12 

(lanes 1 and 6) UV irradiation at 254 nm.  Competition experiments were performed in 13 

the presence of 100 pmol of m7GpppGm analogue (lanes 5 and 10).  Upper panels 14 

show the autoradiography (ARG), while lower panels show silver staining patterns. 15 

 16 

 FIG. 2. Specificity of recognition of cap structures by Flu polymerases.  (A) 17 

Analysis of 5’-terminal cap structures of RNAs.  T7 RNA polymerase-synthesized 18 

RNAs were treated with nuclease P1 and analyzed by TLC (PEI-CEL, 0.65 M LiCl), 19 

and radioactive nucleotides were detected by autoradiography.  (B and C) In vitro 20 

capped RNA cleavage (B) and RNA elongation (C) reactions were performed with 600 21 

ng of FluA (lanes 2, 5, and 8) or FluB (lanes 3, 6, and 9) vRNP using 2 fmol of 22 

variously methylated capped RNAs (m7GpppGm-RNA, lanes 1 to 3; m7GpppG-RNA, 23 

lanes 4 to 6; GpppG-RNA, lanes 7 to 9).  RNA products were analyzed by 15% PAGE 24 
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containing 8 M urea.  The input capped RNAs (33 nt), the cleaved capped RNA 1 

products, and the elongated products are indicated as a closed triangle, open triangles, 2 

and a black bar, respectively, at the right.  (D and E) Ratios of cleaved RNA products 3 

(D) and RNA transcripts (E) to total input primer RNAs.  (F) Cap-binding activity for 4 

variously methylated capped RNAs.  UV cross-linking was performed using 50, 100, 5 

and 200 ng of FluA (upper panel) and FluB (lower panel) vRNP and 50 fmol of 6 

variously methylated capped RNAs (GpppG-RNA, lanes 1 to 3; m7GpppG-RNA, lanes 7 

4 to 6; m7GpppGm-RNA, lanes 7 to 9). 8 

 9 

 FIG. 3. Structure of the PB2 cap-binding domain.  (A) Sequence alignment of 10 

the PB2 cap-binding domains of FluA (A/Panama/2007/99) and FluB 11 

(B/Shanghai/361/2002).  The secondary structure of FluA is displayed over the 12 

sequence alignment.  Blue letters and green letters show identical residues and similar 13 

residues, respectively.  Purple triangles indicate the residues in contact with the cap 14 

analogue m7GTP.  (B and C) Model of m7GTP interaction with the cap-binding 15 

domains of FluA PB2 (B) (10) and FluB PB2 (C) drawn by computer-associated 16 

calculation, with putative hydrogen bonds shown as green dotted lines.   17 

 18 

 FIG. 4. Transcription activities of PB2 mutants in a mini-replicon system.  (A 19 

and B) Effects of mutations of m7GTP stacking residues in FluA (A) and FluB (B) PB2 20 

on transcription activity.  (C and D) Effects of mutations in residues involved in 21 

hydrogen bonds with guanine residue of m7GTP in FluA (C) and FluB (D) PB2 on 22 

transcription activity.  (E) Effect of mutations in Gln325 with an Asp mutation at 23 

position 363 in FluB PB2 on transcription activity.  The firefly luciferase activity was 24 
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normalized to Renilla luciferase activity.  The results are averages and standard 1 

deviations (SD) from four independent experiments. 2 

 3 

FIG. 5. Suppression mutation in transcription and cap-binding activities for 4 

the FluB PB2-363D mutant.  (A and B) The levels of accumulation of viral mRNA (A) 5 

and cRNA (B) were measured by qPCR.  (C) Cap-binding activities of mutants.  6 

Coprecipitated capped RNAs with 100 ng of recombinant RNA polymerase complexes 7 

(wild type [wt], lanes 1, 4, 7, and 10; 363D mutant, lanes 2, 5, 8, and 11; 325R-363D 8 

double mutant, lanes 3, 6, 9, and 12) were recapped before (lanes 1 to 3 and 7 to 9) and 9 

after (lanes 4 to 6 and 10 to 12) decapping by β-elimination.  Recapped RNAs were 10 

treated without (lanes 1 to 6) or with (lanes 7 to 12) tobacco acid pyrophosphatase 11 

(TAP) and analyzed by TLC (PEI-CEL, 0.65 M LiCl), and radioactive nucleotides were 12 

determined by autoradiography.  (D) The radioactivity of [32P]m7Gp of TAP-treated 13 

products which were recapped after decapping was measured by a liquid scintillation 14 

counter.  The cap-binding activity is represented as a ratio to the amount of [32P]m7Gp 15 

derived from the wild type.  These results are averages and SD from three independent 16 

experiments, and the level of significance was determined by Student’s t test (unpaired)  17 

(∗, P < 0.0025; ∗∗, P < 0.0005).  18 
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 SUPPLEMENTAL MATERIALS 1 

 2 

 Table S1. Primers used for amplification of PB1, PB2, PA, and NP 3 

4 ORF Direction Sequence (5'-3')

FluA-PB1 FOR CCCCAAGCTTGATATCGCGGCCGCCACCATGGATGTCAATCCGACCTT

REV CGCGTCGACGGTACCTATTTTTGCCGTCTGAGCTCTT

FluA-PB2cFLAG FOR CGCGGATCCCGGGCGGCCGCCACCATGGAAAGAATAAA AGAACTAAGAAATCT

REV GCGGATCCTTATCACTTGTCGTCGTCATCCTTGTAGTCATTGATGGCCATCCGAATTC

FluA-PA FOR GATCCCGGGCCGCCACCATGGAAGATTTTGTGCGACA ATG

REV CGTAGGATCCTATTTTAATGCATGTGTCAGGAA

FluA-NP FOR TCGACGGTACCAGCTGAAGCTTGCTAGCGGCCGCCACCATGGCGTCCCA AGGCACCAAACG

REV GGAATTCATCTTAATTGTCGTACTCCTCTGCATTGT

FluB-PB1 FOR GATCTCGAGCCGCCACCATGAATATAAATCCTTATTTTCTCTTCAT

REV CCCTCGAGTTATGTGTACCCAATCTCACCA

FluB-PB2cFLAG FOR GATCTCGAGCCGCCACCATGACATTGGCTAAAATTGAA

REV GCGGATCCTTACTTGTCGTCGTCATCCTTGTAGTCGCTCAAGGCCCACC

FluB-PA FOR GATCTCGAGCCGCCACCATGGATACTTTTAT TACAAGAAACTTCC

REV CCCTCGAGTTATTCATCCATTATTTCATCTACT

FluB-NP FOR TAGGTACCGCCGCCACCATGTCCAACATGGATATTGACG

REV TAATAATCGAGGTC ATCATAATCC

FOR: forward, REV: reverse



 2

Table  S2.  Primers for preparation of PB2 mutants 1 

2 Strain Position Forward primer sequence (5'-3') Reverse primer sequence (5'-3')

A/PA/99 H357W GATAAGAGTGTGGGAGGGATAT CTCATACCCCTCCCATACTCTTATTTTC

H357F GATAAGAGTATTTGAGGGGTATGAG CTCATACCCCTCAAATACTCTTATC

H357L GATAAGAGTGCTTGAGGGATATG CATATCCCTCAAGCACTCTTATC

E361A GGTATGCGGAGTTCACAATG CATTGTGAACTCCGCATACC

K376A CTATACTCAGAGCAGCAACC GGTTGCTGCTCTGAGTATAG

F404W CCATGGTGTGGTCACAAGAG CTCTTGTGACCACACCATGG

F404L GCCATGGTACTGTCACAAGAG CTCTTGTGACAGTACCATGGC

B/SH/02 Q325A GACAAAGAGCAAGATTTGGAC GTCCAAATCTTGCTCTTTGTC

Q325N GACAAAGAAACAGATTTGGACG CGTCCAAATCTGTTTCTTTGTC

Q325K GACAAAGAAAGAGATTTGGACG CGTCCAAATCTCTTTCTTTGTC

Q325R GACAAAGACGGAGATTTGGAC GTCCAAATCTCCGTCTTTGTC

E363A GGAGAAGCAGAGTTCCATG CATGGAACTCTGCTTCTCC

E363D GGAGAAGACGAGTTCCATG CATGGAACTCGTCTTCTCC

K378A GGAATATTAAAAGCGAGCAAAATGAG CTCATTTTGCTCGCTTTTAATATTCC

W359H GATTGGAATACATGACGGAGAAG CTTCTCCGTCATGTATTCCAATC

W359L GATTGGAATACTTGACGGAGAAG CTTCTCCGTCAAGTATTCCAATC

W359F GATTGGAATATTCGACGGAGAAG CTTCTCCGTCGAATATTCCAATC

F406Y GTGCATGGTATACTCTCAAGAC GTCTTGAGAGTATACCATGCAC

F406L TGCATGGTACTGTCTCAAGAC GTCTTGAGACAGTACCATGCA



 3

 Figure S1. The comparison of the capped RNA cleavage activity among FluA 1 

strains and among FluB strains.  (A) Proteins in purified virions (lanes 1 and 3) and 2 

vRNP (lanes 2 and 4) of FluA (lanes 1 and 2) and FluB (lanes 3 and 4) were separated 3 

through 11% SDS-PAGE containing 4 M urea and stained with CBB.   (B) In vitro 4 

capped RNA cleavage reactions were performed using 600 ng of FluA (lanes 2 to 4) and 5 

FluB (lanes 5 and 6) vRNP with m7GpppGm-RNA (lanes 1 to 6).  Synthesized RNA 6 

products were analyzed by 15% PAGE containing 8 M urea.  PA, A/Panama/2007/99 7 

(H3N2); BJ, A/Beijing/262/95 (H3N2); PR, A/Puerto Rico/8/34 (H1N1); SH, 8 

B/Shanghai/361/2002; and Mie, B/Mie/1/93.  The input capped RNAs (33 nt) and 9 

cleaved capped RNA products are indicated as closed and open triangles in the right of 10 

panel, respectively.   11 

 12 

 Figure S2. Characterization of RNA elongation reaction products.  (A) The 13 

elongated products corresponding to eight full-length segments.  The vRNA templates 14 

purified from FluA (lane 1) and FluB (lane 2) vRNPs were analyzed by 4% PAGE 15 

containing 8 M urea, and then detected by silver staining.  The elongated products 16 

synthesized in in vitro RNA elongation reaction were analyzed by 4% PAGE containing 17 

8 M urea, and then detected by autradiography (FluA: lane 3, FluB: lane 4).  (B) 18 

Detection of the poly(A)+ elongated products.   The poly(A)+ and poly(A)- elongated 19 

products (FluA: lanes 1 to 3, FluB: lanes 4 to 6) were separated using OligotexTM-dT30 20 

<Super> (TaKaRa) according to the manufacturer's instruction.  A cap1-poly(A) (as a 21 

positive control for poly(A)+, 33 nt) and 53-merVwt (as a negative control for poly(A)-, 22 

5’-AGUAGAAACAAGGGUGUUUUUUCAUAUCAUUUAAACUUCACCCUGCUU23 

UUGCU-3’) (4) were also subjected to poly(A) selection and analyzed by 10% PAGE 24 
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containing 8 M urea. 1 

 2 

 Figure S3. Effect of mutations at the ribose stacking residue (Phe323) in FluA 3 

PB2 on the transcription activity.  The transcription activity in the mini-replicon system 4 

was measured as FIG. 4.  The firefly luciferase activity was normalized as that relative 5 

to the renilla luciferase activity.  These results are averages with SD from four 6 

independent experiments.  7 

 8 

 Figure S4. The model for the interaction of m7GTP with the cap-binding domain 9 

of FluB PB2.  The models of wild type (A), Glu363Asp mutant (B), and Gln325Arg and 10 

Glu363Asp double mutant (C).  In the case of wild type, the stacking interaction (purple 11 

circle) between Trp359 and methylated base and hydrogen bonds (green dotted lines) 12 

between Glu363 and guanine base and between Gln325 and ribose of guanosine forms 13 

the pocket for cap recognition.  The Asp363 replaced for Glu363 could make no or 14 

weak hydrogen bonds with guanine possibly due to the longer distance (B). Arg325 15 

replaced for Gln325 could generate hydrogen bonds with ribose more stably than 16 

Gln325.  Alternatively, the interaction between Arg325 and ribose may relocate guanine 17 

base so as to make the interaction with Asp363 more stable (B). 18 

 19 

 Figure S5. The conserved mode of m7G binding by four cap-binding proteins.  20 

The structures of four cap-binding domains with m7G binding are drawn as relative 21 

configuration of two aromatic residues sandwiching the methylated base and the acidic 22 

residue interacting with the N1 and/or N2 positions of the guanine.  (A) Influenza A 23 

virus polymerase PB2 cap-binding domain (1) (pdb entry code 2vqz), (B) Human 24 



 5

translation initiation factor, eIF4E (5, 6) (pdb entry code 1ipc), (C) 20 kDa human 1 

nuclear cap-binding protein, CBP20 (3) (pdb entry code 1h2t), and (D) Vaccinia virus 2 

(nucleoside-2’-O-)-methyltransferase, VP39 (2) (pdb entry code 4dcg). 3 

4 



 6

SUPPLEMENTAL REFERENCES 1 

 2 

1. Guilligay, D., F. Tarendeau, P. Resa-Infante, R. Coloma, T. Crepin, P. Sehr, 3 

J. Lewis, R. W. Ruigrok, J. Ortin, D. J. Hart, and S. Cusack. 2008. The 4 

structural basis for cap binding by influenza virus polymerase subunit PB2. Nat 5 

Struct Mol Biol 15:500-6. 6 

2. Hu, G., P. D. Gershon, A. E. Hodel, and F. A. Quiocho. 1999. mRNA cap 7 

recognition: dominant role of enhanced stacking interactions between 8 

methylated bases and protein aromatic side chains. Proc Natl Acad Sci U S A 9 

96:7149-54. 10 

3. Mazza, C., A. Segref, I. W. Mattaj, and S. Cusack. 2002. Large-scale induced 11 

fit recognition of an m(7)GpppG cap analogue by the human nuclear 12 

cap-binding complex. Embo J 21:5548-57. 13 

4. Shimizu, K., H. Handa, S. Nakada, and K. Nagata. 1994. Regulation of 14 

influenza virus RNA polymerase activity by cellular and viral factors. Nucleic 15 

Acids Res 22:5047-53. 16 

5. Tomoo, K., X. Shen, K. Okabe, Y. Nozoe, S. Fukuhara, S. Morino, T. Ishida, 17 

T. Taniguchi, H. Hasegawa, A. Terashima, M. Sasaki, Y. Katsuya, K. 18 

Kitamura, H. Miyoshi, M. Ishikawa, and K. Miura. 2002. Crystal structures 19 

of 7-methylguanosine 5'-triphosphate (m(7)GTP)- and 20 

P(1)-7-methylguanosine-P(3)-adenosine-5',5'-triphosphate (m(7)GpppA)-bound 21 

human full-length eukaryotic initiation factor 4E: biological importance of the 22 

C-terminal flexible region. Biochem J 362:539-44. 23 

6. Tomoo, K., X. Shen, K. Okabe, Y. Nozoe, S. Fukuhara, S. Morino, M. 24 



 7

Sasaki, T. Taniguchi, H. Miyagawa, K. Kitamura, K. Miura, and T. Ishida. 1 

2003. Structural features of human initiation factor 4E, studied by X-ray crystal 2 

analyses and molecular dynamics simulations. J Mol Biol 328:365-83. 3 

 4 

 5 


	first paper Wakai.pdf
	再投稿用の図-最終
	スライド番号 1
	スライド番号 2
	スライド番号 3
	スライド番号 4
	スライド番号 5
	スライド番号 6
	スライド番号 7
	スライド番号 8
	スライド番号 9
	スライド番号 10

	SUPPLEMENTARY for revise-final

